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8 Abstract

9 Brass players use a variety of mutes to change the sound of their instrument for artistic
10 expression. However, mutes can also modify the intonation and the playability of the muted
1 instrument. An example is the use of a straight mute on a trombone, which makes it very
12 difficult to play stable pedal notes.

13 Previous studies have shown that using a straight mute establishes a parasitic acoustic
14 resonance in the trombone. To cancel this modification, an active control device was developed
15 and integrated into a mute, with satisfying experimental results [Meurisse et al., 2015]. With
16 this device, the perturbed pedal notes can easily be played again.

17 This paper investigates the ability of a physical model of brass instrument to reproduce
18 the behaviour of the trombone pedal Bb without mute, or with an "active" or a "passive"
19 straight mute. Linear stability analysis and time-domain simulations are used to analyse the
20 behaviour of the model in the parameter range corresponding to the pedal note. Numerical
21 results are compared for different models of instruments: a trombone, a trombone with a
22 straight (passive) mute, an a trombone with an active mute. It is shown that the simple
23 physical model considered behaves similarly to what is experienced with real instruments: the
24 playing of the pedal note is perturbed with a passive mute, whereas the model of trombone
25 with the experimental active mute gives results very similar to those obtained with an open
26 trombone.

» 1 Introduction

s A usual solution for changing the timbre of a brass instrument consists in using a mute, which is a

20 device plugged to the opening of the instrument bell, or held by hand just in front of the bell. The
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shape and the material of the mute affect the pressure radiation of the bell, therefore modifying
the emitted sound [Campbell and Greated, 1994, p.398|. As a side effect, introducing an obstacle
in the bell, or close to it, also modifies the acoustical properties of the instrument [Backus, 1976].
This has various consequences, including modification of the instrument tuning and of the feeling
the musician has of his instrument.

Pedal notes are the lowest playable notes on a trombone. When the slide is fully closed, the
note played is a Bb', corresponding to a playing frequency of 58 Hz in equal temperament. These
notes are quite particular regimes of oscillation of the instrument, for which the playing frequency is
farther from the resonance frequency of the corresponding acoustical mode (the lowest one) than for
other regimes [Gilbert and Aumond, 2008, Velut et al., 2016b|. Furthermore, the lowest acoustical
mode is inharmonic with other acoustical modes. When a straight mute is inserted in the trombone,
playing stable pedal notes on the three first slides positions - Bb!, A! and Ab! - is uneasy and results
in a rolling, unstable sound [Sluchin and Caussé, 1991, Meurisse et al., 2015]. Measurements of the
input impedance of a trombone with a mute [Meurisse et al., 2015, Velut et al., 2016¢| show the
occurrence of a parasitic acoustical mode between the first and the second modes.

This paper will particularly focus on the pedal Bb!, corresponding to the slide fully pulled. It
will hereinafter be referred to as "the pedal note". An active control device has been previously
developed to remove this parasitic mode [Meurisse et al., 2015], which makes it possible to play
the pedal note with a straight mute. It consists of an "active mute", a commercial straight mute
equipped with an active control device which cancels the aforesaid parasitic resonance mode.

The purpose of this paper is to investigate to what extent a simple physical model of trombone
can predict the effect of a trombone straight mute on the pedal note and the effectiveness of the
active mute. The physical model of brass instrument is first presented. Then, linear stability
analysis (LSA) and time-domain simulations are used to analyse the behaviour of the pedal note
in this model. Analyses are conducted on an "open trombone" configuration (tenor trombone
without any mute), a "passive mute" configuration (the same trombone with a consumer straight
mute) and an "active mute" configuration (the same trombone with an identical straight mute
and the described active control loop). Results of this model are compared with the experimental

results from [Meurisse et al., 2015].

IT Tools

IT.A Brass instrument model

A physical model of trombone, suitable for a large class of music instruments, is presented in this
article. Following Helmholtz pioneering work [von Helmholtz, 1870], the trombone is modelled as
a closed-loop system consisting of an exciter and a resonator which are coupled, as illustrated in

Fig. 1. Such a system is able to self-oscillate in different oscillation regimes.
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Figure 1: Closed-loop model in free oscillation, suitable for the description of most self-sustained
musical instruments, including trombones. Self-sustained oscillations are generated by the localised
non-linear coupling (here the airflow between lips) between a linear exciter (here the lips) and a
linear resonator (here the air column inside the instrument bore).

