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Abstract—This manuscript explores the selection of appropri-
ate mixed strategies (MSs) in a Mixed Strategist Dynamics (MSD)
application for load management of Plug-in Electric Vehicle
(PEV) fleets. This selection is based on the convenience of PEV
owners, aiming to choose those MSs that privilege early high (or
fast) charging rates when it is possible. The previously published
MSD and Maximum Entropy principle (MSD-MEP) approach
is revised and illustrated with several examples, specially in
the context of selection of MSs. This revision allows a wider
understanding of the method, and aims to inspire new contri-
butions on domains where distributed optimization methods are
pertinent. Results obtained without any management structure
are compared to those obtained with the MSD-MEP approach
under different scenarios, where full sets of MSs and reduced sets
of convenient MSs are applied. The performance of the method,
using conveniently reduced sets of MSs, is tested with real
historical active power measurements, provided by the SOREA
utility grid company in the region of Savoie, France.

Index Terms—Plug-In Hybrid Electric Vehicles, Smart charg-
ing, Evolutionary Game theory, Distributed Optimization, Mixed
Strategist Dynamics.

I. INTRODUCTION

Maturing and emerging technologies have boosted the mar-
kets of plug-in electric vehicles (PEVs) and plug-in hybrid
electric vehicles in the recent years, in terms of battery
capacities and autonomy. These technological advancements
have impacts not only in the development of sustainable
mobility systems [1], but also on the electrical infrastructure
that provides power to these systems [2]–[5]. Connected PEVs
represent distributed energy storage devices to the electricity
distribution system, that can be employed to improve power
quality and efficiency or reduce maintenance costs [6]. Nev-
ertheless, without any smart management strategy handling
charging infrastructures, distribution systems are prone to have
problems such as heavy load unbalances, high load peaks and
fast transitions, or transformers lifespan reduction [7]–[10].

Several approaches have been proposed in order to properly
handle PEV fleets load. In particular, decentralized approaches
are preferable because of the benefits the provide for owners
autonomy [11]. In [12], a communication channel inspired
approach is proposed, where each PEV load is divided in
several packets. Each PEV asks for permissions in order to
consume its programmed packets of load, according to the

congestion of the system. Authors of [13] propose an approach
for low penetration of PEVs, where each one maximizes
its charging rates taking into account voltage and current
constraints based on offline parameter computations. Uncertain
final states of charge, sudden variations in power consumption
heavily affecting batteries and transformers, and inflexible
charging rates, are some of the drawbacks of these approaches.

Other authors formulate the load scheduling problem as N-
person potential games (a concept from game theory), where
each PEV is a player [5], [14]. These techniques optimize
a certain criteria by defining proper load schedules in a
decentralized way. Some weak points in these approaches
arise when the number of PEVs is not large enough, or when
parameters (total PEV load, charger power limits, connection
times) are not homogeneous. Moreover, these methods unfairly
allocate the available resources. In [6], an evolutionary game
dynamics approach is proposed based on the application of the
Mixed strategist Dynamics (MSD) and the Maximum Entropy
principle (MEP) in a multi-population model. This method
handles the distributed PEVs load allocation problem in a fair
way, reducing the impact on the grid, and taking into account
social constraints from owners side. It takes advantage of the
concept of Mixed Strategies (Ms) and applies it in order to
define local sets of feasible solutions as convex hulls, where
the local dynamics evolve.

In this paper, the previously published MSD-MEP approach
of [6], is explored in terms of the selection of appropriate
MSs. This selection is based on the convenience of PEV
owners, aiming to choose those MSs that privilege early high
(or fast) charging rates when it is viable. Several details
and examples of the MSD-MEP method and the proposed
appropriate selection of MSs are provided throughout the
manuscript.

The paper is organized as follows. Section II provides a
brief introduction to the MSD, with some examples clarifying
the definition and usage of MSs. Section III summarizes the
MSD-MEP application, and introduces illustrative examples.
Section IV describes the role of MSs in the MSD approach.
Besides, it describes the selection of MSs privileging early
high charging rates, among a full set of MSs. Section V pro-
vides results under several illustrative and realistic scenarios.
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Fig. 1. a) Euclidean and Shahshahani gradient vector fields (scaled) for an example of potential function with domain x ∈ R3. The feasible maximum x̂ lies
in the subset Θ4 of the simplex ∆3, while unfeasible maxima x̂∗, and x̂+ lie in planes {x1 +x2 +x3 = 1}, and {x1 +x2 +x3 = 1.5} respectively, in R3.
b) Representation of the simplex ∆4 ∈ R4 as a tetrahedron in R3, Shahshahani gradient vector field (scaled) in ∆4, and 5 different trajectories converging
to the maximum. c) Equivalent Shahshahani gradient vector field, and equivalent 5 trajectories, as seen in ∆3. (+: initial distributions, �: maxima)

Finally, Sect. VI gives a summary of conclusions, and section
VII acknowledges some contributions to this work.

