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In this paper, we present some inverse function theorems and implicit function theorem for set-valued mappings between Fréchet spaces. The proof relies on Lebesgue's Dominated Convergence Theorem and on Ekeland's variational principle. An application to the existence of solutions of differential equations in Fréchet spaces with non-smooth data is given.

Introduction

The inverse function theorem is one of the central components of the classical and the modern variational analysis and an essential device to solving nonlinear equations. The inverse function theorem or its variants known as the implicit function theorem or the rank theorem have been established originally in Euclidean spaces and then extended to the Banach space setting. Outside this setting, for instance in Fréchet spaces, it is known that the inverse function theorem generally fails (see Lojasiewicz Jr & Zehnder [START_REF] Lojasiewicz | An inverse function theorem in Fréchet-spaces[END_REF]). This is the reason why another form of inverse function theorem, nowadays called the Nash-Moser theorem is used as a powerful tool to prove local existence for non-linear partial differential equations in spaces of smooth functions. Some inverse theorems of Nash-Moser type have also been proved for mappings between Fréchet spaces, that are supposed to be tame, an additional property guaranteeing that the semi-norms satisfy some interpolation properties, see e.g. [START_REF] Alinhac | Opérateurs pseudo-différentiels et théorème de Nash-Moser, Savoirs Actuels[END_REF][START_REF] Hamilton | The inverse function theorem of Nash and Moser[END_REF]) or that allow the use of smoothing operators as introduced by Nash (see e.g. [START_REF] Hamilton | The inverse function theorem of Nash and Moser[END_REF][START_REF] Hörmander | On the Nash-Moser implicit function theorem[END_REF][START_REF] Lojasiewicz | An inverse function theorem in Fréchet-spaces[END_REF][START_REF] Moser | A new technique for the construction of solutions of nonlinear differential equations[END_REF][START_REF] Schwartz | On Nash's implicit functional theorem[END_REF][START_REF] Sergeraert | Un théorème de fonctions implicites sur certains espaces de Fréchet et quelques applications[END_REF][START_REF] Zehnder | Generalized implicit function theorems with applications to some small divisor problems. I[END_REF]). To overcome the loss of derivatives, these additional properties in Fréchet spaces allow Newton's method on which the Nash-Moser type inverse function theorems are based to converge. Recently, Ekeland [START_REF] Ekeland | An inverse function theorem in Fréchet spaces[END_REF] (see also Ekeland & Séré [8]) produced a new result within a class of spaces much larger than the one used in the Nash-Moser literature.

Nowadays, modeling has evolved beyond equations and we know the importance and the efficacy of studying set-valued solution mappings which assign to each instance of the parameter element in a model all the corresponding solutions, if any. As it is mentioned in the book by Dontchev & Rockafeller [START_REF] Dontchev | Implicit functions and solution mappings[END_REF], "the central question is whether a solution mapping can be localized graphically in order to achieve single-valuedness and in that sense produce a function, the desired implicit function". To be more explicit, many applied problems can be modeled as differential inclusions or more generally as generalized equations, that is, inclusions governed by a set-valued mapping. For these problems which are the analogous of nonlinear equations, there is a need to use implicit multifunction theorems. During the last years a wide literature has emerged related to implicit multifunction theorems (see e.g., [3-5, 11, 12, 15-18] and the references therein). However, to our knowledge, they have been established in the framework of Banach spaces and nothing exists for Fréchet spaces. Therefore, motivated by the recent work by Ekeland, and Ekeland & Séré, it is our aim in this paper to investigate the possibility to obtain, in the context of graded Fréchet spaces, an implicit multifunction theorem for set-valued mappings.

The structure of the paper is as follows. Section 1 is devoted to recalling the notions of Fréchet, graded Fréchet, standard Fréchet spaces, and contingent derivative of multifunctions, concepts essential for the framework and assumptions on which our results are based. In Section 2, we present an inverse multifunction theorem for set-valued mappings between Fréchet spaces which is the main result of the paper. This result allows us to obtain a general version of the Ekeland inverse function for Gâteaux differentiable mappings and to establish an implicit multifunction theorem for parametrized set-valued mappings. In the final section, we present an application to the existence of solutions for differential equations in Fréchet spaces.

Preliminaries

We begin this section with recalling briefly some notions on Fréchet spaces, i.e. on locally convex spaces which are Hausdorff, complete and whose topology is induced by a countable family of semi-norms ( • k ) k∈N with the property:

x ∈ X, x k = 0 for all k ∈ N ⇒ x = 0.
This class of spaces contains evidently Banach spaces, as well as many other locally convex spaces used in various areas of real or complex analysis. Also notice that given a Fréchet space F , we may produce the Fréchet space C 0 ([a, b], F ) of continuous paths in F equipped with the semi-norms defined by f k := sup t∈[a,b] f (t) k and widely used in analysis.

A graded Fréchet space X is a Fréchet space, whose topology is generated by a fixed sequence of semi-norms ( • k ) k∈N , increasing in strength, so that,

x k ≤ x k+1 ∀x ∈ X, ∀k ∈ N.
This class contains the space C ∞ ([a, b]) of infinitely differentiable real-valued functions on the interval [a, b] with the grading

f n = sup k≤n sup x∈[a,b] |D k (f (x))|,
as well as the space C ∞ (Ω, R d ), where Ω ⊂ R n is compact, with a smooth boundary and is the closure of its interior are graded Fréchet spaces. Note that every Fréchet space can be considered as a graded Fréchet space by replacing the initial family of semi-norms by the semi-norms

• n := k=n k=1
• k . However, as the Nash-Moser inverse function theorem highlights, the grading plays an essential role in its statement and in its proof.