For a brass instrument, the exciter is the lips of the musician, which act as a valve: the section of
the channel between the lips depends on the pressure difference through these lips as well as on their
mechanical characteristics. Multiple models of the lip reed have been proposed and used, with one
degree of freedom [Eliott and Bowsher, 1982, Fletcher, 1993, Cullen et al., 2000, Silva et al., 2007]
or 2 DOF [Adachi and Sato, 1996, Campbell, 2004, Lopez et al., 2006, Newton et al., 2008|. The
model retained for this paper is the one-DOF valve model, usually referred to as the "outward-
striking" model, also called (4, —) swinging-door model in the literature:

2
T g (= ha) = (5~ p(D), )
where h is the height of the lip channel (m); p is the pressure at the input of the instrument, in
the mouthpiece (Pa); py is the constant blowing pressure in the mouth (Pa); w; = 27 f; (rad - s71)
is the lip resonance angular frequency; @, is the (dimensionless) quality factor of the lips; hq is the
value of h(t) at rest; p is an equivalent surface mass (kg - m™2).

Although it does not fully reproduce all the observed behaviours of human or artificial lips, this
model is sufficient for reproducing the normal playing situations [Yoshikawa, 1995], including the
pedal note of the trombone [Velut et al., 2016b] and multiphonic sounds [Velut et al., 2016a]. As
a limitation, this model is known to oscillate at higher frequencies than those at which a musician
would play on the same acoustical mode. Even for this relatively simple model, choosing the lip
parameters is challenging and requires a thorough bibliographical review. This was conducted in

[Velut et al., 2016b|. The resulting set of parameters is given in table I.

ho (m) | W (m) | 1/p (m*-kg™') | @
51074 | 12.10°3 0.1 7

Table I: Lip parameters retained in this study.

The resonator is the air column contained in the bore of the instrument. Given the low

playing amplitude considered in this article, the brassiness phenomenon, related to non-linear
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propagation in the instrument [Myers et al., 2012] is not taken into account. Under this hypothesis,
the resonator can be fully described by its input impedance, which is by definition the ratio of the
pressure P(w) to the flow U(w) at the input of the instrument, in the frequency domain:
Pw
Z(w) = % (2)
This value can be measured thanks to the sensor described in [Macaluso and Dalmont, 2011].
In this paper, three input impedance measurements are used: the impedance of an open trombone
(without any mute), the impedance of the same trombone with a "passive mute" (mute without
active control) and the impedance of this trombone with an "active mute", with the feedback
active control device enabled.
The input impedance can be considered as a sum of peaks, each peak corresponding to a
resonance mode of the air column inside the instrument. Thus, it can be fitted with a sum of

complex modes, corresponding to a sum of poles-residues functions:

Nm, C
Z(w)=2.Y T (3)
n=1 n

C, and s, being the dimensionless complex residues and poles of the complex modes of the
fitted impedance, respectively. Z, = £75 is the characteristic impedance of the resonator, p is the
air density, ¢ the celerity of acoustic waves in the air and r the input radius of the mouthpiece.
N,, is the number of modes used to fit the impedance fixed to IV, = 13 in this article. Translation
of eq. (3) in the time domain leads to an ordinary differential equation for each complex modal

component p,, of the pressure p(t):

dpn
dt

where u(t) is the time-domain expression of the flow at the input of the instrument. Furthermore,

p(t) =2 27]:[:1 R[pn ()]

The fit is optimised by a least mean squares algorithm. This results in a very good match

= $,pn(t) + Z.Cpu(t) Vn € [1..N,], (4)

between the measured impedance and the fit, as shown in Fig. 2.
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Figure 2: (colour online) Comparison of the measured impedances (blue, dash-dotted) and their
modal fits (red, plain) with 13 complex modes. Magnitudes (top plots) and phases (bottom plots)
of the impedances for the three situations - open trombone (left), passive straight mute (middle)
and active mute (right) - are displayed. The dash-dotted line at 65.7 Hz indicates the parasitic
resonance.

The lips and the resonator are coupled through the expression of the flow u(t) of the air jet through
the lip channel:

2.|py — p(t)]

u(t) = Wh(t). sign(py — p(t))-H(h), (5)

where W is the width of the lip channel and p the air density, sign is the sign function and
0(h) is the Heaviside step function. This non-linear expression of the flow was proposed in
[Wilson and Beavers, 1974, Eliott and Bowsher, 1982] and has been used in almost every publi-
cation about brasswind and woodwind physical models since.