II. SUMMARY AND SOME DETAILS ON THE MSD

As in [6], [15], [16], the MSD describes the evolution of
the distribution of a population whose individuals are able
to choose among an amount M of MSs in a predefined
set, depending on the payoff they get from each of them.
These MSs are convex combinations of an original set of K
pure strategies, and the payoffs associated to MSs depend on
those associated to pure strategies. The set of MSs can be
represented by the vertices of a standard simplex in RM ,

∆M =

{
y ∈ RM : ym ≥ 0,

M∑
m=1

ym = 1

}
, (1)

where every point y is a distribution. On the other hand, given
a distribution y ∈ RM there is an associated distribution x ∈
RK which can be found as,

x = Cy, (2)

where the M columns of C represent all the MSs of the
predefined set. Given that each MS is a convex combina-
tion of the original set of K pure strategies, each column
m = {1, · · · ,M} of C has K elements ck,m such that,
ck,m ≥ 0,∀k = {1, · · · ,K} and

∑K
k=1 ck,m = 1. Further-

more, a distribution given the original pure strategies can also
be represented by a point x inside the simplex in RK ,

∆K =

{
x ∈ RK : xk ≥ 0,

K∑
k=1

xk = 1

}
, (3)

where again each vertex represents a strategy, in this case,
from the set of pure K strategies. As it can be noticed, MSs
are points inside the simplex ∆K , and distributions by MSs
y ∈ ∆M have representations in terms of pure strategies as
points x ∈ ∆K given by eq. (2). As it is described in [6], this

is useful to define a subset ΘM ⊂ ∆K of viable distributions
x in terms of pure strategies, defined by,

ΘM =

{
x = Cy ∈ RK : ym ≥ 0,

M∑
m=1

ym = 1

}
, (4)

which will be exemplified later in this section. The MSD is
described in continuous time by,

ẏm = ym((CTf(Cy))m − ḡ(y)), (5)

where f(Cy) := f(x) is a K dimensional vector whose
elements are the payoffs associated to pure strategies, given
the population distribution y by MSs, and eq. (2). Correspond-
ingly, vector g(y) := CTf(Cy) is an M dimensional vector
whose elements are the payoffs associated to MSs. Given the
nature of the columns of C, element m of g can be interpreted
as the expected value of using the probability mix of pure
strategies given by the elements of column m. Term ḡ(y)
represents the weighted average value of payoffs.

When payoff functions for pure strategies are defined as the
elements of the Euclidean gradient vector of a given potential
function, it can demonstrated that eq. (5) represents a different
type of gradient vector called Shahshahani gradient. Thus, un
der the MSD, y evolves and converges to a local maximum ŷ
for initial distributions in its neighborhood [6], [15]–[17].

In order to illustrate these properties, let us consider a
potential function U(x) = −(x1−26/30)2− (x2−11/30)2−
(x3 − 8/30)2, for x ∈ R3. Now, let us define the payoffs
vector for pure strategies as the euclidean gradient vector
of this potential function. The function U(x) has a global
maximum in x̂+ = [26/30, 11/30, 8/30], which is a point
in the plane {x1 + x2 + x3 = 1.5} ∈ R3. However, if the
feasible set is constrained to points x ∈ ∆3 = {x1 ≥ 0, x2 ≥
0, x3 ≥ 0, x1 + x2 + x3 = 1}, then the feasible maximum
is x̂∗ = [7/10, 2/10, 1/10]. If the feasible set is even more
constrained to x ∈ Θ4 = {0 ≤ x1 ≤ 0.55, x2 ≥ 0, x3 ≥
0, x1 + x2 + x3 = 1.5}, then the feasible maximum is now



time
k = 1 k = 2 k = 3

33.4%

55.5%

11.1%

A slot of time = an environment

Three possible environments

Total

Pure strategies

time

Avalable environments or slots of time

Population not willing to migrate

Populations willing to migrate according to payoffs
given by available environments

b)a)
population

m = 1

k = 1 k = 2 k = 3

time

89%

5.5% 5.5%

k = 1 k = 2 k = 3

55.5%

5.5%

39%

time

k = 1 k = 2 k = 3

33.33% 33.33% 33.33%

time

m = 2

m = 3

Total population

11.1%

55.5%

33.4%
time

k = 1 k = 2 k = 3

14.79%

Resulting distribution for pure strategies

pure strategies

42.55% 42.66%

c)