Well known are the facts:

• the Cartesian product of two graded Fréchet spaces is a graded Fréchet space with the grading (x, y) n = x n + y n ;

• a closed subspace of a graded Fréchet space is a graded Fréchet space;

• a sequence (x n ) n∈N of elements in a Fréchet space X converges to x ∈ X, if and only if, x n -x k → 0 for all k ≥ 0;

• due to a classical result that (see e.g. [START_REF] Ekeland | An inverse function theorem in Fréchet spaces[END_REF]), a graded Fréchet space is a complete metric space with the metric:

d(x, y) = ∞ k=1 µ k min{r, x -y k }, (1) 
where, (µ k ) k∈N is any sequence of non-negative numbers with unbounded support: sup{k ∈ N : µ k = 0} = +∞ and r > 0.

Definition 1. ([7], Definition 5) A graded Fréchet space is said to be standard if for every x ∈ X, we can find a constant c := c(x) a sequence (x n ) ⊆ X converging to x and a sequence of non-negative numbers (c n ) such that

x n k ≤ c x k and x n k ≤ c n k ∀k, n ∈ N. (2) 
The space C ∞ (Ω, R d ) is a standard graded Fréchet space, see [START_REF] Ekeland | An inverse function theorem in Fréchet spaces[END_REF].

Let X, Y be graded Fréchet spaces. Consider a multifunction (set-valued mapping) F : X ⇒ Y between X and Y , that is a function between X and the subsets (possibly empty) of Y . We denote by gph F and dom F and F -1 : Y ⇒ X, the graph, domain and inverse of F, respectively:

gph F = {(x, y) ∈ X × Y : y ∈ F (x)}; dom F = {x ∈ X : F (x) = ∅} and F -1 (y) := {x ∈ X : y ∈ F (x)}, y ∈ Y.
We say that

F is a closed multifunction if gph F is a closed subset of X × Y.
In what follows, we will use the notion of contingent derivative of multifunctions. The contingent derivative of the multifunction F at a point (x, ȳ) ∈ gph F is the multifunction DF (x, ȳ) :

X ⇒ Y , defined for u ∈ X by {v ∈ Y : ∃(t n ) n∈N ↓ 0 + , ∃(u n , v n ) n∈N → (u, v) with (x + t n u n , ȳ + t n v n ) ∈ gph F, ∀n}.
In other words, DF (x, ȳ)(u) = {v ∈ Y : (u, v) ∈ T gph F (x, ȳ)}, where, T gph F (x, ȳ) stands for the contingent cone to gph F at (x, ȳ). For more details, the reader is referred to the book by Aubin & Frankowska [START_REF] Aubin | Set-Valued Analysis[END_REF]. When F : X → Y is a single-valued mapping, we use the notation DF (x) for DF (x, ȳ). Note that if F : X → Y is Gâtaux differentiable at x ∈ X, then DF (x) coincides with the Gâteaux derivative of F at x.

Inverse and Implicit multifunction theorems

Throughout, we consider a closed multifunction F : X ⇒ Y between graded Fréchet spaces X and Y induced respectively by countable families of semi-norms for which we use the same notation ( • k ) k∈N . For each k ∈ N, x ∈ X and a subset S ∈ X, denote by d k (x, S) := inf z∈X z -x k , which is referred to as the semi-distance from the point x to the set S with respect to the semi-norm • k in X. For given r ∈ (0, +∞], k 0 ∈ N, we denote respectively by B X (x, k 0 , r) = {x ∈ X :

x -x k 0 < r} and B X [x, k 0 , r] = {x ∈ X :

x -x k 0 ≤ r}, which are also referred to as the open and closed balls in X centered at x ∈ X, with radius r with respect to the semi-norm

• k 0 . Note that since • k 0 is a semi-norm, for any z ∈ X with z -x k 0 = 0, B X (z, k 0 , r), B X [z, k 0 , r] coincide with B X (x, k 0 , r), B X [x, k 0 , r], respectively.
Theorem 2. Let F : X ⇒ Y be a closed multifunction between graded Fréchet spaces and let (x, ȳ) ∈ gph F be given. Assume furthermore that Y is standard. Suppose also that there are integers k 0 , d 1 , d 2 , real numbers r ∈ (0, +∞], C ≥ 0 and non-decreasing sequences of non-negative reals (ν k ) k∈N , (ν k ) k∈N , (m k ) k∈N , and (a k ) k∈N with m k ≥ 1, a k ≥ 1 such that the following conditions are satisfied:

(i) For all (x, y) ∈ gph F with x ∈ B X (x, k 0 , r), y ∈ B Y (ȳ, k 0 + d 1 + d 2 , 2r/a k 0 +d 1 ), for every (u, v) ∈ gph DF (x, y), there exist c 2 (u, v) > 0 and sequences t n ↓ 0, u n → u and v n → v with (x + t n u n , z + t n v n ) ∈ gph F , such that for all n ∈ N, all k ∈ N, v n k ≤ c 2 (u, v)(m k u k+d 1 + x -x k /a k-d 2 + y -ȳ k + ν k ) and u n k ≤ c 2 (u, v)(m k u k+d 1 + x -x k + ν k ); (ii) For all (x, y) ∈ gph F with x ∈ B X (x, k 0 , r), y ∈ B Y (ȳ, k 0 + d 1 + d 2 , 2r/a k 0 +d 1 ), for every v ∈ Y, there exists u ∈ DF (x, y) -1 (v) such that u k ≤ C x -x k-d 1 -d 2 m k a k-d 1 -d 2 + ν k v d 1 +d 2 + a k v k+d 2 , ∀k ∈ N.
By convention we set

