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Abstract— Progress in the modeling of charge transport in 

solution processed solar cells and photodiodes is reviewed. 

Through several examples involving modeling and original 

experiments, the role of intentional doping, structural defects, 

and oxygen contamination are discussed. 

I. INTRODUCTION 

Organic electronics is an emerging technology using -
conjugated molecules or polymers (i.e. organic 
semiconductors) [1] to produce electronic devices. Batteries, 
photovoltaic, (bio) sensors, displays, lighting are among the 
most relevant fields of applications of this technology [2-4]. 
One particular challenge of this domain consists in taking 
advantage of solution-processed organic materials to produce 
low-cost and large area devices by either roll-to-roll, sheet-to-
sheet or printing technologies [3]. In this context, solution 
processed photodiodes are of particular interest, either for 
outdoor [5-6] and indoor [7] photovoltaic or imaging 
applications [8-10]. In the field of solar energy, External 
Power Conversion Energy (EPCE) exceeding 10 % have been 
reported using Bulk HeteroJunction (BHJ) polymer based 
devices [6] (approaching its fundamental limits [11]) and more 
than 20 % using solution processed hybrid inorganic/organic 
perovskite semiconductors [12]. Organic imagers are also 
attractive, either to improve silicon CMOS imagers [13], or to 
realize large-area, flexible, low-weight full organic imagers. 
Dark current level comparable with silicon photodiodes have 
already been reported [14][15]. In particular, large-area 
organic imagers, either deposited on the top of a thin-film 
transistor (TFT) or organic transistor backplane are attractive 
alternatives to amorphous silicon imagers in X-ray detectors 
for medical applications [9][16]. In all cases, despite the 
instability of most organic material in presence of UV, water 
and/or oxygen, the reliability of polymer-based devices has 
greatly improved and is no longer considered as a major 
obstacle, provided that suitable materials, processes, and 
encapsulations are used [17][18]. 

With the emergence of this technology, device modeling is 

more and more needed, either to support device processing or 

to predict system performances. The aim of this paper is to 

review the existing physical models, to discuss the main 

ingredients needed for device simulations, and to give 

example of application of modeling, in close comparison with 

experiments. 

II. CHARGE TRANSPORT IN DISORDERED ORGANIC 

SEMICONDUCTORS. 

It is generally admitted that -conjugated small molecules 
molecules and polymers behave as disordered semiconductors 
[19], even if the exact origins of such disorder are still under 
debate, and are material/process dependent. Structural 
heterogeneities in amorphous or polycrystalline 
semiconductors, induced by processes and interfaces, are of 
course a major sources of disorder, and many studies have 
reported significant mobility improvements by optimization of 
the material morphology [20]. However, it seems that disorder 
may have also intrinsic origins, induced either by chemical 
impurities, by changes in the surrounding polarization during 
charge transport [19], or as recently proposed, induced by 
large thermal molecular motions (transient localization), a 
direct consequence of the weak strength of van der Waals 
intermolecular interactions [21]. This later theory is supposed 
to explain the low temperature mobility improvement reported 
in some high mobility (> 1 cm
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and sometimes referred as “band like” transport [22]. 
In the literature, two main approaches have been used to 

model transport in disordered semiconductor. The first one 
consists in solving the hopping master equation, either by 
Monte Carlo [23] or by direct solving [24]. Quantum 
chemistry can be used to calculate hopping site energy 
distributions [25]. In many cases however, the disordered 
energy positions of hopping sites is assumed to follow a 
Gaussian law, and hopping probabilities are modeled by 
Miller-Abrahams expressions, leading to the so-called 
Gaussian Disorder Model (GDM) [19]. This model predicts an 
increasing mobility with temperature, electric field and carrier 
concentrations, in agreement with several experiments [26]. 
There are exceptions, such as P3HT [27] or the high mobility 
“band like” single crystal for instance [22]. Numerically 
expensive, this approach is typically used to get insight on 
transport [26], recombinations [29] noise properties [24] or 
blend morphology [28] of organic materials (rather than to 
simulate complete device). 

An illustration of the capability of GDM models to 

reproduce a large set of experimental data is shown in Fig. 1-

5. In these experiments, several asymmetrical -NPB p-only 

devices have been realized by evaporation, featuring different 

thicknesses in the 20-110 nm range. -NPB is a hole transport 

material (HTM), classically used in OLED [30]. Interestingly, 
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the conductivity of -NPB has been tuned by molecular 

doping of MoO3, as in [31]. In agreement with GDM theory, 

the conductivity shows a clear exponential dependency with 

doping concentration (Fig.2), despite significant process 

induced variability. Moreover, using low-field conductivity 

extracted on each device, I-V experiments can be satisfactory 

reproduced with the same set of GDM parameters, provided 

that the mobility electric-field dependence is included [30]. 

III. DRIFT DIFFUSION (DD) MODELS FOR ORGANIC 

SEMICONDUCTOR DEVICES.  