The whole model can therefore be written:

% + %% +w2(h — hg) = i(pb —p(t))
u(t) = Wh(t). M.sign(m —p(t)).0(h) (6)
dpn

— = $,pu(t) + Z.Crou(t) Vn € [1..N,]
p(t) =237 Ripa(t)]
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II.B Linear stability analysis

The model described above has a variety of possible behaviours. One of them is a static solution,
all variables being constant. The stability of this static solution is a useful piece of information, as
instability of the static solution indicates possible emergence of oscillating solutions through Hopf
bifurcations. This stability analysis can be carried out on a linearised model: non-linear equations
are linearised in the vicinity of the static solution. Then, the stability of this static solution is
assessed through computation of the eigenvalues of the Jacobian matrix. If at least one eigenvalue
has a positive real part, any perturbation of the static solution will grow exponentially, which by
definition means the solution is unstable. Details on the method applied to brass instruments can
be found in [Velut et al., 2016b].

This method is used to find the lowest blowing pressure value leading to an unstable static solution.
This p, value is hereafter called py,csn. The imaginary part of the same eigenvalue indicates the
oscillation angular frequency for p, = pipresn, provided that the oscillating solution is periodic. The
corresponding frequency is noted fin esn-

LSA has been used for flute-like instruments [Auvray et al., 2012, Terrien et al., 2014| as
well as reed woodwinds [Wilson and Beavers, 1974, Chang, 1994, Silva et al., 2008] and brass-
winds [Cullen et al., 2000, Velut et al., 2016b|. This method does not provide information about
the stability of the oscillating solution which results from the destabilisation of the static solution.
The only piece of information about the resulting waveform is fi,csn, Which is only valid if said
solution is periodic.

An example of results is given in Fig. 3: puresn () and finresn (b) are plotted against the lip
resonance frequency f;, which is a control parameter used by the musician to change the note
played with the trombone. As observed in [Velut et al., 2016b], the plots can be divided in several
f1 ranges corresponding to U-shaped sections of the pyu,s;, curves and very lightly growing plateaus

of finresn just above the acoustic resonance frequencies of the resonator.
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Figure 3: (colour online). Linear stability analysis results: pyesn (a) and fipresn (b) are plotted
against f;. Results for the open trombone (blue), the passive mute (red) and the active mute
(black) are displayed. Black dotted lines of the bottom plot are the resonance frequencies of the
open trombone (horizontal) and the bisector of the axes (finresn = fi)- The qualitative behaviour
of the open trombone, the passive mute and active mute are very similar at this scale.

II.C Time-domain simulation

To get more information about the nature of oscillating solutions of the instrument model, solving
the non-linear equation system Eq. (6) is required. Numerical differential equation solvers provide
simulated values of the system variables. Simulated values of the pressure at the input of the
instrument p have been obtained with the open-source Python library called MoReeSC [Mor, 2016],
which has been developed specially for time-domain simulation of self-oscillating reed and lip valve
instrument models [Silva et al., 2014].

To illustrate the additional information provided by time-domain simulation, waveforms and spec-
tra of two simulated pressure signals are given in Figure 4. The simulation in Fig. 4 (a) and (c)
was computed with f; = 90 Hz while the one in Fig. 4 (b) and (d) was computed with f; = 110 Hz,
each one on an open trombone, with a blowing pressure 10% higher than the oscillation threshold.

While LSA results for these two situations are very close to one another, numerical resolution of



158 the complete model shows a difference in the nature of the oscillation: while the oscillation is

150 periodic for f; = 90 Hz, it appears to be quasi-periodic for f; = 110 Hz.
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Figure 4: Waveforms of simulated p signals for f; = 90 Hz (a) and f; = 110 Hz (b) with zooms
on some periods, along with spectra of their respective sustained regime in ¢) and d). For each
simulation pj is set tol.1 - piresn. fi = 90 Hz results in a periodic oscillation while f; = 110 Hz
results in a quasi-periodic oscillation with well defined secondary peaks.

The f; and p, values for simulations are chosen thanks to LLSA, avoiding a long and cumber-
some search for the oscillation threshold with multiple simulations. The complementarity of these

methods quickly provides a lot of information about relevant points of the oscillation regime.

III Results

ITI.A  LSA

Linear stability analysis was performed on the three configurations studied: open trombone, passive
mute, and active mute. Choosing a configuration consists in choosing C,, and s, values among
the three sets obtained by fitting, all other parameters of the model remaining the same. Lip

parameters were taken from Table I. LSA was performed within the pedal note range, for f; from



12 30 Hz to 65 Hz. This results in fi..sn values corresponding to an oscillation sustained by the first
173 acoustical mode of the open trombone. Figure 5 is a zoom on Fig 3 in the considered f; range.