Fig. 2. a) Example of a distribution of a single population (PEV load) in three environments (pure strategies, or slots of time). b) Example of a multi-
population model, with populations willing to migrate (PEV load) through available environments, and sedentary populations (Base forecast load). c) Example
of distribution of a single population (PEV load) among three predefined MSs, and the resulting distribution among pure strategies.

x̂ = [22/40, 11/40, 7/40]. It should be noticed that Θ4 can
also be defined by the convex hull of eq. (4), and the MSs of,

C =

0.55 0 0 0.55
0.45 1 0 0

0 0 1 0.45

 .

Both the unfeasible maxima and the feasible maximum are
shown in Fig. 1(a). This example illustrates a comparison
between the Euclidean gradient and the Shahshahani gradient
vectors. For several points x in the feasible set Θ4, Fig.
1(a) shows the vector fields of both gradients. As it can be
observed, the euclidean gradient vector ∇U(x) points to the
plane {x1 +x2 +x3 = 1.5} which contains the unconstrained
maximum x̂+. This happens because the euclidean gradient
points in the direction of maximal increase of the potential
function U(x). On the other hand, the Shahshahani gradient
vector ∇shU(Cy) = Cẏ lies on the tangent space Tx∆3 =
{x1 +x2 +x3 = 0} of the simplex ∆3, which in words means
that its tail (i.e. x) and tip (i.e. x+Cẏ) both lie on the plane
{x1 + x2 + x3 = 1} ⊃ ∆3 [15], [17], [18].

The sample points x ∈ ∆3 on Fig. 1(a) are obtained from
uniformly distributed sample points y ∈ ∆4, by applying
eq. (2). On Fig. 1(b), it is possible to check the original
sample points y ∈ ∆4 and the corresponding vector field of
the Shahshahani gradient ẏ for the potential function of the
example. Fig. 1(c) shows a profile view of the simplex ∆3 and
the subset Θ4. It also illustrates the vector field of ẏ within
the convex hull given by the MSs of C, i.e. ẋ = Cẏ.

In Fig. 1(b) it is possible to check 5 different trajectories,
for the evolution of the population, starting from different
initial distributions y within ∆4. The equivalent trajectories
in ∆3 obtained with eq. (2), are plotted in Fig. 1(c) as well. It
is possible to check that trajectories converge to the feasible
optimal.

These characteristics are exploited in [6] in the design of a
methodology for the distributed load management of electrical
vehicle fleets. In the next section, this methodology and the
proposed analogies are summarized.

III. SUMMARY OF THE MSD APPROACH FOR A PEV
FLEET LOAD MANAGEMENT

The method proposed [6] employs multiple analogies that
will be summarized an illustrated in this section. In a first
place, pure strategies are considered to be all the possible
slots of time (hour steps) where PEVs can distribute their
energy demand in order to fully charge their batteries. An
example is shown on on Fig. 2(a), where a given population
is distributed among three environments: 11.1% on the first,
55.5% on the second, and 33.4% on the third. Moreover,
slots of time have previously allocated load corresponding
to the forecasted demand of the transformer. In this sce-
nario, PEVs load and forecasted load are both interpreted as
populations, willing and not willing to migrate (nomad and
sedentary populations) among environments (slots of time or
pure strategies). An example illustrates these analogies on Fig.
2(b), where a sedentary population and two nomad populations
are distributed in six environments (in the fourth environment
there is only a portion of the sedentary population). The
sedentary population represents the forecasted load profile for
K = 6 time slots (hours for instance), while the two nomad
populations represent the load of two PEVs. These two nomad
population distributions over the six environments, will evolve
in order to maximize their weighted average payoffs.

