
HAL Id: hal-01385565
https://hal.science/hal-01385565v1

Submitted on 1 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mediation-based Web Services fed Data Warehouse
John Samuel Samuel, Christophe Rey, Franck Martin, Lionel Peyron

To cite this version:
John Samuel Samuel, Christophe Rey, Franck Martin, Lionel Peyron. Mediation-based Web Services
fed Data Warehouse. Journées francophones sur les Entrepôts de Données et l’Analyse en Ligne
(EDA), Jun 2014, Vichy, France. pp.159–162. �hal-01385565�

https://hal.science/hal-01385565v1
https://hal.archives-ouvertes.fr


Mediation-based Web Services fed Data Warehouse

John Samuel∗, Christophe Rey∗

Franck Martin ∗∗, Lionel Peyron∗∗

∗LIMOS, CNRS, Blaise Pascal University, Aubière, France
samuel@isima.fr, christophe.rey@univ-bpclermont.fr

∗∗Rootsystem, Vichy, France
{franck.martin,lionel.peyron}@rootsystem.fr

Résumé. Nous présentons le prototype DaWeS, un entrepôt de données ali-
menté par des services web. Son mécanisme d’ETL est basé sur l’approche mé-
diation habituellement utilisée en intégration de données. Cette approche permet
à DaWeS (i) d’être entièrement configurable en utilisant des langages déclaratifs
seulement (XML, XSLT, SQL, datalog) et (ii) de rendre le schema de l’entrepôt
dynamique et donc facilement modifiable. L’objectif est de permettre l’adapta-
bilité et le passage à l’échelle afin que DaWeS puisse intégrer des services web
en constante évolution et en nombre toujours plus grand. Nous mettons l’accent
sur le fait que cette approche médiation permet à DaWeS d’être utilisé avec la
majorité des services web actuellement disponibles qui sont utilisent des techno-
logies de base uniquement (HTTP, REST, XML,and JSON) et non des standards
plus évolués (WSDL, WADL, hRESTS or SAWSDL).

1 Introduction
Everyday we use a large number of web services and applications catering to our various

requirements. This trend has now caught up even among the enterprises, especially the small
and medium scale enterprises, resulting in a situation where their own business data is spread
across multiple data centers spanning even across continents, managed and controlled by nu-
merous web service providers. Enterprises need an integrated view of their data in the form
of performance dashboards to track the overall growth of their companies and business units.
Traditionally enterprises may use a data warehouse (cf Kimball et Ross (2002)) to perform data
analysis and compute business performance measures. But with the advent of multiple hetero-
geneous, autonomous and ever-evolving web services, the task of data integration has become
a challenging one. The purpose of our work is to aid enterprises using the web services as
their data source with a data warehouse service to track their performance measures. We built
DaWeS (Data warehouse fed with Web Services), a multi-enterprise data warehouse service
able to fetch interesting data from various web services and expose them in a manner so that
the end users can compute their own interesting business measures in a transparent manner hi-
ding from them the various intricacies of the underlying web service application programming
interface (API).

Recent web services and semantic web technologies (like WSDL, WADL, hRESTS or
SAWSDL) allow to solve many integration issues as for instance the automatic generation



Data Warehouse fed with Web Services

of wrappers or the automatic discovery of web services. But these technologies are constrai-
ning : developers must learn the associated languages, the integrated systems must be fully
and precisely described and the surrounding environment must be carefully set up, deman-
ding for instance the building of a services directory or even a services ontology. That’s why
they are not (yet) used by the majority of companies which provide web services API. In this
context, it is not possible to envision a full-fledged automated integration solution based on
web services. Thus we propose DaWeS which is a semi-automated platform which aims to
be scalable and adaptable using the actually used standards of web services (HTTP, REST,
JSON, XML). To achieve scalability, DaWeS implements a full declarative approach reducing
the human effort to a minimum while adding new web services, handling the API changes
and defining the performance indicators. To achieve adaptability, DaWeS is organized around
a mediated schema which is a part of the warehouse schema over which the user queries can
be formulated (declaratively) and all data source API operations are defined (declaratively).
This enables the warehouse schema to be dynamic which is a key feature towards adaptability.
Internally, the system is powered by query rewriting techniques from the mediation approach
for data integration (cf Duschka et Genesereth (1997); Duschka et al. (2000)). In the vein of
Vassiliadis (2011), the use of mediation in the feeding of a datawarehouse from web services
to obtain a scalable and adaptable integration system suited to actually used web services is
the contribution brought by DaWeS.