• k = • 0 and a k = 1 for k < 0.
Let (β k ) k∈N be a sequence of non-negative reals with unbounded support such that

∞ k=0 β k ν k < +∞ ∞ k=0 β k m k ν k+d 1 < +∞ and ∞ k=0 β k m k a k+d 1 n k < +∞. (3)
Then, for every y ∈ Y with Cγ < 1, where

γ := ∞ k=0 β k y -ȳ k + β k+d 1 +d 2 ν k+d 1 /a k+d 1 ∞ k=d 1 +d 2 β k , (4) 
and

∞ k=0 β k y -ȳ k 1 -Cγ -2 < rβ k 0 +d 1 +d 2 a k 0 +d 1 , (5) 
there exists x ∈ B X (x, k 0 , r) such that y ∈ F (x).

Proof. The proof is based on the Ekeland variational principle [START_REF] Ekeland | On the variational principle[END_REF]. However, the function and space to which the Ekeland variational principle is applied are different from [START_REF] Ekeland | An inverse function theorem in Fréchet spaces[END_REF].

By translation if necessary, we can assume without loss of generality that x = 0 and ȳ = 0. Let (α k ) k∈N be the sequence defined by

α k = β k+d 1 +d 2 a k+d 1 , k ∈ N.
Consider the distances on X and Y defined respectively by

d(x 1 , x 2 ) := ∞ k=0 α k min{r, x 1 -x 2 k }, x 1 , x 2 ∈ X, d(y 1 , y 2 ) := ∞ k=0 β k min{r, y 1 -y 2 k }, y 1 , y 2 ∈ Y.
For ε > 0, we define the distance

d ε (•, •) on X × Y by d ε ((x 1 , y 1 ), (x 2 , y 2 )) := d(x 1 , x 2 ) + εd(y 1 , y 2 ), (x 1 , y 1 ), (x 2 , y 2 ) ∈ X × Y.
Equipped with these distances, the spaces X, Y and therefore X ×Y are complete metric spaces. Let y 0 ∈ Y be such that ( 4) and ( 5) are satisfied. Setting η = √ Cγ -Cγ, where γ is defined by ( 4), consider the extended-real-valued function f :

X × Y → R ∪ {+∞} defined by f (x, y) = η ∞ k=0 α k x k+d 1 + ∞ k=0 β k y -y 0 k + δ gph F (x, y), (x, y) ∈ X × Y, (6)
where δ gph F stands for the indicator function of gph F, that is,

δ gph F (x, y) = 0 if (x, y) ∈ gph F, +∞ otherwise.
Claim 1. The function f is lower semicontinuous and bounded from below on X × Y.

One has 0 ≤ inf (x,y)∈X×Y f (x, y) ≤ f (0, 0) = ∞ k=0 β k y 0 k < +∞. (7) 
Take a sequence ((

x n , y n )) n∈N converging to (x, y) in X × Y. Then, x n -x k → 0 and y n -y k → 0 for every k ∈ N. Two cases may happen: 1.-If (x, y) / ∈ gph F, then by the closedness of the graph of F, (x n , y n ) / ∈ gph F when n is sufficiently large. Hence, lim n f (x n , y n ) = +∞ = f (x, y).
2.-Suppose now that (x, y) ∈ gph F. Thanks to the Fatou lemma we have,

lim inf n→+∞ f (x n , y n ) ≥ η lim inf n→+∞ ∞ k=0 α k x n k + ∞ k=0 β k y n -y 0 k ≥ η ∞ k=0 α k lim n→+∞ x n k + ∞ k=0 lim n→+∞ β k y n -y 0 k = η ∞ k=0 α k x k + ∞ k=0 β k y -y 0 k = f (x, y), establishing the claim. As Cγ + η η(1 -Cγ -η) = (1 -Cγ) -2 ,
in view of assumption [START_REF] Durea | Openness stability and implicit multifunction theorems: applications to variational systems[END_REF], take r > 0 and ε > 0 such that r < r and

Cγ + η + ηε η(1 -Cγ -η) ∞ k=0 β k y 0 k < rβ k 0 +d 1 +d 2 a k 0 +d 1 . (8) 
Set

κ := ∞ k=0 β k y 0 k rα k 0 = f (0, 0) rα k 0 < η(1 -Cγ -η) Cγ + η + ηε . (9) 
Applying Ekeland's variational principle to the function f on X × Y endowed with the distance d ε , we may find

(x 0 , z 0 ) ∈ X × Y such that f (x 0 , z 0 ) ≤ f (0, 0), ( 10 
)
d ε ((x 0 , z 0 ), (0, 0)) ≤ rα k 0 , (11) 
and

f (x, y) + κ(d(x, x 0 ) + εd(y, z 0 )) ≥ f (x 0 , z 0 ) ∀(x, y) ∈ X × Y. (12) 
Obviously, (x 0 , z 0 ) ∈ gph F. By relations ( 8) and [START_REF] Huynh | Implicit multifunction theorems in complete metric spaces[END_REF],

α k 0 min{r, x 0 k 0 } ≤ d ε ((x 0 , z 0 ), (0, 0)) ≤ rα k 0 < rα k 0 .
Consequently, x 0 k 0 < r. Since according to [START_REF] Durea | Openness stability and implicit multifunction theorems: applications to variational systems[END_REF],