The MSD-MEP approach proposed in [6] is a multi-
population model, where each single nomad population dis-
tribution evolves taking into account the portability of the
environments and the payoffs they provide. These payoffs
are defined by the trade-off between two measurements, a
local load distribution entropy measurement and a total load
distribution entropy measurement, given by,

f ik(xik) = −α ln

 lk
µ

+

J∑
j=1

xjk
µ

−(1−α) ln

(
xik
Γi

)
−1, (6)

where, αi is the trade-off factor (0 ≤ αi ≤ 1) defined by the
owner of PEV i, α is the mean of all the trade-off factors, lk
is the forecasted load for time slot k, xik is the load from PEV
i allocated to time slot k. On the other hand, the total load µ
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ḡi[n] = yi[n]Tgi[n]

yi[n+ 1] = yi[n] +Nsy
i[n] ◦ (gi[n]− ḡi[n])
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Fig. 3. Description of a local MSD routine [6]. Operator a◦b represents the
entry-wise product among vectors a and b. In this manuscript, the trade-off
factor α is common to all single populations.

including both forecast and PEVs, and the total local load Γi

for PEV i, are given by,

µ =

K∑
k=1

λk, Γi =
socides − sociini

τ
, (7)

where λk =
(
lk +

∑J
j=1 x

j
k

)
is the total load at time slot k,

sociini and socides are the initial and desired states of charge
for PEV i, and τ is the length of time slots (hours). It should
be noticed that total and individual PEV load distributions lie
in simplices like the one of eq. (3), given by,

∆K
µ =

{
λ ∈ RK : λk ≥ 0,

K∑
k=1

λk = µ

}
, (8)

∆Ki

Γi =

xi ∈ RK
i

: xik ≥ 0,

Ki∑
k=1

xik = Γi

 . (9)

Each individual population distribution evolves such that
the trade-off is maximized. The trade-off parameter is defined
by owners In the extreme case where α = 1, each local
evolution is such that the total load reaches a distributtion
as uniform as possible among the environments. In the other
extreme case, where α = 0, each local evolution is such
that the local load of the PEV is distributed as uniformly as
possible among the environments without taking into account
the sedentary population, or other PEVs populations. The
evolution of each population distribution is locally controlled
by each PEV which has an associated MSD routine like the
one presented in Fig. 3. Further details on the MSD routine
are provided in [6].

IV. THE MOST CONVENIENT MSS FOR THE APPROACH

In order to illustrate the role of MSs in this approach,
let us consider the example of Fig. 2(c). In this example
the population of a PEV is going to be split among three
predefined MSs. These MSs are possible ways of distributing
the PEV load in the available environments, the first MS

37.5% 37.5%
25.0%

3kW 3kW 2kW

time

time

time

time

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 time

time

time

Fig. 4. Reduced set of the convenient MSs, for a PEV with an energy demand
of 8kWh, Ki = 6 hours, and a 3kW charger. The full set has M i = 60 MSs.
(�: Most convenient MSs privileging early high charging rates.)

(m = 1) pre-defines 5.5% of the population allocated in
the first environment, 5.5% in the second one, and 89% on
the third; the second MS (m = 2) pre-defines 55.5%, 5.5%,
and 39% for each environment; and the last MS (m = 3)
pre-defines uniformly 33.3% for each environment. These
MSs define a matrix C as in eq. (2). In this example, the
PEV population is distributed among these three MSs by
11.1% for m = 1, 55.5% for m = 2, and 33.4% for
m = 3. This distribution per MSs can be summarized in
y = [0.111, 0.555, 0.334]T, and applying eq. (2), the total
load is divided by 42.55% for k = 1, 14.79% for k = 2,
and 42.66% for k = 3, or x = [0.4255, 0.1479, 0.4266]T.

In this approach, MSs are defined based on the limitation
of the population that can be assigned to an environment, i.e.
the maximum instantaneous power allowed by the chargers.
Based on the constraints 0 ≤ xik ≤ xiup, the total number of
MSs was defined by,

M i =
Ki!

(γi − 1)!(Ki − γi)! , (10)

where Ki is the total number of pure strategies for PEV i, and
γi is the minimum amount of slots of time needed to allocate
the PEV load taking into account the charger limitation of
power. As it was shown in [6], this number can be very large
depending on the problem. However, in this manuscript the
idea of only using the most interesting MSs is further explored.

In order to illustrate the concept of the most convenient MSs
in this approach, let us consider a PEV with an energy demand
of 8kWh. This PEV has to charge its battery in Ki = 6 hours
with a 3kW charger. The minimum amount of environments
needed is then γi = 3, and the total amount of MSs that
represent completely the feasible set is M i = 60. Nevertheless,
some of the most interesting MSs can be selected as those
which are more convenient for the PEV owners. For instance,
in Fig. 4, for the same example, 7 out of the 60 MSs are
plotted. These MSs are those that charge the battery as fast
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Fig. 5. Example of 5 PEVs, all of them with energy demands of 8kWh, Ki = 6 hours to charge their batteries, and 3kW chargers. Left: All of them using
full sets of 60 MSs. Middle: All of them using reduced sets of only 7 convenient MSs. Right: All of them using reduced sets of 4 of the most convenient
MSs, privileging early high charging rates. Upper: final PEV load distributions and state of charge profiles of the 5 PEVs, for the three cases. Lower: final
total load distributions, for the three cases, compared to the non-managed case.

