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A Finite Algorithm to Compute Rank-1 Tensor

Approximations
Alex P. da Silva, Pierre Comon, Fellow, IEEE, André L. F. de Almeida, Senior Member, IEEE

Abstract—We propose a non iterative algorithm, called
SeROAPa, to estimate a rank-1 approximation of a tensor in
the real or complex field. Our algorithm is based on a sequence
of singular value decompositions followed by a sequence of
projections onto Kronecker vectors. For three-way tensors, we
show that our algorithm is always at least as good as the
state-of-the-art truncation algorithm, ST-HOSVDb, in terms of
approximate error. Thus, it gives a good starting point to
iterative rank-1 tensor approximation algorithms. By means
of computational experiments, it also turns out that for 4-th
order tensors, SeROAP yields a better approximation with high
probability when compared to the standard THOSVDc algorithm.

Index Terms—rank-1 approximation; tensor; singular value
decomposition.

I. INTRODUCTION

In the last years, tensors have been playing an important

role in many applications such as blind source separation [1],

[2], [3], digital communications [4], [5], chemometrics [6], [7],

neuroscience [8], sensor array processing [9] and data mining

[10]. The attractiveness behind tensors lies in the uniqueness

of their canonical polyadic (CP) decomposition under mild

conditions [11], which is a powerful property not shared by

standard matrix-based tools. There are several methods to

compute the CP tensor decomposition. We will point out here

some of the most used methods among many others. For the

exact CP decomposition, [12] proposes a direct computation

to decompose 2 × n× n tensors. In [13], a generalization of

Sylvester’s algorithm is described for decomposing symmetric

tensors. In [14], one can use simultaneous matrix diagonaliza-

tion by congruence, provided that the rank of the tensor is

smaller than its greatest dimension. An approach based on

eigenvectors of tensors is proposed in [15].

In practice, tensors are corrupted by noise so that we

need to compute an approximate decomposition of low rank.

Computing the exact CP decomposition is difficult [16], but

finding a lower-rank approximation is even harder. In fact,

this is an ill-posed problem in general [17]. Nevertheless,

some useful algorithms have been conceived to solve locally
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aSequential Rank-One Approximation and Projection.
bSequentially Truncated Higher-Order Singular Value Decomposition.
cTruncated Higher-Order Singular Value Decomposition.

the low-rank approximation problem. This kind of algorithms

can be found in [18], [19], [20], [21], [22]. One of the most

widely used is the alternating least squares (ALS) algorithm

[6], which is an iterative method that consists in conditionally

updating in an alternate way, the matrix factors composing the

CP decomposition. Other gradient and Newton-based methods

estimate the factor matrices all-at-once [18], [23].

A particular low rank approximation problem is the best

rank-1 approximation. Let T ∈ K
I1×I2×...×IN be a tensor

with K = R or C. For vectors ai ∈ K
Ii×1, 1 ≤ i ≤ N , the

best rank-1 tensor approximation problem can be stated as

pmin = min
ai,1≤i≤N

‖T − a1 ⊗ a2 ⊗ . . .⊗ aN‖ , (1)

where ‖ · ‖ is the Frobenius norm and ⊗ is the outer product

[17], [24], [25].

Contrary to best rank-r tensor approximations with r >

1, the best rank-1 tensor approximation of any tensor always

exists in R or C since the set of rank-1 tensors is in a cone of

Segre varieties [26], [27], which ensures Problem (1) is well-

posed. The complexity class of the best rank-1 approximation

problem is NP-hard.

An interest on rank-1 approximations lies, for instance, in

deflation of symmetric and orthogonally decomposable tensors

[28]. An application of best rank-1 approximation on multi-

target tracking can be found in [29]. Recently, the authors

in [30] apply Problem (1) to a class of low rank tensor

optimization problems.

To compute the global minimum of Problem (1), we could

resort to algebraic geometric tools such as those described

in [31], [32]. However, these techniques are only efficiently

applied to small-sized real tensors since they introduce a lot of

variables due to relaxations, so that computational complexity

and storage requirements become an issue.

Still in the algebraic geometry context, [33] describes an

algorithm that computes best rank-1 approximations in a

reasonable time, but the global minimum is attained only

if some restrictive rank conditions are satisfied. Again, the

drawback is the slow convergence for tensors with moderate

dimensions.

Standard iterative algorithms such those described in [18]

can be employed to tackle Problem (1). These algorithms are

initialization-dependent, however, local convergence is ensured

for the standard alternating least squares (ALS) algorithm [34].