β k 0 +d 1 +d 2 y 0 k 0 +d 1 +d 2 ≤ f (0, 0) < rβ k 0 +d 1 +d 2 a k 0 +d 1 ,
it follows y 0 k 0 +d 1 +d 2 < r/a k 0 +d 1 . Furthermore, as

β k 0 +d 1 +d 2 z 0 -y 0 k 0 +d 1 +d 2 ≤ f (x 0 , z 0 ) ≤ f (0, 0) < rβ k 0 +d 1 +d 2 a k 0 +d 1 , one obtains z 0 k 0 +d 1 +d 2 ≤ y 0 k 0 +d 1 +d 2 + z 0 -y 0 k 0 +d 1 +d 2 ≤ 2r/a k 0 +d 1 .
From [START_REF] Ledyaev | Implicit multifunction theorems[END_REF], for all (x, y) ∈ gph F one has

∞ k=0 β k ( z 0 -y 0 k -y -y 0 k ) ≤ η ∞ k=0 α k ( x k -x 0 k ) +κ ∞ k=0 α k min{r, x -x 0 k } + ε ∞ k=0 β k min{r, y -z 0 k } . ( 13 
)
It suffices to prove that z 0 = y 0 . Assume to the contrary that z 0 = y 0 . Setting v = y 0 -z 0 , and using the assumption that Y is standard, there exists a sequence (v n ) n∈N converging to v such that

v n k ≤ c 0 (v) v k , v n ≤ c 1 (v n ) k ∀n, k ∈ N. (14) 
From condition (ii), for every n, there exists

u n ∈ DF (x 0 , z 0 ) -1 (v n ) such that u n k ≤ C x 0 k-d 1 -d 2 m k a k-d 1 -d 2 + ν k v n d 1 +d 2 + a k v n k+d 2 , ∀k ∈ N. (15) 
From condition (i), for every n ∈ N, there exist a real

c 2 (u n , v n ) > 0, sequences t n,j ↓ 0, u n,j → u n , v n,j → v n as j → ∞ such that (x 0 + t n,j u n,j , z 0 + t n,j v n,j ) ∈ gph F, ∀j v n,j k ≤ c 2 (u n , v n )(m k u n k+d 1 + x 0 k /a k-d 2 + z 0 k + ν k ), ∀j, k, (16) 
u n,j k ≤ c 2 (u n , v n )(m k u n k+d 1 + x 0 k + ν k ), ∀j, k. (17) 
Plugging x := x 0 + t n,j u n,j and y := z 0 + t n,j v n,j into relation (3), one obtains

∞ k=0 β k ( v k -v -t n,j v n,j k ) ≤ η ∞ k=0 α k ( x 0 + t n,j u n,j k+d 1 -x 0 k+d 1 ) +κ ∞ k=0 α k min{r, t n,j u n,j k } + ε ∞ k=0 β k min{r, t n,j v n,j k } ∀n, j. (18) 
We can assume t n,j ∈ (0, 1), for all n, j. Then, one has

v -t n,j v n,j k = t n,j (v -v n,j ) + (1 -t n,j )v k ≤ t n,j v -v n,j k + (1 -t n,j ) v k .
It follows that

v k -v -t n,j v n,j k t n,j ≥ v k -v -v n,j k ∀n, j, k.
Combining this inequality with (3), one derives

∞ k=0 β k ( v k -v -v n,j k ) ≤ η ∞ k=0 α k u n,j k+d 1 + +κ ∞ k=0 α k min r t n,j , u n,j k + ε ∞ k=0 β k min r t n,j , v n,j k ∀n, j. (19) 
Claim 2. For every n ∈ N, one has

lim j ∞ k=0 β k ( v k -v -v n,j k ) = ∞ k=0 β k ( v k -v -v n k )
and

lim j→∞ ∞ k=0 β k min r t n,j , v n,j k = ∞ k=0 β k v n .
By relations ( 14), ( 15) and ( 16), one has

v n,j k ≤ c 2 (u n , v n )m k u n k+d 1 + c 2 (u n , v n ) x 0 k /a k-d 2 + c 2 (u n , v n ) z 0 k + c 2 (u n , v n )ν k ≤ c 2 (u n , v n ) C x 0 k-d 2 a k-d 2 + m k ν k+d 1 v n d 1 +d 2 + m k a k+d 1 v n k+d 1 +d 2 +c 2 (u n , v n ) x 0 k /a k-d 2 + c 2 (u n , v n ) z 0 k ≤ c 2 (u n , v n ) C a k-d 2 x 0 k-d 2 v n d 1 +d 2 + m k a k+d 1 c 1 (v n ) k+d 1 +d 2 +Cc 2 (u n , v n ) v n d 1 +d 2 m k ν k+d 1 + c 2 (u n , v n ) x 0 k /a k-d 2 + c 2 (u n , v n ) z 0 k + c 2 (u n , v n )ν k .
Thus, for every n, j ∈ N,

∞ k=0 β k v n,j k ≤ c 2 (u n , v n ) C v n d 1 +d 2 ∞ k=0 α k-d 1 -d 2 x 0 k-d 2 + ∞ k=0 β k m k a k+d 1 c 1 (v n ) k+d 1 +d 2 + ∞ k=0 α k-d 1 x 0 k + ∞ k=0 β k z 0 k +c 2 (u n , v n )(C v n d 1 +d 2 ∞ k=0 β k ν k+d 1 + ∞ k=0 β k ν k ). ( 20 
) By (3), C v n d 1 +d 2 ∞ k=0 β k m k ν k+d 1 + ∞ k=0 β k ν k < +∞; ∞ k=0 β k m k a k+d 1 c 1 (v n ) k+d 1 +d 2 < ∞,
and in view of relation [START_REF] Hörmander | On the Nash-Moser implicit function theorem[END_REF],