Fig. 6. Representation of the evolution of the 5 distributions as a convex
combination of the vertices of an hexagon (6 pure strategies), and zoom on
the trajectories (right). Red dots represent the MSs used in the respective
case. Top: Full set of MSs. Bottom: Set of 7 convenient MSs. (+: initial
distributions, �: final distributions)

as the charger allows it, and those that apply full charging
power during the first hour. The idea behind selecting these
MSs consists in diving the total load of each PEV among only
the convenient MSs and neglect other MSs that do not benefit
the PEV owners. At the end, as it was explained with the
example on Fig. 2(c), the final distributions are linear convex
combinations of the chosen MSs. Consequently selecting only
those MSs having a positive effect for owners, will result in
final load distributions more beneficial for them, while grid
services are still provided by PEVs as much as possible.

Reduced set of MSs (M i = 4)

k = 1

k = 2

k = 3

k = 4

k = 5

k = 6

m = 1

m = 4

Reduced set of MSs (M i = 4)

m = 3

m = 2

Fig. 7. Similar representation to that of Fig. 6, for the evolution of load
distributions of the 5 PEVs using the 4 most convenient MSs privileging
early high charging rates. (+: initial distributions, �: final distributions)

V. RESULTS

Firstly, 5 PEVs are considered to be charged in a residential
grid between 11h and 17h. These PEVs are connected to
chargers limited in nominal power to 3kW. In these conditions,
they have 6 hours to consume 8kWh in order to reach a
desirable state of charge (soc) (initially they have 40% and
they have to reach 80% of their storage capacities of 20kWh).
Thus the total amount of MSs for each PEV is again M i = 60
like in the example of the previous section. In Fig. 5, it is
possible to observe the final load distributions obtained by the
MSD approach in three cases: (Case 1) all the 60 MSs are
used, (Case 2) only the 7 convenient MSs of Fig. 4 are used,
and (Case 3) only the 4 most convenient MSs are used (the
first two and the last two MSs in Fig. 4). The mean trade-off
factor α is assumed to reach α = 0.99, given certain effective
incentive policies from grid managers for PEV owners.

As it can be observed on the upper diagrams on Fig. 5, on
each one of the three cases, all the PEVs converge to common
final local load distributions. As it can be expected, using
reduced sets of MSs still maintains the resource allocation
fairness property of the MSD approach. Observing the lower
diagrams on Fig. 5, when full sets of MSs are employed,
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Fig. 8. From top to bottom: 1) Profiles of arrivals and connected PEVs throughout the evaluation time. 2) Load forecast (blue dots), PEV aggregated load
without management (green +), PEV aggregated load with MSD and full sets of MSs (purple �), and corresponding state of charge profiles (red for 3.3kW,
and blue ◦ for 7.5kW chargers). 3) Similar profiles, for MSD with reduced sets of convenient MSs. 4) Similar profiles, for MSD with reduced sets of the
most convenient MSs, for early high charging rates. Bold line state of charge profiles: examples of 2 PEVs and the effect of convenient MSs.
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Fig. 9. Entropy measurements of total load distributions λ (Forecast + PEVs),
for the unmmanaged case, the ideal case (uniform distribution), and for the
MSD approach with full sets of MSs, and convenient MSs. Measurements are
taken each hour on three of the four study days (with 24 hours horizons).

the final total load distribution is almost flat, while for the
cases with reduced sets of MSs, the final reached total load is
more uneven. This happens because the local load distributions
evolve such that they try to reach a maximum total load
distribution entropy (a total load profile as flat as possible) with
only the available MSs. On the other hand, it can be observed
that reduced sets of MSs privilege early high charging rates,
specially on the third case where the first three hours show
increased charging rates compared to the other cases.

