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Abstract

In this paper, we present some inverse function theorems and implicit function theorem
for set-valued mappings between Fréchet spaces. The proof relies on Lebesgue’s Domi-
nated Convergence Theorem and on Ekeland’s variational principle. An application to
the existence of solutions of differential equations in Fréchet spaces with non-smooth
data is given.
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1. Introduction

The inverse function theorem is one of the central components of the classical and
the modern variational analysis and an essential device to solving nonlinear equations.
The inverse function theorem or its variants known as the implicit function theorem or
the rank theorem have been established originally in Euclidean spaces and then extended
to the Banach space setting. Outside this setting, for instance in Fréchet spaces, it is
known that the inverse function theorem generally fails (see Lojasiewicz Jr & Zehnder
[13]). This is the reason why another form of inverse function theorem, nowadays called
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the Nash-Moser theorem is used as a powerful tool to prove local existence for non-linear
partial differential equations in spaces of smooth functions. Some inverse theorems of
Nash-Moser type have also been proved for mappings between Fréchet spaces, that are
supposed to be tame, an additional property guaranteeing that the semi-norms satisfy
some interpolation properties, see e.g. [1, 9]) or that allow the use of smoothing operators
as introduced by Nash (see e.g. [9, 10, 13, 14, 20–22]). To overcome the loss of derivatives,
these additional properties in Fréchet spaces allow Newton’s method on which the Nash-
Moser type inverse function theorems are based to converge. Recently, Ekeland [7] (see
also Ekeland & Séré [8]) produced a new result within a class of spaces much larger than
the one used in the Nash-Moser literature.

Nowadays, modeling has evolved beyond equations and we know the importance
and the efficacy of studying set-valued solution mappings which assign to each instance
of the parameter element in a model all the corresponding solutions, if any. As it is
mentioned in the book by Dontchev & Rockafeller [4], “the central question is whether
a solution mapping can be localized graphically in order to achieve single-valuedness and
in that sense produce a function, the desired implicit function”. To be more explicit,
many applied problems can be modeled as differential inclusions or more generally as
generalized equations, that is, inclusions governed by a set-valued mapping. For these
problems which are the analogous of nonlinear equations, there is a need to use implicit
multifunction theorems. During the last years a wide literature has emerged related
to implicit multifunction theorems (see e.g., [3–5, 11, 12, 15–18] and the references
therein). However, to our knowledge, they have been established in the framework of
Banach spaces and nothing exists for Fréchet spaces. Therefore, motivated by the recent
work by Ekeland, and Ekeland & Séré, it is our aim in this paper to investigate the
possibility to obtain, in the context of graded Fréchet spaces, an implicit multifunction
theorem for set-valued mappings.

The structure of the paper is as follows. Section 1 is devoted to recalling the notions
of Fréchet, graded Fréchet, standard Fréchet spaces, and contingent derivative of mul-
tifunctions, concepts essential for the framework and assumptions on which our results
are based. In Section 2, we present an inverse multifunction theorem for set-valued map-
pings between Fréchet spaces which is the main result of the paper. This result allows
us to obtain a general version of the Ekeland inverse function for Gâteaux differentiable
mappings and to establish an implicit multifunction theorem for parametrized set-valued
mappings. In the final section, we present an application to the existence of solutions
for differential equations in Fréchet spaces.

2. Preliminaries

We begin this section with recalling briefly some notions on Fréchet spaces, i.e. on
locally convex spaces which are Hausdorff, complete and whose topology is induced by
a countable family of semi-norms (‖ · ‖k)k∈N with the property:

x ∈ X, ‖x‖k = 0 for all k ∈ N ⇒ x = 0.
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This class of spaces contains evidently Banach spaces, as well as many other locally
convex spaces used in various areas of real or complex analysis. Also notice that given a
Fréchet space F , we may produce the Fréchet space C0([a, b], F ) of continuous paths in
F equipped with the semi-norms defined by ‖f‖k := supt∈[a,b] ‖f(t)‖k and widely used
in analysis.

A graded Fréchet space X is a Fréchet space, whose topology is generated by a fixed
sequence of semi-norms (‖ · ‖k)k∈N, increasing in strength, so that,

‖x‖k ≤ ‖x‖k+1 ∀x ∈ X, ∀k ∈ N.

This class contains the space C∞([a, b]) of infinitely differentiable real-valued functions
on the interval [a, b] with the grading

‖f‖n = sup
k≤n

sup
x∈[a,b]

|Dk(f(x))|,

as well as the space C∞(Ω,Rd), where Ω ⊂ Rn is compact, with a smooth boundary
and is the closure of its interior are graded Fréchet spaces. Note that every Fréchet
space can be considered as a graded Fréchet space by replacing the initial family of

semi-norms by the semi-norms ‖ · ‖n :=
k=n∑
k=1

‖ · ‖k. However, as the Nash-Moser inverse

function theorem highlights, the grading plays an essential role in its statement and in
its proof.

Well known are the facts:

• the Cartesian product of two graded Fréchet spaces is a graded Fréchet space with
the grading ‖(x, y)‖n = ‖x‖n + ‖y‖n;

• a closed subspace of a graded Fréchet space is a graded Fréchet space;

• a sequence (xn)n∈N of elements in a Fréchet space X converges to x ∈ X, if and
only if, ‖xn − x‖k → 0 for all k ≥ 0;

• due to a classical result that (see e.g. [7]), a graded Fréchet space is a complete
metric space with the metric:

d(x, y) =
∞∑
k=1

µk min{r, ‖x− y‖k}, (1)

where, (µk)k∈N is any sequence of non-negative numbers with unbounded support:
sup{k ∈ N : µk 6= 0} = +∞ and r > 0.

Definition 1. ([7], Definition 5) A graded Fréchet space is said to be standard if for
every x ∈ X, we can find a constant c := c(x) a sequence (xn) ⊆ X converging to x and
a sequence of non-negative numbers (cn) such that

‖xn‖k ≤ c‖x‖k and ‖xn‖k ≤ cnk ∀k, n ∈ N. (2)
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The space C∞(Ω,Rd) is a standard graded Fréchet space, see [7].

Let X, Y be graded Fréchet spaces. Consider a multifunction (set-valued mapping)
F : X ⇒ Y between X and Y , that is a function between X and the subsets (possibly
empty) of Y . We denote by gph F and dom F and F−1 : Y ⇒ X, the graph, domain
and inverse of F, respectively:

gph F = {(x, y) ∈ X × Y : y ∈ F (x)}; dom F = {x ∈ X : F (x) 6= ∅}

and
F−1(y) := {x ∈ X : y ∈ F (x)}, y ∈ Y.