η ∞ k=0 α k x 0 k+d 1 ≤ f (x 0 , z 0 ) ≤ f (0, 0) < ∞; ∞ k=0 β k z 0 k ≤ ∞ k=0 β k y 0 k + f (0, 0) < ∞.
Therefore, according to Lebesgue's Dominated Convergence Theorem, relation [START_REF] Schwartz | On Nash's implicit functional theorem[END_REF] yields for every n ∈ N,

lim j→∞ ∞ k=0 β k ( v k -v -v n,j k ) = ∞ k=0 β k ( v k -lim j→∞ v -v n,j k ) = ∞ k=0 β k ( v k -v -v n k ),
and

lim j→∞ ∞ k=0 β k min r t n,j , v n,j k = ∞ k=0 β k v n .
Claim 3. For every n ∈ N, one has

lim j→∞ ∞ k=0 α k u n,j k+d 1 = ∞ k=0 α k u n k+d 1 , (21) 
and

lim j→∞ ∞ k=0 α k min r t n,j , u n,j k = ∞ k=0 α k u n k . ( 22 
)
From relations ( 14), ( 15) and ( 17), for every k, n, j ∈ N, one has

u n,j k ≤ c 2 (u n , v n )(m k u n k+d 1 + x 0 k + ν k ) ≤ c 2 (u n , v n ) C x 0 k-d 2 a k-d 2 + m k ν k+d 1 v n d 1 +d 2 + m k a k v n k+d 2 + x 0 k + ν k ≤ c 2 (u n , v n ) C x 0 k-d 2 v n d 1 +d 2 + m k a k c 1 (v n ) k+d 2 + x 0 k +c 2 (u n , v n )ν k + c 2 (u n , v n )C v n d 1 +d 2 m k ν k+d 1 .
.

As ∞ k=0 β k m k ν k+d 1 , ∞ k=0 α k x 0 k+d 1 and ∞ k=0 β k m k+d 1 a k+d 1 c 1 (v n
) k+d 1 +d 2 are convergent series, we deduce ( 21) and ( 22) by Lebesgue's Dominated Convergence Theorem.

By virtue of Claims 2 and 3, by letting j → ∞ in inequality [START_REF] Poppenberg | An application of the Nash-Moser theorem to ordinary differential equations in Fréchet spaces[END_REF], one obtains

∞ k=0 β k ( v k -v -v n k ) ≤ η ∞ k=0 α k u n k+d 1 + +κ ( ∞ k=0 α k u n k + ε ∞ k=0 β k v n k ) ∀n. (23) 
Next, using the first relation of ( 14), and the inequalities

∞ k=0 β k v k ≤ f (x 0 , z 0 ) ≤ f (0, 0), for every n ∈ N, one has ∞ k=0 β k v n k ≤ c 0 (v) ∞ k=0 β k v k < ∞.
Applying again Lebesgue's Dominated Convergence Theorem, one obtains

lim n→∞ ∞ k=0 β k ( v k -v -v n k ) = ∞ k=0 β k ( v k -lim n→∞ v -v n k ) = ∞ k=0 β k v k , (24) 
and

lim n→∞ ∞ k=0 β k v n k = ∞ k=0 β k lim n→∞ v n k = ∞ k=0 β k v k . (25) 
From ( 15), one has

∞ k=0 α k u n k ≤ ∞ k=0 α k u n k+d 1 ≤ ∞ k=0 Cα k x 0 k-d 2 m k+d 1 a k-d 2 + ν k+d 1 v n d 1 +d 2 + ∞ k=0 α k a k+d 1 v n k+d 1 +d 2 ≤ C ∞ k=0 α k x 0 k+d 1 + ν k+d 1 v n d 1 +d 2 + ∞ k=0 β k+d 1 +d 2 v n k+d 1 +d 2 .
As

η ∞ k=0 α k x 0 k+d 1 ≤ f (x 0 , z 0 ) ≤ f (0, 0) = ∞ k=0 β k y 0 k , one deduces that ∞ k=0 α k u n k ≤ ∞ k=0 α k u n k+d 1 ≤ Cγ η ∞ k=d 1 +d 2 β k v n d 1 +d 2 + ∞ k=0 β k+d 1 +d 2 v n k+d 1 +d 2 ≤ Cγ η ∞ k=d 1 +d 2 β k v n k + ∞ k=0 β k+d 1 +d 2 v n k+d 1 +d 2 ≤ Cγ η + 1 ∞ k=0 β k v n k . (26) 
By virtue of this inequality, letting n → ∞ in relation (23), in view of relations ( 24) and (25), one obtains

∞ k=0 β k v k ≤ [(Cγ + η) + κ(Cγ/η + 1 + ε)] ∞ k=0 β k v k , from which it follows that κ ≥ η(1 -Cγ -η) Cγ + η + ηε .
This contradicts (8), ( 9). The proof is completed.

Remark 3. We can add to the conclusion of Theorem 2, that the inverse image x of an arbitrary y ∈ Y is controlled by the distance to the reference point x. More precisely thanks to relation [START_REF] Huynh | Implicit multifunction theorems in complete metric spaces[END_REF] we have d(x, x) < rα k 0 , where d is a metric defining X.