17a Fig. 5a) showing the threshold pressures py esn, while Fig. 5b) is the frequency at threshold fip,csn-
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Figure 5: Results of LSA in the vicinity of the pedal note (zoom of Fig.3). Results with an
open trombone (dashed line), a passive mute (solid line) and the active mute (dotted) are plotted
together. (a) is the oscillation threshold pressure pi,esn, (b) is the oscillation frequency at threshold
finresh, against f;. Horizontal dash-dotted lines in (b) indicate 58 Hz (playing frequency of the
pedal Bb) and 65.7 Hz (resonance frequency of the parasitic mode of the passive mute). While
open trombone and active mute have very similar behaviours, the oscillation regime expected for
the trombone with the passive mute becomes different above f; = 55H z with a sudden increase in
the Dthresh and fthresh values.

F(f) plot is U-

shaped. finresn is above the trombone’s first acoustical resonance frequency (39 Hz) and grows

The open trombone and the active mute behaviours are similar: the pipresn =

monotonously with f;. Within this f; range, the oscillation threshold of the active mute trombone
is about 75 Pa higher than that of the open trombone, and fijesn is also 0.5 to 1.5 Hz higher.
For f; < 54 Hz, the results for the trombone with a passive mute are similar to those for the other

configurations. But from f; = 55 Hz, both the pressure threshold and the expected playing fre-

9
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quency increase significantly: py,,esn suddenly jumps from 198.6 to 536.9 Pa, while fy,..s, increases
by 8.3Hz (13%, i.e. slightly more than a tone), to reach 66.8 Hz. This value is just above the
resonance frequency of the parasitic peak induced by the passive mute.

finresh covers a range of frequencies around the expected playing frequency of a pedal Bb = 58
Hz. The results for the open trombone and the active mute configurations are very close to
one another, the only difference being a rather small offset in pipresn and fipresn. In contrast,
the passive mute results stand out from the two other configurations: for f; values above 55
Hz, pinresn and fipresn increase suddenly. The fi,..sn value obtained is above the acoustic reso-
nance frequency of the parasitic mode related to the passive mute, and so the regeneration con-
dition [Eliott and Bowsher, 1982, Campbell, 2004] is satisfied for an oscillation supported by this
parasitic mode.

These results can account for the difficulty of playing a stable pedal note with a passive mute: the
LSA indicates a perturbation of the oscillation frequency at threshold, for parameters which could
be those used for the pedal note. However, experimental results shown in [Meurisse et al., 2015]
suggest a non-periodic oscillation when a musician tries to play a pedal note with a passive mute.
As LSA cannot predict the nature of the oscillation, further investigation on the complete non-
linear model is needed. This is the purpose of the numerical simulations presented in the following

section.

ITI.B Time-domain simulations

Time-domain simulations were carried out within the same range of f; as for LSA, in 1 Hz steps,
for each configuration: trombone alone, trombone with a passive mute and finally trombone with
active mute. The blowing pressure was set to p, = 1.1 pypresn as in [Velut et al., 2016b] in order to
keep manageable transient times. This value is close enough to pesn S0 that cautious comparisons
can be carried out between these simulations and LSA.

Simulated pressure signals were separated into a transient and a sustained regime with the help of
the "mironsets" function from MIRtoolbox [Lartillot and Toiviainen, 2007]. The spectra of all the

sustained regimes were computed. Figure 6 plots spectra of p(t) for representative values of f;.

10
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Figure 6: (Colours online) Spectra of the simulated p(t) signals, for f; = 53 Hz (a), 55 Hz (b), 56
Hz (c) and 58 Hz (d). py is set to 110% of the oscillation threshold. For each f; value, results with
the open trombone (blue), the passive mute (red) and the active mute (black) are displayed. The
results for the open trombone and the passive mute are noticeably similar.

for f; < 55 Hz, the three configurations - open trombone, passive mute, active mute - lead to a
periodic oscillation, as illustrated for f; = 53 Hz by (Fig. 6a). The oscillation frequency is a bit
higher than fi,esn: 7.5% for open trombone and active mute, and 2.5% higher for the passive
mute. Oscillation frequencies higher than fi,.csn, when p, > pypresn is coherent with the fact that
a musician’s playing frequency gets higher when he increases his blowing pressure. The trombone
with a passive mute has a lower oscillation frequency than the open trombone, which has itself a
slightly lower oscillation frequency than that of the trombone with the active mute. The oscillation
frequencies range from 60 to 64 Hz, a bit higher than Bb = 58 Hz. This is sensible since this model
is known to oscillate at higher frequencies than those at which a musician plays.