We say that F is a closed multifunction if gph F is a closed subset of X × Y. In what
follows, we will use the notion of contingent derivative of multifunctions. The contingent
derivative of the multifunction F at a point (x̄, ȳ) ∈ gph F is the multifunctionDF (x̄, ȳ) :
X ⇒ Y , defined for u ∈ X by

{v ∈ Y : ∃(tn)n∈N ↓ 0+, ∃(un, vn)n∈N → (u, v) with (x̄+ tnun, ȳ + tnvn) ∈ gph F, ∀n}.

In other words, DF (x̄, ȳ)(u) = {v ∈ Y : (u, v) ∈ Tgph F (x̄, ȳ)}, where, Tgph F (x̄, ȳ)
stands for the contingent cone to gph F at (x̄, ȳ). For more details, the reader is referred
to the book by Aubin & Frankowska [2].

When F : X → Y is a single-valued mapping, we use the notation DF (x̄) for
DF (x̄, ȳ). Note that if F : X → Y is Gâtaux differentiable at x̄ ∈ X, then DF (x̄)
coincides with the Gâteaux derivative of F at x̄.

3. Inverse and Implicit multifunction theorems

Throughout, we consider a closed multifunction F : X ⇒ Y between graded Fréchet
spaces X and Y induced respectively by countable families of semi-norms for which
we use the same notation (‖ · ‖k)k∈N. For each k ∈ N, x ∈ X and a subset S ∈ X,
denote by dk(x, S) := infz∈X ‖z−x‖k, which is referred to as the semi-distance from the
point x to the set S with respect to the semi-norm ‖ · ‖k in X. For given r ∈ (0,+∞],
k0 ∈ N, we denote respectively by BX(x̄, k0, r) = {x ∈ X : ‖x − x̄‖k0 < r} and
BX [x̄, k0, r] = {x ∈ X : ‖x − x̄‖k0 ≤ r}, which are also referred to as the open and
closed balls in X centered at x̄ ∈ X, with radius r with respect to the semi-norm ‖ · ‖k0 .
Note that since ‖ · ‖k0 is a semi-norm, for any z ∈ X with ‖z − x̄‖k0 = 0, BX(z, k0, r),
BX [z, k0, r] coincide with BX(x̄, k0, r), BX [x̄, k0, r], respectively.

Theorem 2. Let F : X ⇒ Y be a closed multifunction between graded Fréchet spaces
and let (x̄, ȳ) ∈ gph F be given. Assume furthermore that Y is standard. Suppose also
that there are integers k0, d1, d2, real numbers r ∈ (0,+∞], C ≥ 0 and non-decreasing
sequences of non-negative reals (νk)k∈N, (ν ′k)k∈N, (mk)k∈N, and (ak)k∈N with mk ≥ 1,
ak ≥ 1 such that the following conditions are satisfied:

(i) For all (x, y) ∈ gph F with x ∈ BX(x̄, k0, r), y ∈ BY (ȳ, k0 +d1 +d2, 2r/ak0+d1), for
every (u, v) ∈ gph DF (x, y), there exist c2(u, v) > 0 and sequences tn ↓ 0, un → u
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and vn → v with (x+ tnun, z + tnvn) ∈ gph F , such that for all n ∈ N, all k ∈ N,

‖vn‖k ≤ c2(u, v)(mk‖u‖k+d1 + ‖x− x̄‖k/ak−d2 + ‖y − ȳ‖k + νk)

and
‖un‖k ≤ c2(u, v)(mk‖u‖k+d1 + ‖x− x̄‖k + νk);

(ii) For all (x, y) ∈ gph F with x ∈ BX(x̄, k0, r), y ∈ BY (ȳ, k0 + d1 + d2, 2r/ak0+d1),
for every v ∈ Y, there exists u ∈ DF (x, y)−1(v) such that

‖u‖k ≤ C
(
‖x− x̄‖k−d1−d2
mkak−d1−d2

+ ν ′k

)
‖v‖d1+d2 + ak‖v‖k+d2 , ∀k ∈ N.

By convention we set ‖ · ‖k = ‖ · ‖0 and ak = 1 for k < 0.

Let (βk)k∈N be a sequence of non-negative reals with unbounded support such that∑∞
k=0 βkνk < +∞

∑∞
k=0 βkmkν

′
k+d1

< +∞
and

∑∞
k=0 βkmkak+d1n

k < +∞. (3)

Then, for every y ∈ Y with Cγ < 1, where

γ :=

∑∞
k=0

(
βk‖y − ȳ‖k + βk+d1+d2ν

′
k+d1

/ak+d1

)∑∞
k=d1+d2

βk
, (4)

and
∞∑
k=0

βk‖y − ȳ‖k
(

1−
√
Cγ
)−2

<
rβk0+d1+d2

ak0+d1

, (5)

there exists x ∈ BX(x̄, k0, r) such that y ∈ F (x).

Proof. The proof is based on the Ekeland variational principle [6]. However, the
function and space to which the Ekeland variational principle is applied are different
from [7].

By translation if necessary, we can assume without loss of generality that x̄ = 0 and
ȳ = 0. Let (αk)k∈N be the sequence defined by

αk =
βk+d1+d2

ak+d1

, k ∈ N.

Consider the distances on X and Y defined respectively by

d(x1, x2) :=
∞∑
k=0

αk min{r, ‖x1 − x2‖k}, x1, x2 ∈ X,

d(y1, y2) :=
∞∑
k=0

βk min{r, ‖y1 − y2‖k}, y1, y2 ∈ Y.
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For ε > 0, we define the distance dε(·, ·) on X × Y by

dε((x1, y1), (x2, y2)) := d(x1, x2) + εd(y1, y2), (x1, y1), (x2, y2) ∈ X × Y.

Equipped with these distances, the spaces X,Y and therefore X×Y are complete metric
spaces. Let y0 ∈ Y be such that (4) and (5) are satisfied. Setting η =

√
Cγ−Cγ, where

γ is defined by (4), consider the extended-real-valued function f : X × Y → R ∪ {+∞}
defined by

f(x, y) = η
∞∑
k=0

αk‖x‖k+d1 +
∞∑
k=0

βk‖y − y0‖k + δgph F (x, y), (x, y) ∈ X × Y, (6)

where δgph F stands for the indicator function of gph F, that is,

δgph F (x, y) =
{

0 if (x, y) ∈ gph F,
+∞ otherwise.

Claim 1. The function f is lower semicontinuous and bounded from below on X × Y.