In order to obtain a starting point for iterative algorithms,

rank-1 tensor approximations close to a minimizer of Problem

(1) can be delivered by finite algorithms, i.e., algorithms

terminating within a finite number of steps. Among existing

finite algorithms, we highlight here two algorithms based on
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the singular value decomposition (SVD). In [35], the authors

extend the SVD concept to tensors, and a rank-1 approxi-

mation can be obtained by truncating the proposed higher-

order singular value decomposition. It is called THOSVD

throughout this paper. In [36], a new truncated strategy to

higher order SVD, called ST-HOSVD, presents a computa-

tional complexity smaller than that of THOSVD. Moreover, in

terms of approximate error, the authors show that ST-HOSVD

is always at least as good as THOSVD for three-way real

tensors when at least one of the unfolding matrices of the

approximating tensor has a rank equal to 1. Therefore, ST-

HOSVD has been an efficient alternative to compute a rank-

1 three-way tensor approximation [36]. Other finite rank-1

algorithms are also described in [24].

We propose a finite algorithm, called SeROAP, that com-

putes a rank-1 tensor approximation by means of a sequence

of singular value decompositions of decreasing order tensors

followed by a sequence of projections onto Kronecker vectors

of increasing size. The goal of the proposed algorithm is to

provide an approximate error at most equal to that obtained

with ST-HOSVD (and consequently at most equal to that of

THOSVD) for three-way tensors, with computational com-

plexity smaller than that of THOSVD, and still competitive

with that of ST-HOSVD, at least for tensors of small orders,

regardless of their dimensions. Eventually, we report some

experiments showing that, with high probability, SeROAP

performs better than the THOSVD algorithm for 4-th order

tensors.

II. ALGORITHM DESCRIPTION

Let πi, 1 ≤ i ≤ N , be the unfolding operator applied to a

tensor T ∈ K
I1×I2×···×IN along the i-th mode. The unfolding

operator is the procedure of reshaping the entries of a tensor

into a matrix form [19]. Herein, T (i) = πi(T ) is a matrix rep-

resentation of T in the matrix space K
Ii×I1I2···Ii−1Ii+1···IN .

Let also π−1
i , 1 ≤ i ≤ N, be its inverse operator applied

to a matrix form that recovers the original tensor T , that is

T = π−1
i (T (i)).

Before describing the SeROAP algorithm, we provide in the

following a brief description of the rank-1 version of THOSVD

and ST-HOSVD algorithms.

A. Truncated HOSVD

A rank-1 tensor approximation is obtained with THOSVD

by computing the left singular vectors of every of its matrix

unfoldings [35]. Let T (i) = U iΣiV
H

i be the SVD of T (i).

The principal left singular vector ui of U i is the i-th factor

of the desired rank-1 approximation. Let λ be the contraction

of T onto the unit rank-1 tensor u1⊗u2⊗ · · · ⊗uN , that is,

λ = 〈T ,⊗N
i=1ui〉, where 〈·〉 is the Euclidian scalar product.

Thus, X = λu1 ⊗ u2 ⊗ · · · ⊗ uN , is an estimated rank-1

approximation of T . By using Lanczos algorithm to compute

the principal singular vector at k steps [37], THOSVD requires

O{2Nk
∏N

i=1 Ii} operations to obtain all factors ui, where k

is a user-defined parameter.

B. Sequentially truncated HOSVD

ST-HOSVD is an alternative strategy that can be used to

compute a rank-1 approximation of a tensor [36]. The idea

behind this algorithm in this case is to construct the rank-1

tensor approximation with the principal left singular vectors

ui, 1 ≤ i ≤ N, as in THOSVD, but computed from a

sequence of tensors of smaller and smaller order, which in

turn are constructed from the principal right singular vectors.

Herein, we omit the effect of singular values, present in the

description of ST-HOSVD in [36], because they do not affect

the computation of the factors for rank-1 approximations.The

approximate error ‖T − X‖, for an estimated rank-1 tensor

X , depends on the order in which the modes are processed.

In terms of complexity, ST-HOSVD requires

O{2k
∑N−1

j=1

∏N

i=j Ii} flops to compute all factors, hence

less than THOSVD.

C. Sequential rank one approximation and projection

The proposed algorithm, called SeROAP, is a competitive

finite algorithm that computes a rank-1 tensor approximation.