At f; = 55 Hz (Fig. 6b) the oscillation frequency of the passive mute configuration suddenly
jumps from 59.4 to 69.6 Hz, making it play sharper (nearly a minor third) than the two other

configurations. This is consistent with the LSA results, where fi;.cs;, suddenly increases by 8 Hz

11
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for this f; value. The oscillations are still periodic and above the acoustical resonance frequency
of the first mode; but for f; = 56 Hz and above (illustrated by Fig. 6¢) the fundamental frequency
of the passive mute falls to 34.8 Hz. This is nearly half its former value, and under the trombone’s
first acoustic resonance frequency (39 Hz). Finally, for f; > 58Hz (Fig. 6d), all configurations
result in fundamental oscillation frequencies about half, or a quarter, of the oscillation frequencies
obtained for lower f; values.

Simulation and LSA results are consistent: when f; reaches 55 Hz, the oscillation frequency of
the trombone with a passive mute suddenly increases. This is related to a regime change in the
instrument: for f; < 55 Hz, the oscillation is mainly supported by the trombone’s first acoustical
mode, while above, the parasitic mode at 65.7 Hz caused by the mute becomes the main supporting
mode of the oscillation, which explains the increase in the oscillating frequency.

Above f; = 56 Hz, however, the oscillation frequency of the passive mute decreases to half of its for-
mer value. As the oscillation frequency is under the trombone’s first acoustical resonance frequency,
the regeneration condition of a model with outward-striking valve is not satisfied [Campbell, 2004].
This situation suggests a period-doubling phenomenon [Bergé et al., 1995]. When increasing f;
again, the three configurations appear to undergo period doubling, which is even doubled for the
open trombone with a fundamental frequency of 16.2 Hz. Sub-harmonic cascade has already been
put in evidence for trombones |Gibiat and Castellengo, 2000], notably in a previous study with
the very same model and parameters [Velut et al., 2016b].

These results confirm the existence of a parasitic regime of oscillation for the passive mute
configuration, which could explain why musicians experience difficulties when trying to play
the Bb pedal in this situation. This parasitic regime is sustained by the parasitic acoustical
mode brought by the mute. Furthermore, in accordance with the experimental results published
in [Meurisse et al., 2015], the simulation results are qualitatively the same for the open trombone
and the active mute, with very close oscillation frequencies. The range of f; leading to periodic
oscillations near the pedal note frequency is quite wider for the open trombone and the active

mute than for the passive mute.

IV  Conclusion

Playing a stable Bb1 on a trombone with a straight mute is very difficult. An active mute has been
developed [Meurisse et al., 2015] to deal with this issue. Two analysis tools, LSA and time-domain
simulation, are used to investigate to what extent the chosen brass instrument model reproduces
the experimental behaviour of the trombone pedal note when the trombone is equipped with a
commercial, passive straight mute, and when using the said active-control mute. LSA and time-
domain simulation results are quite identical for the open trombone and the trombone with an
active mute. The model is therefore able to predict the efficiency of the active control device
which makes the pedal note easily playable again. Results of the model of a trombone equipped

with a passive mute, however, are clearly different from those of the open trombone model: the

12
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pedal note is disturbed by a new oscillation regime, which seems related to the parasitic acoustical
mode added by the mute. Hence, even a "small" perturbation of the input impedance, such as a
peak 20 times smaller in amplitude than surrounding peaks, can strongly affect the behaviour of
a resonator.

As in a previous paper [Velut et al., 2016b|, this study shows a rather good agreement between
LSA results and time-domain simulations, within the limits of the LSA method. This study on
mutes also shows the relevance of the chosen brass instrument model, which is able to predict a
number of behaviours of the trombone, including particular playing regimes [Velut et al., 2016b,
Velut et al., 2016a] and, in the present case, the influence of modifications of the instrument bore.
The methodology proposed seems relevant, as beginning a study with LSA very quickly gives an
overview of the potential behaviour of the system under given conditions. This fast computation
already provides interesting results, which can be interpreted alone. However, if further exploration
of the oscillation regime is required, LSA results give hints for choosing f; and p, values for

initialising other analysis methods.
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