One has

0 ≤ inf
(x,y)∈X×Y

f(x, y) ≤ f(0, 0) =
∞∑
k=0

βk‖y0‖k < +∞. (7)

Take a sequence ((xn, yn))n∈N converging to (x, y) in X × Y. Then, ‖xn − x‖k → 0 and
‖yn − y‖k → 0 for every k ∈ N. Two cases may happen:
1.- If (x, y) /∈ gph F, then by the closedness of the graph of F, (xn, yn) /∈ gph F when n
is sufficiently large. Hence,

lim
n
f(xn, yn) = +∞ = f(x, y).

2.- Suppose now that (x, y) ∈ gph F. Thanks to the Fatou lemma we have,

lim inf
n→+∞

f(xn, yn) ≥ η lim inf
n→+∞

( ∞∑
k=0

αk‖xn‖k +
∞∑
k=0

βk‖yn − y0‖k

)

≥ η
∑∞

k=0 αk lim
n→+∞

‖xn‖k +
∞∑
k=0

lim
n→+∞

βk‖yn − y0‖k

= η
∑∞

k=0 αk‖x‖k +
∑∞

k=0 βk‖y − y0‖k = f(x, y),

establishing the claim.

As
Cγ + η

η(1− Cγ − η)
= (1−

√
Cγ)−2,

in view of assumption (5), take r̄ > 0 and ε > 0 such that
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r̄ < r and
Cγ + η + ηε

η(1− Cγ − η)

∞∑
k=0

βk‖y0‖k <
r̄βk0+d1+d2

ak0+d1

. (8)

Set

κ :=
∑∞

k=0 βk‖y0‖k
r̄αk0

=
f(0, 0)
r̄αk0

<
η(1− Cγ − η)
Cγ + η + ηε

. (9)

Applying Ekeland’s variational principle to the function f on X × Y endowed with the
distance dε, we may find (x0, z0) ∈ X × Y such that

f(x0, z0) ≤ f(0, 0), (10)

dε((x0, z0), (0, 0)) ≤ r̄αk0 , (11)

and
f(x, y) + κ(d(x, x0) + εd(y, z0)) ≥ f(x0, z0) ∀(x, y) ∈ X × Y. (12)

Obviously, (x0, z0) ∈ gph F. By relations (8) and (11),

αk0 min{r, ‖x0‖k0} ≤ dε((x0, z0), (0, 0)) ≤ r̄αk0 < rαk0 .

Consequently, ‖x0‖k0 < r. Since according to (5),

βk0+d1+d2‖y0‖k0+d1+d2 ≤ f(0, 0) <
rβk0+d1+d2

ak0+d1

,

it follows ‖y0‖k0+d1+d2 < r/ak0+d1 . Furthermore, as

βk0+d1+d2‖z0 − y0‖k0+d1+d2 ≤ f(x0, z0) ≤ f(0, 0) <
rβk0+d1+d2

ak0+d1

,

one obtains

‖z0‖k0+d1+d2 ≤ ‖y0‖k0+d1+d2 + ‖z0 − y0‖k0+d1+d2 ≤ 2r/ak0+d1 .

From (12), for all (x, y) ∈ gph F one has

∞∑
k=0

βk(‖z0 − y0‖k − ‖y − y0‖k)

≤ η
∞∑
k=0

αk(‖x‖k − ‖x0‖k)

+κ

( ∞∑
k=0

αk min{r, ‖x− x0‖k}+ ε

∞∑
k=0

βk min{r, ‖y − z0‖k}

)
. (13)
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It suffices to prove that z0 = y0. Assume to the contrary that z0 6= y0. Setting v = y0−z0,
and using the assumption that Y is standard, there exists a sequence (vn)n∈N converging
to v such that

‖vn‖k ≤ c0(v)‖v‖k, ‖vn‖ ≤ c1(vn)k ∀n, k ∈ N. (14)

From condition (ii), for every n, there exists un ∈ DF (x0, z0)−1(vn) such that

‖un‖k ≤ C
(
‖x0‖k−d1−d2
mkak−d1−d2

+ ν ′k

)
‖vn‖d1+d2 + ak‖vn‖k+d2 , ∀k ∈ N. (15)

From condition (i), for every n ∈ N, there exist a real c2(un, vn) > 0, sequences tn,j ↓ 0,
un,j → un, vn,j → vn as j →∞ such that

(x0 + tn,jun,j , z0 + tn,jvn,j) ∈ gph F, ∀j

‖vn,j‖k ≤ c2(un, vn)(mk‖un‖k+d1 + ‖x0‖k/ak−d2 + ‖z0‖k + νk), ∀j, k, (16)

‖un,j‖k ≤ c2(un, vn)(mk‖un‖k+d1 + ‖x0‖k + νk), ∀j, k. (17)

Plugging x := x0 + tn,jun,j and y := z0 + tn,jvn,j into relation (3), one obtains

∞∑
k=0

βk(‖v‖k − ‖v − tn,jvn,j‖k) ≤ η
∞∑
k=0

αk(‖x0 + tn,jun,j‖k+d1 − ‖x0‖k+d1)

+κ

( ∞∑
k=0

αk min{r, tn,j‖un,j‖k}+ ε
∞∑
k=0

βk min{r, tn,j‖vn,j‖k}

)
∀n, j. (18)

We can assume tn,j ∈ (0, 1), for all n, j. Then, one has

‖v − tn,jvn,j‖k = ‖tn,j(v − vn,j) + (1− tn,j)v‖k ≤ tn,j‖v − vn,j‖k + (1− tn,j)‖v‖k.

It follows that

‖v‖k − ‖v − tn,jvn,j‖k
tn,j

≥ ‖v‖k − ‖v − vn,j‖k ∀n, j, k.

Combining this inequality with (3), one derives∑∞
k=0 βk(‖v‖k − ‖v − vn,j‖k) ≤ η

∑∞
k=0 αk‖un,j‖k+d1+

+κ
(∑∞

k=0 αk min
{

r
tn,j

, ‖un,j‖k
}

+ ε
∑∞

k=0 βk min
{

r
tn,j

, ‖vn,j‖k
})
∀n, j. (19)
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Claim 2. For every n ∈ N, one has

lim
j

∞∑
k=0

βk(‖v‖k − ‖v − vn,j‖k) =
∞∑
k=0

βk(‖v‖k − ‖v − vn‖k)

and

lim
j→∞

∞∑
k=0

βk min
{

r

tn,j
, ‖vn,j‖k

}
=
∞∑
k=0

βk‖vn‖.