As ST-HOSVD, SeROAP also constructs a sequence of tensors

of smaller and smaller order, thereby the approximate error

depends on the ordering of modes in the process.

On the other hand, contrary to ST-HOSVD, SeROAP does

not compute the factors at every iteration. Instead, the rank-1

approximation is directly computed after a projection process.

The order-N version of SeROAP algorithm goes along the

lines depicted in Algorithm 1 (see also [38] for a longer

description). We assume p = [p1 p2 . . . pN ], with pi ∈
{1, 2, . . . , N} and pi 6= pj for i 6= j, a vector that defines

the order in which the modes are processed, and ⊠ is the

Kronecker product. We also define vec(·) as the vectorization

operator that stacks the columns of a matrix into a long

column vector, and the superscript symbols ∗, T and H

that represent the conjugate, the transpose and the conjugate

transpose operators, respectively.

input : T ∈ K
I1×I2×···×IN : input data, p: processing

order

output: X ∈ K
I1×I2×···×IN : rank-1 approximation

S ← T

for n← p1, p2, . . . , pN−1 do
S(n) ← πn(S)
vn ← principal right singular vector of S(n)

S ← π−1
n (vT

n)
end

u← principal left singular vector of S(p
N−1

)

w ← v∗
p
N−1

⊠ u

for n← pN−2, pN−3, . . . , p1 do

X(n) ← S(n)wwH

w ← vec(X(n))
end

X ← π−1
p
1
(X(p

1
))

Algorithm 1: SeROAP algorithm

The SeROAP algorithm can be described in two different

phases: decreasing tensor order and projection. The decreasing
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order phase (first for loop) is similar to ST-HOSVD algorithm,

except that in SeROAP the factors of the rank-1 approximation

are still not computed. Actually, the goal here is to store the

unfoldings S(p1),S(p2), . . . ,S(pN−2) to project their rows into

Kronecker vectors that will be obtained in the projection phase.

After the first loop, a Kronecker vector w is obtained from the

last unfolding S(pN−1) by computing its rank-1 approximation.

For SeROAP, we do not need to take use of the last element

pN of the mode ordering.

In the projection phase (second for loop), at the first step,

we project the rows of the matrix S(pN−2) onto the Kronecker

vector w, by performing X(pN−2) = S(n)wwH. Notice that

X(pN−2) can be viewed as the unfolding of a rank-1 three-way

tensor. Indeed,

X(pN−2) =S(pN−2)wwH ⇐⇒

X (pN−2) = S(pN−2)w ⊗ u∗ ⊗ vpN−1
.

The vector w is updated using the vec operator applied

to X(pN−2). Since X(pN−2) is the unfolding of a three-

way tensor, vec(X(pN−2)) is a Kronecker product of three

vectors: vec(X(pN−2)) = vpN−1
⊠ u∗

⊠ S(pN−2)w. Thus,

at the next iteration, the unfolding S(pN−3) is projected now

onto a three-way Kronecker vector. This projection generates a

matrix X(pN−3) that is the unfolding of a 4-th order tensor. By

continuing the process, we note that at the end of the projection

phase, the vector w is a Kronecker product of N−1 vectors, so

that the matrix X(p1) is actually the unfolding of an order-N

rank-1 tensor.

The complexity of SeROAP is O{2k
∑N−1

j=1

∏N

i=j Ii} for

the decreasing order phase, and O{2
∑N−1

j=1

∏N

i=j Ii}
for the projection phase. Moreover, all matrices

S(p1),S(p2), . . . ,S(pN−2) must be stored before the second

phase, which gives a total of
∑N−2

j=1

∏N

i=j Ii push operations.

Notice that if N is not large, the complexity of SeROAP

is smaller than that of THOSVD, and not much larger than

that of ST-HOSVD. For instance, for k = 4, N = 3 and

I1 = I2 = I3 = 100, we have approximately 24, 8.08, and

10.1 million flops for THOSVD, ST-HOSVD and SeROAP

algorithms, respectively. For SeROAP, we need 106 floating

points in memory to store the unfolding matrix S(p1).

III. THEORETICAL ANALYSIS

For three-way tensors, in SeROAP we only need to compute

the principal singular triplet of two matrices: one to reduce the

order of the tensor, and the other to construct the Kronecker

vector. Yet, only a single projection is performed to obtain the

rank-1 approximation. In this case, we present in the following

a theoretical result showing that the rank-1 approximation

computed with SeROAP is always at least as good as that

delivered by ST-HOSVD, for the same ordering of modes.