The second commonly used approach to model organic 
device is the well-known Drift Diffusion model, numerically 
efficient and versatile. Disorder is included via Gaussian 
Bands (or exponential bandtails), shallow and deep traps and 
GDM inspired mobility models, as it was done in the past for 
amorphous silicon solar cells [32]. It can account for electron 
and holes transport in heterostructures [33] and interface 
charges and dipoles [30], which both play an important role in 
organic devices. Light propagation is performed by solving 
Maxwell equations [34]. DD requires detailed calibration with 
experiments, and especially band structure parameters (using 
UPS), mobility (using Time of Flight TOF), optical index and 
recombination (deep and shallow traps, bandtails). Even if the 
applicability of DD to model organic semiconductors is 
questionable [35], the efficiency of this approach to tackle 
many sophisticated phenomena such as transient low-light 
intensity in organic photodiodes [36], impact of blend 
morphology in BHJ solar cell [37][38], role of electron/hole 
transport layer (sometimes causing S shape [39]), analysis of 
impedance spectroscopy experiments [40] (and many others) 
is remarkable. 

In that respect, let us give a recent example illustrating the 

strengths and weaknesses of the drift diffusion model (Fig. 6-

8). The p-only polycrystalline perovskite MAPbI3 has been 

processed and characterized at low temperature. Accounting 

for volume and interface shallow traps, I-V curves at 10 K 

have been nicely fitted by a simple DD model (Fig.7), 

extracting data from electroluminescence, I-V, TOF and C-V 

experiments (not shown here). Interestingly, with no 

additional fitting parameters, the model also correctly predicts 

the higher temperature I-V curves, however with a lower 

accuracy (Fig.8). A closer look to experiments has indeed 

revealed that the experimental temperature activated 

conductivity was in better agreement with hopping models, 

suggesting the occurrence of transport from traps to traps, not 

included in the DD model.   

IV. AN EXAMPLE OF DEVICE SIMULATION: FRONT AND 

BACK SIDE QUANTUM EFFICIENCY DIFFERENCES IN 

SEMI-TRANSPARENT ORGANIC PHOTODIODES 

CAUSED BY OXYGEN CONTAMINATION 

To conclude, let us give another example of the capability 

of device simulation to support device processing. Semi-

transparent organic photodiodes may feature significantly 

different external quantum efficiency (EQE) when measured 

from front and back sides (see Fig. 9-13). It was initially 

suspected that this difference was caused by the different 

optical properties of top and bottom layers. However 

simulations has shown that optics can hardly explain of 

fraction of this discrepancy, and not its thickness and voltage 

dependency. On the other hand, the introduction of deep 

acceptor traps, inducing a negative charge within the active 

layer in presence of light generated carriers was able to 

explain this effect (Fig. 11&12). In fact, the introduction of a 

single level acceptor deep traps, inducing both recombination 

and space charge effects, was able to reproduce a large set of 

experimental data (Fig.12). As oxygen is known to potentially 

induce negative charges and trapping [41], new experiments 

have been performed in absence of oxygen. In this later case, 

in agreement with simulations (Fig. 13), the difference of EQE 

has almost disappeared. The comparison between experiments 

and DD simulations has thus been of great help, indicating 

oxygen contamination as the potential origin of this effect. 

V. CONCLUSIONS  

Despite the complexity of disordered organic materials, 

Drift Diffusion based device simulation remains a powerful 

tool to analyze organic solar cells and photodiodes, and in 

particular the role of intentional doping, structural or induced 

defects states and interfaces. It requires however experimented 

users, capable on one hand to improve models thanks to the 

progress of more sophisticated approaches (such as variable 

range hopping model and quantum chemistry) and on the 

other hand, to perform detailed calibrations with experiments.  
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Fig. 1 : Band Diagram of the p-only asymmetrical -NPB device Fig. 2 : Low-field conductivity extracted from I-V experiments 

on each device versus nominal molecular weight (error bar 

indicates variability) 

   
Fig. 3 : I-V curves of doped -NPB (1%) 

symbols = experiments, line = simulations. 

Fig. 4 : I-V curves of doped -NPB (5%) 

symbols = experiments, line = simulations. 

Fig. 5 : I-V curves of doped -NPB (10%) 

symbols = experiments, line = simulations. 



 

 

 
 

Fig. 6 : Schematic band diagram of the p-only polycrystalline perovskite 

MAPbI3 

Fig. 7 : I-V curves @ 10 K of the device of Fig. 6. symbols = 

experiments, line = simulations, dotted line model without trapping. 

 
 

Fig. 8 : I-V curves for several temperature of the device of Fig. 6. 

Simulations are in good agreement with experiments, but do not perfectly 

capture the thermally activated low field regime. 

Fig. 9 : Composition of the semitransparent organic photodiode, 

lighted by either the back side (substrate) or the front side. 

  
Fig. 10 : Experimental ratio between the back side external quantum 

efficiency EQE and the front side @ -2V versus wavelength  

Fig. 11 : Simulation of the impact of negatively charged, positively 

and neutral volume traps (acceptors) on the electrical potential 

  
Fig. 12 : Same as Fig. 10, including simulations where an acceptor deep 

traps has been introduced (same concentration for all curves) 

Fig. 13 : Same as Fig. 12, in absence of traps in simulations, where 

oxygen has been removed from experiments 
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