In the last part of this section, we consider two graded Fréchet spaces X and Y , a topological space P and a multifunction F : X × P ⇒ Y . For p ∈ P, set

S(p) = {x ∈ X : 0 ∈ F (x, p)}. (27) 
The multifunction S : P ⇒ X is referred to as the solution mapping associated to F. For p ∈ P, denote by F p := F (•, p) : X ⇒ Y. By making use Theorem 2, we derive the following implicit multifunction theorem.

Theorem 4. Let X, Y be graded Fréchet spaces and let P be a topological space. Consider a multifunction F : X × P ⇒ Y and a given point (x, p) ∈ X × P with 0 ∈ F (x, p). Assume furthermore that Y is standard. Suppose also that there are integers k 0 , d (ii) For all p near p, for all (x, y) ∈ gph

F p with x ∈ B X (x, k 0 , r 0 ), y ∈ B Y (0, k 0 + d 1 + d 2 , 2r 0 /a k 0 +d 1 ), for every v ∈ DF p (x, z)u with u ∈ X, there exist c 2 (u, v) > 0 and sequences t n ↓ 0, u n → u and v n → v with (x + t n u n , y + t n v n ) ∈ gph F p , such that for all n ∈ N, all k ∈ N, v n k ≤ c 2 (u, v)(m k u k+d 1 + x -x k /a k-d 2 + y k + µ k ) and u n k ≤ c 2 (u, v)(m k u k+d 1 + x -x k + µ k );
(ii) For p ∈ P near p, for all (x, y) ∈ gph F p with x ∈ B X (x, k 0 , r 0 ), y ∈ B Y (0, k 0 + d 1 + d 2 , 2r/a k 0 +d 1 ), for every v ∈ Y, there exists u ∈ DF p (x, y) -1 (v) such that

u k ≤ C m k a k-d 1 -d 2 x -x k-d 1 -d 2 v d 1 +d 2 + a k v k+d 2 , ∀k ∈ N.
Then for every τ > a k 0 +d 1 , there exist r ∈ (0, r 0 ) and a neighborhood W in P of p such that

d k 0 (x, S(p)) ≤ τ d k 0 +d 1 +d 2 (0, F (x, p)), ( 28 
)
for all (x, p) ∈ B X (x, k 0 , r) × W.
Proof. Pick a positive real r ∈ (0, r 0 ) such as Cr < 1/2. Since F (x, •) is lower semicontinuous, for any ε > 0, there exists a neighborhood W of p in P such that

F (x, p) ∩ B Y (0, k 0 + d 1 + d 2 , ε) = ∅, for all p ∈ W. That is, d k 0 +d 1 +d 2 (0, F (x, p)) < ε, ∀p ∈ W.
Suppose that for this neighborhood W, conditions (i) and (ii) are satisfied for all p ∈ W. For a given p ∈ W, there is ȳp ∈ F (x, p) such as

ȳp k 0 +d 1 +d 2 ≤ (1 + ε)d k 0 +d 1 +d 2 (0, F (x, p)) < ε.
Let τ > a k 0 +d 1 and p ∈ W with 0 / ∈ F (x, p) be given. Pick ε > 0 with τ ε < r/4 and a k 0 +d 1 < τ /(1 + ε) and 0 < r < r with

a k 0 +d 1 ȳp < r < τ 1 + ε ȳp k 0 +d 1 +d 2 ≤ τ d k 0 +d 1 +d 2 (0, F (x, p)).
Take a sequence (β k ) k∈N of non-negative reals with unbounded support such that

∞ k=0 β k ( ȳp k + µ k ) < +∞ and ∞ k=0 β k m k a k+d 1 n k < +∞; ( 29 
)
C ∞ k=0 β k ȳp k ∞ k=d 1 +d 2 β k < 1, ( 30 
)
and

∞ k=0 β k y p k 1 - C ∞ k=0 β k y p k ∞ k=d 2 β k -2 < r β k 0 +d 1 +d 2 a k 0 +d 1 . (31) 
It is not difficult to show the existence of such a sequence (β k ) k∈N . Let us apply Theorem 2 with F (•, p), r , ȳp and 0, instead of F, r, ȳ and y, respectively. Obviously, (i) and (ii) are satisfied with ν k = µ k + ȳp k , ν k = 0. We can find xp ∈ S(p) such that

d k (x, S(p)) ≤ xp -x k 0 ≤ r < τ d k 0 +d 1 +d 2 (0, F (x, p)). ( 32 
)
Now let x ∈ B X (x, k 0 , r/2) and p ∈ W . If d k 0 +d 1 +d 2 (0, F (x, p)) ≥ r/(2τ ) be given, then by relation (32), there is xp ∈ S(p) such that x -xp k 0 ≤ τ ε < r/4. Therefore,

d k 0 (x, S(p)) ≤ x -x p k 0 ≤ x -x k 0 + x -x p k 0 ≤ r/2 + r/4 < τ d k 0 +d 1 +d 2 (0, F (x, p)). ( 33 
)
Let us consider the case d k 0 +d 1 +d 2 (0, F (x, p)) < r/(2τ ). Then there is y p ∈ F (x, p)) with y p k 0 +d 1 +d 2 < r/2. Pick a non-negative number r < r/2 with

a k 0 +d 1 y p k 0 +d 1 +d 2 < r < τ y p k 0 +d 1 +d 2 .
Since C( y p k 0 +d 1 +d 2 + x -x k 0 ) < Cr < 1/2, we can pick a sequence (β k ) k∈N of non-negative reals with unbounded support such that

∞ k=0 β k ( y p k + µ k ) < +∞ and ∞ k=0 β k m k x -x k-d 2 < +∞; ∞ k=0 β k < +∞ and ∞ k=0 β k m k a k+d 1 n k < +∞ and (3); C ∞ k=0 (β k y p k + β k+d 1 +d 2 x -x k-d 2 ) ∞ k=d 1 +d 2 β k := s < 1; ∞ k=0 β k y p k 1 - √ s -2 < r β k 0 +d 1 +d 2 a k 0 +d 1 .
Then apply Theorem 2 with F (•, p), r , y p 0, x instead of F, r, ȳ y, and x, respectively, since conditions (i) and (ii) are verified for

ν k = x -x k + y p k + µ k , ν k = x - x k-d 1 -d 2 .
We obtain the existence of x p ∈ S(p) verifying

d k (x, S(p)) ≤ x p -x k 0 ≤ r < τ d k 0 +d 1 +d 2 (0, F (x, p)).
Thus (28) is shown.