Theorem 1. Let T ∈ K
I1×I2×I3 be a three-way tensor. K =

C or R. Let also X
ST and X

Se be the rank-1 approximations

delivered by ST-HOSVD and SeROAP algorithms, respectively.

Then the approximate error

‖T −X
Se‖ ≤ ‖T −X

ST‖

holds for any mode ordering defined by p.

Proof. Let p = [p1 p2 p3], with pi ∈ {1, 2, 3} and pi 6= pj
for i 6= j. Let also T (p1), X

ST
(p1) and XSe

(p1) be the unfolding

matrix along mode p1 of tensors T , X ST and X
Se, respec-

tively. Denoting by up1
,up2

and up3
the factors obtained with

ST-HOSVD, the approximate error can be written as

‖T (p1) −XST
(p1)‖

2 = ‖T (p1) − λup1
(up3

⊠ up2
)T‖2,

where λ is a positive scalar number for unit factors un, n ∈
{p1, p2, p3}. Hence,

‖T (p1)−λup1
(up3

⊠ up2
)T‖2 =

‖T ‖2 − λtrace{TH

(p1)up1
(up3

⊠ up2
)T}−

− λ∗trace{T (p1)(u
∗
p3

⊠ u∗
p2
)uT

p1
}+ λ∗λ.

The scalar λ is actually the contraction of T onto the unit

rank-1 tensor up1
⊗ up2

⊗ up3
, so that it can be written as

λ = trace{TH

(p1)up1
(up3

⊠ up2
)T} =

= uH

p1
T (p1)(u

∗
p3

⊠ u∗
p2
). (2)

Plugging (3) into equation (2), we obtain, after simplifications,

‖T (p1) −XST
(p1)‖

2 = ‖T ‖2 − |λ|2.

Note that uH
p1
T (p1) = ‖T (p1)‖2 v

H
p1

for the principal singular

triplet (up1
,vp1

, ‖T (p1)‖2) of T (p1), where ‖ · ‖2 stands for

the spectral norm. Hence

λ = uH

p1
T (p1)(u

∗
p3

⊠ u∗
p2
) = ‖T (p1)‖2 v

H

p1
(u∗

p3
⊠ u∗

p2
)

=⇒ |λ|2 = ‖T (p1)‖
2
2 |v

H

p1
(u∗

p3
⊠ u∗

p2
)|2,

which leads to the following approximate error

‖T (p1) −XST
(p1)‖

2 = ‖T ‖2 − ‖T (p1)‖
2
2 |v

H

p1
(u∗

p3
⊠ u∗

p2
)|2.

On the other hand for SeROAP, we have XSe
(p1) = T (p1)wwH,

for w = v∗
p2

⊠ u. Thus,

‖T (p1) −XSe
(p1)‖

2 = ‖T (p1) − T (p1)wwH‖2

= ‖T ‖2 + ‖T (p1)w‖
2 ‖w‖2 − 2‖T (p1)w‖

2

= ‖T ‖2 −wHT H

(p1)T (p1)w. (3)

The vectors u and vp2
are the principal left and right singular

vectors of the unfolding S(p2), as described in Algorithm 1.

The eigenvalue decomposition of T H

(p1)T (p1) can be expressed

by

T H

(p1)T (p1) = ‖T (p1)‖
2
2vp1

vH

p1
+ V , (4)

where V is a semidefinite positive matrix. Plugging (4) into

(3)

‖T (p1) −XSe
(p1)‖

2 = ‖T ‖2 − ‖T (p1)‖
2
2w

Hvp1
vH

p1
w − c

= ‖T ‖2 − ‖T (p1)‖
2
2|v

H

p1
w|2 − c,

with c = wHV w ≥ 0.

To complete the proof of the theorem, we just need to show

that |vH
p1
w|2 ≥ |vH

p1
(u∗

p3
⊠ u∗

p2
)|2, or equivalently that

|〈w,vp1
〉| ≥ |〈u∗

p3
⊠ u∗

p2
,vp1
〉|.
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This is true, because w is by construction (cf. Algorithm 1)

the vector closest to vp1
among all vectors of the form a⊠ b

where a and b have unit norm.

Corollary 2. Let X TH be the rank-1 approximation delivered

by THOSVD algorithm. Then the approximate error

‖T −X
Se‖ ≤ ‖T −X

TH‖

holds for any mode ordering defined by p.