Figs. 6 and 7 illustrate the evolution of the convex combina-
tions for the three cases. They show the mapping of the sets of
MSs which are convex combinations as well. In these figures,
each vertex represents a pure strategy or an environment (a slot
of time k), and red points inside represent the corresponding
MSs. It is also possible to check how the 5 load distributions
evolve and converge to the same distribution. Given that the
third case has a set of only four MSs, the 5 load distributions
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Fig. 10. Observed frequencies for the number of time slots required to
overpass 50% of the energy needed. Frequencies corresponds to amounts of
PEVs during the four study days. The MSD is tested using full sets of MSs,
Best MSs, and Reduced Best MSs.

evolution can be more easily illustrated in the simplex ∆4 (a
tetrahedron in R3) as it is show in Fig. 7.

On the other hand, a realistic scenario is presented, using
real active power measurements of a distribution transformer,
from the SOREA utility grid company, in the region of
Savoie, France. These measurements correspond to mostly
office buildings. In this case, the arrival and departure of
several PEVs is studied in a random way, following a poisson
model with variable rate of arrivals (changing with time)
and variable connection times. The highest rate of arrivals
is 5 PEVs/h around 05h and it decays up to 0.5PEVs/h at
04h the next day. Vehicle battery capacities are defined to
be 20kWh. Chargers are randomly chosen to have limits of
power of 3.3kW with a probability of 80%, and 7.5kW with a
probability of 20%. For reducing impact on batteries lifespan,
states of charge are constrained between 30%-80%. The mean
trade-off factor α is assumed to reach α = 0.9, given incentive



policies from grid managers for PEV owners.
Fig. 8 shows the total load distribution using full sets of

MSs, reduced sets of convenient MSs like those of Fig. 4,
and reduced sets of only the most convenient MSs privileging
early high charging rates. It is worth noting that the peak of
connected vehicles is coincident with the peak of the base load
demand, which makes a management indispensable. Despite
the degradation observed in the final total load distributions
with the reduction of the amount of used MSs, the proposed
MSD approach with only convenient MSs, is still able to
handle PEVs’ load properly. Fairness, PEV owners’ conve-
nience, and impact reduction are still achieved. Taking into
account that entropy of the total load distribution is given
by S(λ) = −∑K

k=1 λk ln (λk/µ) [6], entropy measurements
were taken for each hour step of the first three days of the
scenario on Fig. 8. Using horizons of K = 24 hours, the
results are presented on Fig. 9 for the ideal case (uniform
total load distribution), the unmanaged case, and the managed
case using MSD-MEP with: full sets of MSs, Best MSs, and
Reduced Best MSs. It is possible to observe that in terms of
total load distribution entropy maximization, MSD-MEP with
full sets of MSs achieves the closest entropy measurements to
the ideal case (uniform distribution). It can be observed as well
that the worst measurements correspond to the unmanaged
case, as it is expected. The most important thing to highlight
is the closeness of the entropy measurements for the MSD-
MEP using full and reduced sets of MSs, proving that the the
proposed MSD approach with only convenient MSs, is still
able to handle PEVs’ load properly.

State of charge profiles on Fig. 8 show how owners benefit
from the most convenient MSs. In particular, profiles in bold
lines (marked with arrows) are useful to check how the use of
the most convenient MSs affect charging rates, allowing high
consumption as early as possible. Reduced sets of the most
convenient MSs allow to take advantage from fast charging
infrastructures while the impact on the transformers is still
reduced, as it is observed with the entropy maximization
measurements on Fig. 9. Additionally, Fig. 10 shows the
frequency distributions of slots of time required to overpass
50% of the required energy, for all the PEVs during the four
days. It can be observed that these frequency distributions are
similar for full sets of MSs and sets of Best MSs, with mean
values of 4.96 and 4.92 slots of time, respectively. However,
with sets of Reduced Best MSs early fast charging rates are
privileged, showing a reduction of the mean value to 3.28 slots
of time, and a concentration of more than 70 vehicles (over a
total of 178) using only 2 slots of time to overpass the 50%.

VI. CONCLUSION

This paper explores the selection of appropriate MSs in a
MSD application for load management of PEV fleets. The
MSD approach, using reduced sets of the most convenient
MSs, privileging early high charging rates, is still able to
handle the PEVs’ load properly. Besides, fairness, PEV own-
ers’ convenience, and impact reduction are still achieved by
the approach. As it has been studied, the most convenient

MSs allow to take advantage from fast charging infrastructures
while the impact on the transformers is still reduced, compared
to the case without management. Furthermore, this wider
revision on the MSD approach, the definition and selection
of MSs, and the illustration of Shahshahani gradient concepts,
motivates the exploration and conception of new applications.
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