By relations (14), (15) and (16), one has

‖vn,j‖k ≤ c2(un, vn)mk‖un‖k+d1 + c2(un, vn)‖x0‖k/ak−d2 + c2(un, vn)‖z0‖k + c2(un, vn)νk
≤ c2(un, vn)

[
C
(
‖x0‖k−d2
ak−d2

+mkν
′
k+d1

)
‖vn‖d1+d2 +mkak+d1‖vn‖k+d1+d2

]
+c2(un, vn)‖x0‖k/ak−d2 + c2(un, vn)‖z0‖k
≤ c2(un, vn)

[
C

ak−d2
‖x0‖k−d2‖vn‖d1+d2 +mkak+d1c1(vn)k+d1+d2

]
+Cc2(un, vn)‖vn‖d1+d2mkν

′
k+d1

+ c2(un, vn)‖x0‖k/ak−d2 + c2(un, vn)‖z0‖k + c2(un, vn)νk.

Thus, for every n, j ∈ N,∑∞
k=0 βk‖vn,j‖k

≤ c2(un, vn)
[
C‖vn‖d1+d2

∑∞
k=0 αk−d1−d2‖x0‖k−d2 +

∑∞
k=0 βkmkak+d1c1(vn)k+d1+d2

]
+
∑∞

k=0 αk−d1‖x0‖k +
∑∞

k=0 βk‖z0‖k
+c2(un, vn)(C‖vn‖d1+d2

∑∞
k=0 βkν

′
k+d1

+
∑∞

k=0 βkνk).
(20)

By (3),

C‖vn‖d1+d2

∞∑
k=0

βkmkν
′
k+d1 +

∞∑
k=0

βkνk < +∞;

∞∑
k=0

βkmkak+d1c1(vn)k+d1+d2 <∞,

and in view of relation (10),

η
∞∑
k=0

αk‖x0‖k+d1 ≤ f(x0, z0) ≤ f(0, 0) <∞;

∞∑
k=0

βk‖z0‖k ≤
∞∑
k=0

βk‖y0‖k + f(0, 0) <∞.

Therefore, according to Lebesgue’s Dominated Convergence Theorem, relation (20)
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yields for every n ∈ N,

lim
j→∞

∞∑
k=0

βk(‖v‖k − ‖v − vn,j‖k) =
∑∞

k=0 βk(‖v‖k − lim
j→∞

‖v − vn,j‖k)

=
∑∞

k=0 βk(‖v‖k − ‖v − vn‖k),

and

lim
j→∞

∞∑
k=0

βk min
{

r

tn,j
, ‖vn,j‖k

}
=
∞∑
k=0

βk‖vn‖.

Claim 3. For every n ∈ N, one has

lim
j→∞

∞∑
k=0

αk‖un,j‖k+d1 =
∞∑
k=0

αk‖un‖k+d1 , (21)

and

lim
j→∞

∞∑
k=0

αk min
{

r

tn,j
, ‖un,j‖k

}
=
∞∑
k=0

αk‖un‖k. (22)

From relations (14), (15) and (17), for every k, n, j ∈ N, one has

‖un,j‖k ≤ c2(un, vn)(mk‖un‖k+d1 + ‖x0‖k + νk)
≤ c2(un, vn)

(
C
(
‖x0‖k−d2
ak−d2

+mkν
′
k+d1

)
‖vn‖d1+d2 +mkak‖vn‖k+d2 + ‖x0‖k + νk

)
≤ c2(un, vn)

(
C‖x0‖k−d2‖vn‖d1+d2 +mkakc1(vn)k+d2 + ‖x0‖k

)
+c2(un, vn)νk + c2(un, vn)C‖vn‖d1+d2mkν

′
k+d1

.

.

As
∑∞

k=0 βkmkν
′
k+d1

,
∑∞

k=0 αk‖x0‖k+d1 and
∑∞

k=0 βkmk+d1ak+d1c1(vn)k+d1+d2 are con-
vergent series, we deduce (21) and (22) by Lebesgue’s Dominated Convergence Theorem.

By virtue of Claims 2 and 3, by letting j →∞ in inequality (19), one obtains∑∞
k=0 βk(‖v‖k − ‖v − vn‖k) ≤ η

∑∞
k=0 αk‖un‖k+d1+

+κ (
∑∞

k=0 αk‖un‖k + ε
∑∞

k=0 βk‖vn‖k) ∀n.
(23)

Next, using the first relation of (14), and the inequalities

∞∑
k=0

βk‖v‖k ≤ f(x0, z0) ≤ f(0, 0),

for every n ∈ N, one has

∞∑
k=0

βk‖vn‖k ≤ c0(v)
∞∑
k=0

βk‖v‖k <∞.
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Applying again Lebesgue’s Dominated Convergence Theorem, one obtains

lim
n→∞

∞∑
k=0

βk(‖v‖k − ‖v − vn‖k) =
∞∑
k=0

βk(‖v‖k − lim
n→∞

‖v − vn‖k) =
∞∑
k=0

βk‖v‖k, (24)

and

lim
n→∞

∞∑
k=0

βk‖vn‖k =
∞∑
k=0

βk lim
n→∞

‖vn‖k =
∞∑
k=0

βk‖v‖k. (25)

From (15), one has∑∞
k=0 αk‖un‖k ≤

∑∞
k=0 αk‖un‖k+d1

≤
∑∞

k=0Cαk

(
‖x0‖k−d2

mk+d1
ak−d2

+ ν ′k+d1

)
‖vn‖d1+d2 +

∑∞
k=0 αkak+d1‖vn‖k+d1+d2

≤ C
∑∞

k=0 αk
(
‖x0‖k+d1 + ν ′k+d1

)
‖vn‖d1+d2 +

∑∞
k=0 βk+d1+d2‖vn‖k+d1+d2 .

As

η

∞∑
k=0

αk‖x0‖k+d1 ≤ f(x0, z0) ≤ f(0, 0) =
∞∑
k=0

βk‖y0‖k,

one deduces that∑∞
k=0 αk‖un‖k ≤

∑∞
k=0 αk‖un‖k+d1

≤ Cγ
η

∑∞
k=d1+d2

βk‖vn‖d1+d2 +
∑∞

k=0 βk+d1+d2‖vn‖k+d1+d2

≤ Cγ
η

∑∞
k=d1+d2

βk‖vn‖k +
∑∞

k=0 βk+d1+d2‖vn‖k+d1+d2

≤
(
Cγ
η + 1

)∑∞
k=0 βk‖vn‖k.