Proof. The proof follows directly from Theorem 1 and Theo-

rem 7.2 in [36], in which the approximate error computed with

ST-HOSVD is at most equal to that obtained with THOSVD

for three-way tensors, when at least one of the multilinear

ranks of the approximating tensor is equal to 1.

IV. NUMERICAL EXPERIMENTS

In order to corroborate the result of Theorem 1, we have

performed experiments for four three-way scenarios: 3×4×5,

3 × 4 × 20, 3 × 20 × 20 and 20 × 20 × 20 tensors. With

these scenarios, we have intended to take into account cases

with equal dimensions or not. For each of them, a sample of

300 complex tensors with real and imaginary parts uniformly

distributed in [−1, 1] was generated thereby ensuring a coher-

ent and meaningful comparison. We have chosen the ordering

p = [3 1 2] for the modes.

In order to characterize the comparison between SeROAP

and ST-HOSVD algorithms, we introduce the metric

∆φs = 1−
‖T −X

Se‖

‖T −X
ST‖

,

which measures how much SeROAP outperforms ST-HOSVD

in terms of approximate error. Notice that 0 ≤ ∆φs < 1. The

higher is ∆φs, the better is the performance of SeROAP over

ST-HOSVD. Figure 1 evinces this for any fixed permutation

vector p. Notice that the higher the dimensions of the tensors,

the smaller is the variance of ∆φs. This can be explained

by the fact that the degree of freedom to construct rank-1

tensors in some tensor space is large for higher dimensions,

which can result in a vast number of rank-1 tensors with

nearby approximate errors. Thus, the approximations delivered

by SeROAP and ST-HOSVD yield close approximate errors.

V. DISCUSSION ON HIGHER-ORDER TENSORS

A better performance in terms of approximate error of

SeROAP over ST-HOSVD and THOSVD is not ensured any-

more for higher-order tensors. Actually, a smaller approximate

error obtained with ST-HOSVD over THOSVD is not ensured

either [36]. Nevertheless, it turns out by numerical experiments

that SeROAP delivers a better rank-1 approximation than

THOSVD with high probability for 4-th order tensors. For

N ≥ 5, the successive projections of SeROAP introduces

substantial errors in the rank-1 tensor approximation, so that

the comparison is not recommended in this case.

We have evaluated the performance of the algorithms under

four scenarios for 4-th order tensors: 5×10×15×20, 5×10×
20× 20, 5× 20× 20× 20 and 20× 20× 20× 20 tensors. We

0 100 200 300
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0 100 200 300
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3× 4× 5 tensors 3× 4× 20 tensors

3× 20× 20 tensors 20× 20× 20 tensors

∆
φ
s

∆
φ
s

Fig. 1. SeROAP vs ST-HOSVD - p = [3 1 2].

assume a sample of complex tensors with entries distributed

as before. We also define the metric

∆φt = 1−
‖T −X

Se‖

‖T −X
TH‖

to compare SeROAP with THOSVD. We have chosen the

order p = [1 2 3 4] for the modes. Table I illustrates the

performance of the algorithms in terms of the percentage of

∆φt > 0 for a sample of 105 tensors. In all scenarios SeROAP

is statistically better than the THOSVD algorithm with a

probability larger than 80%. Thus, our proposed algorithm can

be a reasonable choice for computing a rank-1 approximation

for 4-th order tensors.

TABLE I
PERCENTAGE OF TENSORS IN WHICH SEROAP OUTPERFORMS THOSVD.

Scenario of 4-th order tensors % ∆φt > 0

5× 10 × 15× 20 89.143 %

5× 10 × 20× 20 88.435 %

5× 20 × 20× 20 82.677 %

20× 20× 20× 20 92.874 %

VI. CONCLUSIONS

The proposed SeROAP algorithm has shown to be a simple

solution to the rank-1 tensor approximation problem. For

three-way tensors, SeROAP is always the most accurate algo-

rithm among the competing ones, and hence the best choice

for initializing iterative algorithms to estimate the best rank-

1 approximation. The proof is delineated in Theorem 1. For

small orders, we saw that its complexity can be smaller than

that of THSOVD, and still competitive with respect to that

of ST-HOSVD. According to our experiments, SeROAP is

generally a good option for 4-th order tensors. Indeed, we

have seen that it delivers better rank-1 approximations than

THOSVD, for most tensors drawn randomly according to an

absolutely continuous distribution.
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