To a given multifunction F : X ⇒ Y, we associate the new multifunction Φ :

X ×Y ⇒ Y defined by Φ(x, y) = F (x) -y, (x, y) ∈ X × Y.
Applying Theorem 4 to the multifunction Φ, we derive the following result of metric regularity type in Fréchet spaces.

Corollary 5. Let X, Y be graded Fréchet spaces and assume that Y is standard. Let F : X ⇒ Y be a closed multifunction and let (x, ȳ) ∈ gph F be given. Suppose also that there are integers k 0 , d 1 , d 2 , real numbers r ∈ (0, +∞], C > 0 and non-decreasing sequences of non-negative reals (ν k ) k∈N , (ν k ) k∈N , and (m k ) k∈N , (a k ) k∈N with m k ≥ 1, a k ≥ 1 such that the conditions (i) and (ii) of Theorem 2 are satisfied. Then for every τ > a k 0 +d 1 , there exists a neighborhood W in Y of ȳ such that

d k 0 (x, F -1 (y)) ≤ τ d k 0 +d 1 +d 2 (y, F (x)), (34) 
for all (x, y) ∈ B X (x, k 0 , r) × W.
When the mapping F : X → Y is Gâteaux differentiable, Theorem 2 yields the following theorem which covers Theorem 3 in [START_REF] Ekeland | An inverse function theorem in Fréchet spaces[END_REF]. Theorem 6. Let F : X → Y be a continuous mapping between graded Fréchet spaces X, Y with Y standard, and let x ∈ X be given. Suppose F is Gâteaux differentiable on X with derivative DF (x), and that there are integers k 0 , d 1 , d 2 , real numbers r ∈ (0, +∞],

C > 0 and non-decreasing sequences of non-negative reals (ν k ) k∈N , and (m k ) k∈N , (a k ) k∈N with m k ≥ 1, a k ≥ 1 such that the following conditions are satisfied: (i) For every u ∈ X, there exists c 2 (u) > 0 such that for all x ∈ B X (x, k 0 , r), all k ∈ N,

DF (x)u k ≤ c 2 (u)(m k u k+d 1 + x -x k /a k-d 2 + F (x) -F (x) k + ν k )
(ii) For all x ∈ B X (x, k 0 , r), there exists a linear mapping L(x) : Y → X such that DF (x)L(x) = I Y (the identity mapping on Y ) and for every v ∈ Y,

L(x)v k ≤ C m k a k-d 1 -d 2 x -x k-d 1 -d 2 v d 1 +d 2 + a k v k+d 2 , ∀k ∈ N.
Let (β k ) k∈N be a sequence of non-negative reals with unbounded support such that

∞ k=0 β k ν k < +∞, (35) 
Then, for every y ∈ Y with

C ∞ k=0 β k y -F (x) k ∞ k=d 1 +d 2 β k < 1, (36) 
and

∞ k=0 β k y -F (x) k 1 - C ∞ k=0 β k y -F (x) k ∞ k=d 1 +d 2 β k -2 < rβ k 0 +d 1 +d 2 a k 0 +d 1 , (37) 
there exists x ∈ B X (x, k 0 , r) such that F (x) = y.

Proof. It suffices to show that conditions (i) and (ii) of Theorem 2 are satisfied. Indeed, for every x ∈ B(x, k 0 , r), v ∈ Y, setting u = L(x)v, one has obviously u ∈ DF -1 (x)(v). Thus condition (2) implies (ii) of Theorem 2. For given u ∈ X and x ∈ B(x, k 0 , r), pick t ∈ (0, 1) such that x + tu k 0 < r for all t ∈ [0, t]. For each k ∈ N, define the function

f k : [0, t] → R by f k (t) = F (x + tu) -F (x) k , t ∈ [0, t 0 ].
Obviously, f has a right derivative everywhere and

f k+ (t) ≤ DF (x + tu) k , ∀t ∈ [0, t).
Therefore, by assumption (i), one has

f k+ (t) ≤ c 2 (u)(m k u k+d 1 + x + tu -x k /a k-d 2 + f (t) + ν k ), ∀t ∈ [0, t),
and consequently,

f k+ (t) -c 2 (u)f k (t) ≤ c 2 (u)((m k + 1) u k+d 1 + x -x k + ν k ), ∀t ∈ [0, t).
Equivalently,

e -tc 2 (u) [f k+ (t) -c 2 (u)f k (t)] ≤ e -tc 2 (u) c 2 (u)((m k + 1) u k+d 1 + x -x k /a k-d 2 + ν k ), ∀t ∈ [0, t).
By integration, one obtains

e -tc 2 (u) f k (t) -f k (0) ≤ (1 -e -tc 2 (u) )((m k + 1) u k+d 1 + x -x k /a k-d 2 + ν k ).
That is, for all t ∈ [0, t),

m k u k+d 1 + F (x + tu) -F (x) k ≤ e tc 2 (u) [(m k + 1) u k+d 1 + x -x k /a k-d 2 + F (x) -F (x) k + ν k ].
This together with (i) yield