(26)

By virtue of this inequality, letting n→∞ in relation (23), in view of relations (24) and
(25), one obtains

∞∑
k=0

βk‖v‖k ≤ [(Cγ + η) + κ(Cγ/η + 1 + ε)]
∞∑
k=0

βk‖v‖k,

from which it follows that
κ ≥ η(1− Cγ − η)

Cγ + η + ηε
.

This contradicts (8), (9). The proof is completed. �

Remark 3. We can add to the conclusion of Theorem 2, that the inverse image x of
an arbitrary y ∈ Y is controlled by the distance to the reference point x̄. More precisely
thanks to relation (11) we have d(x, x̄) < rαk0 , where d is a metric defining X.

In the last part of this section, we consider two graded Fréchet spaces X and Y , a
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topological space P and a multifunction F : X × P ⇒ Y . For p ∈ P, set

S(p) = {x ∈ X : 0 ∈ F (x, p)}. (27)

The multifunction S : P ⇒ X is referred to as the solution mapping associated to F.
For p ∈ P, denote by Fp := F (·, p) : X ⇒ Y. By making use Theorem 2, we derive the
following implicit multifunction theorem.

Theorem 4. Let X, Y be graded Fréchet spaces and let P be a topological space. Con-
sider a multifunction F : X ×P ⇒ Y and a given point (x̄, p̄) ∈ X ×P with 0 ∈ F (x̄, p̄).
Assume furthermore that Y is standard. Suppose also that there are integers k0, d1, d2,
real numbers r0 ∈ (0,+∞], C > 0 and non-decreasing sequences of non-negative reals
(µk)k∈N, (µ′k)k∈N, and (mk)k∈N, (ak)k∈N with mk ≥ 1, ak ≥ 1 such that the following
conditions are satisfied:

(i) For each p ∈ P, gph Fp is closed and the multifunction F (x̄, ·) : P ⇒ Y is lower
semicontinuous at p̄;

(ii) For all p near p̄, for all (x, y) ∈ gph Fp with x ∈ BX(x̄, k0, r0), y ∈ BY (0, k0 +d1 +
d2, 2r0/ak0+d1), for every v ∈ DFp(x, z)u with u ∈ X, there exist c2(u, v) > 0 and
sequences tn ↓ 0, un → u and vn → v with
(x+ tnun, y + tnvn) ∈ gph Fp, such that for all n ∈ N, all k ∈ N,

‖vn‖k ≤ c2(u, v)(mk‖u‖k+d1 + ‖x− x̄‖k/ak−d2 + ‖y‖k + µk)

and
‖un‖k ≤ c2(u, v)(mk‖u‖k+d1 + ‖x− x̄‖k + µk);

(ii) For p ∈ P near p̄, for all (x, y) ∈ gph Fp with x ∈ BX(x̄, k0, r0), y ∈ BY (0, k0 +
d1 + d2, 2r/ak0+d1), for every v ∈ Y, there exists u ∈ DFp(x, y)−1(v) such that

‖u‖k ≤
C

mkak−d1−d2
‖x− x̄‖k−d1−d2‖v‖d1+d2 + ak‖v‖k+d2 , ∀k ∈ N.

Then for every τ > ak0+d1, there exist r ∈ (0, r0) and a neighborhood W in P of p̄ such
that

dk0(x, S(p)) ≤ τdk0+d1+d2(0, F (x, p)), (28)

for all (x, p) ∈ BX(x̄, k0, r)×W.

Proof. Pick a positive real r ∈ (0, r0) such as Cr < 1/2. Since F (x̄, ·) is lower
semicontinuous, for any ε > 0, there exists a neighborhood W of p̄ in P such that
F (x̄, p) ∩BY (0, k0 + d1 + d2, ε) 6= ∅, for all p ∈W. That is,

dk0+d1+d2(0, F (x̄, p)) < ε, ∀p ∈W.
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Suppose that for this neighborhood W, conditions (i) and (ii) are satisfied for all p ∈W.
For a given p ∈W, there is ȳp ∈ F (x̄, p) such as

‖ȳp‖k0+d1+d2 ≤ (1 + ε)dk0+d1+d2(0, F (x̄, p)) < ε.

Let τ > ak0+d1 and p ∈ W with 0 /∈ F (x̄, p) be given. Pick ε > 0 with τε < r/4 and
ak0+d1 < τ/(1 + ε) and 0 < r′ < r with

ak0+d1‖ȳp‖ < r′ <
τ

1 + ε
‖ȳp‖k0+d1+d2 ≤ τdk0+d1+d2(0, F (x̄, p)).

Take a sequence (βk)k∈N of non-negative reals with unbounded support such that∑∞
k=0 βk(‖ȳp‖k + µk) < +∞ and

∑∞
k=0 βkmkak+d1n

k < +∞; (29)

C
∑∞

k=0 βk‖ȳp‖k∑∞
k=d1+d2

βk
< 1, (30)

and
∞∑
k=0

βk‖yp‖k

(
1−

√
C
∑∞

k=0 βk‖yp‖k∑∞
k=d2

βk

)−2

<
r′βk0+d1+d2

ak0+d1

. (31)

It is not difficult to show the existence of such a sequence (βk)k∈N. Let us apply Theorem
2 with F (·, p), r′, ȳp and 0, instead of F, r, ȳ and y, respectively. Obviously, (i) and (ii)
are satisfied with νk = µk + ‖ȳp‖k, ν ′k = 0. We can find x̄p ∈ S(p) such that

dk(x̄, S(p)) ≤ ‖x̄p − x̄‖k0
≤ r′ < τdk0+d1+d2(0, F (x̄, p)). (32)

Now let x ∈ BX(x̄, k0, r/2) and p ∈ W . If dk0+d1+d2(0, F (x, p)) ≥ r/(2τ) be given, then
by relation (32), there is x̄p ∈ S(p) such that ‖x̄− x̄p‖k0 ≤ τε < r/4. Therefore,

dk0(x, S(p)) ≤ ‖x− xp‖k0
≤ ‖x− x̄‖k0 + ‖x̄− xp‖k0
≤ r/2 + r/4 < τdk0+d1+d2(0, F (x, p)). (33)

Let us consider the case dk0+d1+d2(0, F (x, p)) < r/(2τ). Then there is yp ∈ F (x, p)) with
‖yp‖k0+d1+d2 < r/2. Pick a non-negative number r′ < r/2 with

ak0+d1‖yp‖k0+d1+d2 < r′ < τ‖yp‖k0+d1+d2.