2 Mediation to feed a data warehouse

LAV mappings
(conjunctive queries

 with access pattern)

Global schema

Record data
Record schema

Record DB

P.I. data
P.I. schema

Perf. indicator DB

API schema

built using

built using

built using

defined by

defined by

defined by

Generic HTTP Web Services Wrapper

Answer builder

Query rewriter

(inverse rules 

algorithm)

Query evaluator

(from the DBMS)

Performance 

indicators values

Performance 

indicators
(SQL queries)

Records
(datalog queries)

APIs cloud

built using

Query plans
(datalog queries)

API calls
(http format)

Answers/Errors
(http format)

API calls
(internal format)

Answers
(internal format)

Answer format
(XSD/XSLT file)

Query response

(records values)

HTTP information
(XML file)

Caption: ... Component
B is an input of C

A is an output of C AAB C
A is manually 

obtained A
A is automatically 

computed

FIG. 1 – DaWeS Architecture

We use media-
tion, a well-known
approach in data in-
tegration systems (cf
Wiederhold (1992))
to provide a uni-
form query interface
across multiple he-
terogenous and au-
tonomous web ser-
vices API.

Each API opera-
tion is modeled as
a relation having an
access pattern defi-
ning inputs and out-
puts. The set of these
operations defines the
API schema. These
relations are then de-
fined as views over
the global schema
which is a set of re-
lations that describe



Samuel et al.

some domain (e.g. email marketing, helpdesk,...). This follows the LAV setting of mediation,
using conjunctive queries as the view language. The global and API schema are virtual, they do
not contain any data. DaWeS users are then able to define records as a second set of views over
the global schema. A record is a materialized relation in the warehouse in which data from web
services are stored after retrieval. The view language for records is datalog program, ie union
of conjunctive queries with recursion. The record schema gathers all record definitions. It is
the base schema over which full SQL queries are posed to define complex indicator measures.
The set of indicators relations is the performance indicator schema. As the record schema, it is
materialized.

The feeding process of the warehouse mainly consists of the rewriting of record definitions
according to API relations. This happens in the query rewriter where the rewriting is perfor-
med by the Inverse Rules algorithm (cf Duschka et Genesereth (1997); Duschka et al. (2000))
which is a classical data integration algorithm. This algorithm is especially interesting in its
unique ability to handle recursive record definition which is particularly interesting to define
complex records. In addition to this, Inverse rules can be used to specify various tuple genera-
ting dependencies (particularly functional and full dependencies) to specify various constraints
(like primary key) in the mediated (global) schema. The obtained rewriting is a query plan that
retrieves data from the web services. This is achieved thanks to the answer builder and the ge-
neric http wrapper. These two modules take as input other characteristics of web service API
operations : XSD and XSLT files. The answer builder is also in charge of building the complete
answer to be stored in the record relation. The non ETL part of DaWeS is classicaly made up
of SQL query answering capabilities to be able to compute and store perfomance indicators.

3 Demonstration Scenarios
There are primarily two types of users for DaWeS : administrators and business execu-

tives. Administrators are responsible for adding new web services to the system, managing
the global schema relations, formulating record queries over the global schema and providing
some default performance indicators. Business executives are in charge of defining their own
indicators. The demonstration will illustrate the use of DaWeS through 3 scenarios.