Since C(‖yp‖k0+d1+d2 + ‖x − x̄‖k0) < Cr < 1/2, we can pick a sequence (βk)k∈N of
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non-negative reals with unbounded support such that

∞∑
k=0

βk(‖yp‖k + µk) < +∞ and
∞∑
k=0

βkmk‖x− x̄‖k−d2 < +∞;

∞∑
k=0

βk < +∞ and
∞∑
k=0

βkmkak+d1n
k < +∞ and (3);

C
∑∞

k=0 (βk‖yp‖k + βk+d1+d2‖x− x̄‖k−d2)∑∞
k=d1+d2

βk
:= s < 1;

∞∑
k=0

βk‖yp‖k
(
1−
√
s
)−2

<
r′βk0+d1+d2

ak0+d1

.

Then apply Theorem 2 with F (·, p), r′, yp 0, x instead of F, r, ȳ y, and x̄, respectively,
since conditions (i) and (ii) are verified for νk = ‖x − x̄‖k + ‖yp‖k + µk, ν ′k = ‖x −
x̄‖k−d1−d2 . We obtain the existence of xp ∈ S(p) verifying

dk(x, S(p)) ≤ ‖xp − x‖k0 ≤ r′ < τdk0+d1+d2(0, F (x̄, p)).

Thus (28) is shown. �

To a given multifunction F : X ⇒ Y, we associate the new multifunction Φ : X×Y ⇒
Y defined by

Φ(x, y) = F (x)− y, (x, y) ∈ X × Y.

Applying Theorem 4 to the multifunction Φ, we derive the following result of metric
regularity type in Fréchet spaces.

Corollary 5. Let X,Y be graded Fréchet spaces and assume that Y is standard. Let
F : X ⇒ Y be a closed multifunction and let (x̄, ȳ) ∈ gph F be given. Suppose also
that there are integers k0, d1, d2, real numbers r ∈ (0,+∞], C > 0 and non-decreasing
sequences of non-negative reals (νk)k∈N, (ν ′k)k∈N, and (mk)k∈N, (ak)k∈N with mk ≥ 1,
ak ≥ 1 such that the conditions (i) and (ii) of Theorem 2 are satisfied. Then for every
τ > ak0+d1, there exists a neighborhood W in Y of ȳ such that

dk0(x, F−1(y)) ≤ τdk0+d1+d2(y, F (x)), (34)

for all (x, y) ∈ BX(x̄, k0, r)×W.

When the mapping F : X → Y is Gâteaux differentiable, Theorem 2 yields the
following theorem which covers Theorem 3 in [7].

Theorem 6. Let F : X → Y be a continuous mapping between graded Fréchet spaces
X,Y with Y standard, and let x̄ ∈ X be given. Suppose F is Gâteaux differentiable on X
with derivative DF (x), and that there are integers k0, d1, d2, real numbers r ∈ (0,+∞],
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C > 0 and non-decreasing sequences of non-negative reals (νk)k∈N, and (mk)k∈N, (ak)k∈N
with mk ≥ 1, ak ≥ 1 such that the following conditions are satisfied:

(i) For every u ∈ X, there exists c2(u) > 0 such that for all x ∈ BX(x̄, k0, r), all
k ∈ N,

‖DF (x)u‖k ≤ c2(u)(mk‖u‖k+d1 + ‖x− x̄‖k/ak−d2 + ‖F (x)− F (x̄)‖k + νk)

(ii) For all x ∈ BX(x̄, k0, r), there exists a linear mapping L(x) : Y → X such that
DF (x)L(x) = IY (the identity mapping on Y ) and for every v ∈ Y,

‖L(x)v‖k ≤
C

mkak−d1−d2
‖x− x̄‖k−d1−d2‖v‖d1+d2 + ak‖v‖k+d2 , ∀k ∈ N.

Let (βk)k∈N be a sequence of non-negative reals with unbounded support such that

∞∑
k=0

βkνk < +∞, (35)

Then, for every y ∈ Y with

C
∑∞

k=0 βk‖y − F (x̄)‖k∑∞
k=d1+d2

βk
< 1, (36)

and
∞∑
k=0

βk‖y − F (x̄)‖k

(
1−

√
C
∑∞

k=0 βk‖y − F (x̄)‖k∑∞
k=d1+d2

βk

)−2

<
rβk0+d1+d2

ak0+d1

, (37)

there exists x ∈ BX(x̄, k0, r) such that F (x) = y.

Proof. It suffices to show that conditions (i) and (ii) of Theorem 2 are satisfied.
Indeed, for every x ∈ B(x̄, k0, r), v ∈ Y, setting u = L(x)v, one has obviously u ∈
DF−1(x)(v). Thus condition (2) implies (ii) of Theorem 2. For given u ∈ X and x ∈
B(x̄, k0, r), pick t̄ ∈ (0, 1) such that ‖x + tu‖k0 < r for all t ∈ [0, t̄]. For each k ∈ N,
define the function fk : [0, t̄]→ R by

fk(t) = ‖F (x+ tu)− F (x̄)‖k, t ∈ [0, t0].

Obviously, f has a right derivative everywhere and

f ′k+(t) ≤ ‖DF (x+ tu)‖k, ∀t ∈ [0, t̄).

Therefore, by assumption (i), one has

f ′k+(t) ≤ c2(u)(mk‖u‖k+d1 + ‖x+ tu− x̄‖k/ak−d2 + f(t) + νk), ∀t ∈ [0, t̄),
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and consequently,

f ′k+(t)− c2(u)fk(t) ≤ c2(u)((mk + 1)‖u‖k+d1 + ‖x− x̄‖k + νk), ∀t ∈ [0, t̄).

Equivalently,

e−tc2(u)[f ′k+(t)− c2(u)fk(t)]
≤ e−tc2(u)c2(u)((mk + 1)‖u‖k+d1 + ‖x− x̄‖k/ak−d2 + νk), ∀t ∈ [0, t̄).

By integration, one obtains

e−tc2(u)fk(t)− fk(0)
≤ (1− e−tc2(u))((mk + 1)‖u‖k+d1 + ‖x− x̄‖k/ak−d2 + νk).

That is, for all t ∈ [0, t̄),

mk‖u‖k+d1 + ‖F (x+ tu)− F (x̄)‖k
≤ etc2(u)[(mk + 1)‖u‖k+d1 + ‖x− x̄‖k/ak−d2 + ‖F (x)− F (x̄)‖k + νk].

This together with (i) yield

‖DF (x+ tu)u‖k
≤ c2(u)etc2(u)[(mk + 1)‖u‖k+d1 + ‖x− x̄‖k/ak−d2 + ‖F (x)− F (x̄)‖k + νk], ∀t ∈ [0, t0).

Next, pick a sequence (tn)n∈N converging to 0, with tn ∈ (0, t̄), and set

un := u, vn :=
F (x+ tnu)− F (x)

tn
, n ∈ N.

Then, F (x) + tnvn = F (x+ tnun) and limn→∞(un, vn) = (u,DF (x)u). Setting C2(u) =
c2(u)et̄c2(u), the Mean Value inequality yields,

‖vn‖k
≤ sups∈[0,tn] ‖DF (x+ su)u‖k
≤ C2(u)[(mk + 1)‖u‖k+d1 + ‖x− x̄‖k/ak−d2 + ‖F (x)− F (x̄)‖k + νk], for all n ∈ N,

Thus condition (ii) of Theorem 2 holds. �

Corollary 7. Under the assumptions of Theorem 6, for every τ > ak0+d1, there exist
r > 0 and a neighborhood W in Y of ȳ such that

dk0(x, F−1(y)) ≤ τ‖y − F (x)‖k0+d1+d2 , (38)

for all (x, y) ∈ BX(x̄, k0, r)×W.

Using the same argument as in the proof of Theorem 6, from Theorem 4, we obtain,
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when F (·, p) is Gâteaux differentiable, the following implicit multifunction theorem for
the system (27).

Corollary 8. Let X, Y be graded Fréchet spaces and let P be a topological space. Con-
sider a mapping F : X × P → Y and a given point (x̄, p̄) ∈ X × P with F (x̄, p̄) = 0.
Assume furthermore that Y is standard. Suppose F (·, p) is Gâteaux differentiable on X
with derivative DFp(x) for p near p̄, and that there are integers k0, d1, d2, real numbers
r0 ∈ (0,+∞], C > 0 and non-decreasing sequences of non-negative reals (νk)k∈N, and
(mk)k∈N, (ak)k∈N with mk ≥ 1, ak ≥ 1 such that the following conditions are satisfied:

(i) The mapping F is continuous at (x̄, p̄);

(ii) For p near p̄, for every u ∈ X, there exists c2(u) > 0 such that for all x ∈
BX(x̄, k0, r0), all k ∈ N,

‖DFp(x)u‖k ≤ c2(u)(mk‖u‖k+d1 + ‖x− x̄‖k/ak−d2 + ‖Fp(x)− Fp(x̄)‖k + νk);

(iii) For p near p̄ and for all x ∈ BX(x̄, k0, r0), there exists a linear mapping Lp(x) :
Y → X such that DFp(x)Lp(x) = IY (the identity mapping on Y ) and for every
v ∈ Y,

‖Lp(x)v‖k ≤
C

mkak−d1−d2
‖x− x̄‖k−d1−d2‖v‖d1+d2 + ak‖v‖k+d2 , ∀k ∈ N.

Then, for every τ > ak0+d1, there exist r > 0 and a neighborhood W in P of p̄ such that

dk0(x, S(p)) ≤ τ‖F (x, p)‖k0+d1+d2 , (39)

for all (x, p) ∈ BX(x̄, k0, r)×W.

4. Application: Differential equations in Fréchet spaces

In this final section, we present an application to the existence of solutions for or-
dinary differential equations in Fréchet spaces. Let X be a graded Fréchet space, let
U ⊆ X be an open set, let t0 ∈ R, r0 > 0 be given, and let f : [t0 − r0, t0 + r0]×U → X
be a continuous mapping. For given r > 0 and x0 ∈ U , consider the initial value problem:

(DEF )
{
x′(t) = f(t, x(t)), t ∈ [t0 − r, t0 + r],
x(t0) = x0.

When the function f is of class C2, Poppenberg [19] established a result on existence
of solutions for equation (DEF). In the following theorem, the data function is assumed
merely to be Gâteaux differentiable.

Theorem 9. Let E be graded Fréchet space such that X and C([−1, 1], E) are standard.
Suppose that the function f is continuous on [t0 − r0, t0 + r0]×U. Suppose also that for
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each t ∈ [t0 − r0, t0 + r0], f(t, ·) : U → X is Gâteaux differentiable on U with derivative
Dxf(t, ·), and that there is a non-decreasing sequence of non-negative reals (ck)k∈N such
that for all (t, x) ∈ [t0 − r0, t0 + r0]× U, one has

‖Dxf(t, x)u‖k ≤ ck‖u‖k, for all u ∈ X, k ∈ N. (40)

Then, there is r ∈ (0, r0] such that problem (DEF) has a solution x(·) ∈ C1([t0 − r, t0 +
r], E). If in addition, f is a C1−mappings on [t0 − r0, t0 + r0]× U , and that, say, for a
sequence (ck)k∈N above,

‖Df(t, x)‖k ≤ ck ∀k ∈ N, ∀(t, x) ∈ [t0 − r0, t0 + r0]× U, (41)

then the solution x(·) is unique.

Proof. Using the transformations t = t0 + rs, z(s) = x(t0 + rs)− x0, s ∈ [−1, 1], we
can rewrite problem (DEF) as

(DEF1)
{
z′(s) = rf(t0 + rs, z(s) + x0), s ∈ [−1, 1],
z(0) = 0.

Denote by

W = {(z, r) ∈ C1([−1, 1], X)× R : r ∈ (−r0, r0), z(s) ∈ U ∀s ∈ [−1, 1]}.

W is an open subset of the graded Fréchet space C1([−1, 1], X) × R. Set F : W →
C([−1, 1], X)×X, defined by

F (z, r) = (z′(s)− rf(t0 + rs, z(s) + x0), z(0)), s ∈ [−1, 1], (z, r) ∈W.

Then for each r ∈ (0, r0), F (r, ·) is Gâteaux differentiable on W with derivative given by

DzF (z, r)u = (u′(s)−rDxf(t0+rs, z(s)+x0)u(s), u(0)), s ∈ [−1, 1], (r, s) ∈W, u ∈ C1([−1, 1], X).

Obviously, (0, 0) ∈W and F (0, 0) = (0, 0), and moreover, z ∈ C1([−1, 1], X) is a solution
of problem (DEF1) with respect to r ∈ (−r0, r0) if and only if F (z, r) = (0, 0). So it
suffices to show that the mapping F verifies all the assumptions (i), (ii) and (iii) of
Corollary 8 with (x̄, p̄) := (0, 0), (x, p) := (x, r). Assumption (i) is obvious. To verify
(ii), for any k ∈ N, for (z, r) ∈ W, u ∈ C1([−1, 1], X), making use of relation (40), one
has

‖DzF (z, r)u‖k = ‖u′(·)− rDxf(t0 + rs, z(·) + x0)u(·)‖k + ‖u(0)‖k
≤ ‖u′(·)‖k + r0ck‖u(·)‖k + ‖u(·)‖k ≤ (2 + r0ck)‖u‖k.