In the first scenario, it will be explained how a DaWeS administrator can connect web
services to the system. Real available web services will be used : Basecamp, Teamworkpm
and LiquidPlanner for the project management field, MailChimp and CampaignMonitor for
the email marketing field, and Zendesk, Freshdesk, Uservoice, Desk and Zoho Support for the
support/helpdesk field 1.

In the second scenario, it will be shown how records and performance indicators are defi-
ned for the previous web services. Examples of record definitions are "Daily New Projects",
"Daily Active Projects",... Examples of performance indicators are "Total High Priority Tickets
Registered in a month", "Percentage of High Priority Tickets Registered in a month", ...

The third scenario will show how a user can use the platform. For exemple, it will show
what a helpdesk user who is interested in the number of tickets solved during the last month or
the percentage of high priority tickets registered and solved has to do to get these indicators.

1. http ://www.basecamp.com, http ://www.liquidplanner.com, http ://www.teamworkpm.net,
http ://www.mailchimp.com, http ://www.campaignmonitor.com,
http ://www.zendesk.com, http ://www.freshdesk.com, http ://www.uservoice.com,
http ://www.desk.com, http ://www.zoho.com/support,



Data Warehouse fed with Web Services

4 Conclusion
With DaWeS, we show that even without defining web services operations with machine

readable description languages, the mediation approach defined in data integration (especially
the LAV setting) can be valuably used as a data warehouse ETL. We also show that this ap-
proach enables a fully declarative way of managing the ETL part of the data warehouse. This
study is still in progress concerning its quantitative validation with current benchmark experi-
mentations to assess scalability and adaptability.

Acknowledgement : We thank the Conseil General of the Region of Auvergne (France)
and FEDER for funding our research project.

Références
Duschka, O. M. et M. R. Genesereth (1997). Answering recursive queries using views. In

PODS, pp. 109–116.
Duschka, O. M., M. R. Genesereth, et A. Y. Levy (2000). Recursive query plans for data

integration. J. Log. Program. 43(1), 49–73.
Hansen, M., S. E. Madnick, et M. Siegel (2002). Data integration using web services. In

Z. Lacroix (Ed.), DIWeb, pp. 3–16. University of Toronto Press.
IRIS (2008). Integrated Rule Inference System - API and User Guide.
Kimball, R. et M. Ross (2002). The Data Warehouse Toolkit : The Complete Guide to Dimen-

sional Modeling (2nd ed.). New York, NY, USA : John Wiley & Sons, Inc.
Thakkar, S., J. L. Ambite, et C. A. Knoblock (2005). Composing, optimizing, and executing

plans for bioinformatics web services. The VLDB Journal 14(3), 330–353.
Vassiliadis, P. (2011). A survey of extract-transform-load technology. In Integrations of Data

Warehousing, Data Mining and Database Technologies, pp. 171–199.
W3C (2001). Web Service Description Language 1.1.
W3C (2009). Web Application Description Language.
Wiederhold, G. (1992). Mediators in the architecture of future information systems. Compu-

ter 25(3), 38–49.
Zhu, F., M. Turner, I. A. Kotsiopoulos, K. H. Bennett, M. Russell, D. Budgen, P. Brereton,

J. A. Keane, P. J. Layzell, M. Rigby, et J. Xu (2004). Dynamic data integration using web
services. ICWS, 262–269.

Summary
We present our prototype DaWeS, Data Warehouse fed with Web Services. Its ETL process

is grounded on a mediation approach usually used in data integration. This enables DaWeS (i)
to be fully configurable in a declarative manner only (XML, XSLT, SQL, datalog) and (ii) to
make the warehouse schema dynamic so it can be easily updated. (i) and (ii) aim at making
DaWeS scalable and adaptable to smoothly face the ever-changing and growing web services
offer. We point out the fact that this also enables DaWeS to be used with the vast majority of
actual web services defined with basic technologies only (HTTP, REST, XML,and JSON) and
not with more advanced standards (WSDL, WADL, hRESTS or SAWSDL).