Thus (ii) follows. To verify (iii), for (z, r) ∈ W, (v, v0) ∈ C([−1, 1], X) × X, then
DzF (z, r)u = (v, v0), u ∈ C1([−1, 1], X) if and only if u is a solution of the linear
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differential equation:

(LDE)
{
u′(s) = A(s)u(s) + v(s), s ∈ [−1, 1],
u(0) = v0

where, A(s) := rDxf(t− 0 + rs, z(s) + x0) (s ∈ [−1, 1]) is a continuous linear mapping
from X to itself, according to condition (40). Thanks to Proposition 3.4 in [19], Problem
(LDE) has a unique solution u ∈ C1([−1, 1], X). That is, DzF (z, r) is invertible with
L(z, r) := DzF (z, r)−1(v, v0) = u, u solving (LDE), for (v, v0) ∈ C([−1, 1], X)×X. Let
now (v, v0) ∈ C([−1, 1], X) × X, be given, and let u ∈ C1([−1, 1], X) be a solution of
problem (LDE). One has

‖A(s)u(s)‖k ≤ r0ck‖u(s)‖k, for all k ∈ N, s ∈ [−1, 1]. (42)

Therefore, for any k ∈ N, by considering the corresponding integral equation of (LDE),
one has

‖u(t)‖k ≤ ‖v‖k + ‖v0‖k + r0ck

∫ t

0
‖u(s)‖k, ∀t ∈ [0, 1].

Thanks to the Gronwall lemma, applied to the function α(t) := ‖u(t)‖k, t ∈ [0, 1], one
obtains

‖u(t)‖k ≤ er0ckt‖(v, v0)‖k, for all t ∈ [0, 1].

Similarly, for t ∈ [−1, 0], by setting w(s) := u(−s), s ∈ [0, 1], one also has

‖w(t)‖k ≤ ‖v‖k + ‖v0‖k + r0ck

∫ t

0
‖w(s)‖k, ∀t ∈ [0, 1].

Hence,
‖u(t)‖k ≤ e−r0ckt‖(v, v0)‖k, for all t ∈ [−1, 0].

Thus,
sup

s∈[−1,1]
‖u(s)‖k ≤ er0ck‖(v, v0)‖k, ∀k ∈ N. (43)

Furthermore, from equation (LDE), using relations (42), (43), one obtains

sups∈[−1,1] ‖u′(s)‖k ≤ r0ck sups∈[−1,1] ‖u(s)‖k + sups∈[−1,1] ‖v(s)‖k
≤ r0cke

r0ck‖(v, v0)‖k + ‖v‖k ≤ (r0cke
r0ck + 1)‖(v, v0)‖k.

Hence,
‖u(·)‖k ≤ (er0ck + r0cke

r0ck + 1)‖(v, v0)‖k,

and (iii) follows. According to Corollary 8, there is a neighborhood U(x0) ⊆ U of x0

and r1 > 0, as well as a sequence of non-negative reals (τk) such that for all k ∈ N,

dk(x, S(r)) ≤ τk‖F (x, r)‖k, for all (x, r) ∈ U(x0)× [0, r1],
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where,
S(r) = {z ∈ C1([−1, 1], X) : (z, r) ∈W, F (z, r) = 0}.

Suppose now f is a mapping of class C1on [t0− r0, t0 + r0]×U. We shall show that when
r > 0 is sufficiently small, there is a unique z ∈ C1([−1, 1], X) with (z, r) ∈ W such
that F (x, r) = (0, 0). Indeed, since f is a C1-mapping on [t0 − r0, t0 + r0]×U, there is a
sequence of non-negative reals (εk) such that for all k ∈ N,

‖f(t1, x1)‖k − f(t2, x2)‖k
≤ ‖Df(t0, x0)‖k‖(t1 − t2, x1 − x2)‖k
+εk‖(t1 − t2, x1 − x2)‖k, ∀(t1, x1), (t2, x2) ∈ [t0 − r0, t0 + r0]× U.

This shows that there is some sequence of non-negative (dk) such that

‖f(t1, x1)‖k − f(t2, x2)‖k ≤ dk‖(t1 − t2, x1 − x2)‖k
for all k ∈ N, (t, x) ∈ [t0 − r0, t0 + r0]× U. (44)

Let r ∈ (0, r0) be given, and let z1, z2 in C1([−1, 1], X) be two solutions of equation
(DEF1) with respect to r. Then, one has{

z′1(s)− z′2(s) = r[f(t0 + rs, z1(s) + x0)− f(t0 + rs, z2(s) + x0), s ∈ [−1, 1],
z1(0)− z2(0) = 0.

By making use similarly of the Gronwall lemma as above for this differential equation
with its solution z1 − z2, one derives z1 = z2. The proof is completed. �

Remark 10. Note that, by the same argument, the conclusion of the preceding theorem
remains true if condition (40) is replaced by the following one:
there is a constant C > 0 such that for all k ∈ N, one has

‖Dxf(t, x)u‖k ≤ C(‖x‖k + ‖u‖k), for all u ∈ X, (t, x) ∈ [t0 − r0, t0 + r0]× U. (45)
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D thesis., Université de Limoges (2012).

21

http://dx.doi.org/10.1007/s11228-008-0072-1
http://dx.doi.org/10.1007/978-1-4939-1037-3
http://dx.doi.org/10.1016/j.na.2011.02.019
http://dx.doi.org/10.1016/j.na.2011.02.019
http://dx.doi.org/10.1016/j.anihpc.2010.11.001
http://dx.doi.org/10.1090/S0273-0979-1982-15004-2
http://dx.doi.org/10.5186/aasfm.1985.1028
http://dx.doi.org/10.1007/s10107-013-0673-9
http://dx.doi.org/10.1007/s10107-013-0673-9
http://dx.doi.org/10.1023/A:1008775413250
http://dx.doi.org/10.1016/0022-1236(79)90109-5
http://dx.doi.org/10.1023/B:SVAN.0000023396.58424.98
http://dx.doi.org/10.1007/s11590-012-0580-7


[18] C.H.J. Pang, Implicit multifunction theorems with positively homogeneous maps,
Nonlinear Anal. 75 (2012) 1348–1361. doi:10.1016/j.na.2011.04.066.

[19] M. Poppenberg, An application of the Nash-Moser theorem to ordinary differential
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