DF (x + tu)u k ≤ c 2 (u)e tc 2 (u) [(m k + 1) u k+d 1 + x -x k /a k-d 2 + F (x) -F (x) k + ν k ], ∀t ∈ [0, t 0 ).
Next, pick a sequence (t n ) n∈N converging to 0, with t n ∈ (0, t), and set

u n := u, v n := F (x + t n u) -F (x) t n , n ∈ N.
Then, F (x) + t n v n = F (x + t n u n ) and lim n→∞ (u n , v n ) = (u, DF (x)u). Setting C 2 (u) = c 2 (u)e tc 2 (u) , the Mean Value inequality yields,

v n k ≤ sup s∈[0,tn] DF (x + su)u k ≤ C 2 (u)[(m k + 1) u k+d 1 + x -x k /a k-d 2 + F (x) -F (x) k + ν k ], for all n ∈ N,
Thus condition (ii) of Theorem 2 holds.

Corollary 7. Under the assumptions of Theorem 6, for every τ > a k 0 +d 1 , there exist r > 0 and a neighborhood W in Y of ȳ such that

d k 0 (x, F -1 (y)) ≤ τ y -F (x) k 0 +d 1 +d 2 , (38) 
for all (x, y) ∈ B X (x, k 0 , r) × W.

Using the same argument as in the proof of Theorem 6, from Theorem 4, we obtain, when F (•, p) is Gâteaux differentiable, the following implicit multifunction theorem for the system (27).

Corollary 8. Let X, Y be graded Fréchet spaces and let P be a topological space. Consider a mapping F : X × P → Y and a given point (x, p) ∈ X × P with F (x, p) = 0. Assume furthermore that Y is standard. Suppose F (•, p) is Gâteaux differentiable on X with derivative DF p (x) for p near p, and that there are integers k 0 , d 1 , d 2 , real numbers r 0 ∈ (0, +∞], C > 0 and non-decreasing sequences of non-negative reals (ν k ) k∈N , and (m k ) k∈N , (a k ) k∈N with m k ≥ 1, a k ≥ 1 such that the following conditions are satisfied:

(i) The mapping F is continuous at (x, p);

(ii) For p near p, for every u ∈ X, there exists c 2 (u) > 0 such that for all x ∈ B X (x, k 0 , r 0 ), all k ∈ N,

DF p (x)u k ≤ c 2 (u)(m k u k+d 1 + x -x k /a k-d 2 + F p (x) -F p (x) k + ν k );
(iii) For p near p and for all x ∈ B X (x, k 0 , r 0 ), there exists a linear mapping L p (x) : Y → X such that DF p (x)L p (x) = I Y (the identity mapping on Y ) and for every

v ∈ Y, L p (x)v k ≤ C m k a k-d 1 -d 2 x -x k-d 1 -d 2 v d 1 +d 2 + a k v k+d 2 , ∀k ∈ N.
Then, for every τ > a k 0 +d 1 , there exist r > 0 and a neighborhood W in P of p such that

d k 0 (x, S(p)) ≤ τ F (x, p) k 0 +d 1 +d 2 , (39) 
for all (x, p) ∈ B X (x, k 0 , r) × W.

Application: Differential equations in Fréchet spaces

In this final section, we present an application to the existence of solutions for ordinary differential equations in Fréchet spaces. Let X be a graded Fréchet space, let U ⊆ X be an open set, let t 0 ∈ R, r 0 > 0 be given, and let f : [t 0 -r 0 , t 0 + r 0 ] × U → X be a continuous mapping. For given r > 0 and x 0 ∈ U , consider the initial value problem:

(DEF ) x (t) = f (t, x(t)), t ∈ [t 0 -r, t 0 + r], x(t 0 ) = x 0 .
When the function f is of class C 2 , Poppenberg [START_REF] Poppenberg | An application of the Nash-Moser theorem to ordinary differential equations in Fréchet spaces[END_REF] established a result on existence of solutions for equation (DEF). In the following theorem, the data function is assumed merely to be Gâteaux differentiable.

Theorem 9. Let E be graded Fréchet space such that X and C([-1, 1], E) are standard. Suppose that the function f is continuous on [t 0 -r 0 , t 0 + r 0 ] × U. Suppose also that for each t ∈ [t 0 -r 0 , t 0 + r 0 ], f (t, •) : U → X is Gâteaux differentiable on U with derivative D x f (t, •), and that there is a non-decreasing sequence of non-negative reals (c k ) k∈N such that for all (t, x) ∈ [t 0 -r 0 , t 0 + r 0 ] × U, one has

D x f (t, x)u k ≤ c k u k , for all u ∈ X, k ∈ N. (40) 
Then, there is r ∈ (0, r 0 ] such that problem (DEF) has a solution x(•) ∈ C 1 ([t 0 -r, t 0 + r], E). If in addition, f is a C 1 -mappings on [t 0 -r 0 , t 0 + r 0 ] × U , and that, say, for a sequence (c k ) k∈N above,

Df (t, x) k ≤ c k ∀k ∈ N, ∀(t, x) ∈ [t 0 -r 0 , t 0 + r 0 ] × U, (41) 
then the solution x(•) is unique.

Proof. Using the transformations t = t 0 + rs, z(s) = x(t 0 + rs) -x 0 , s ∈ [-1, 1], we can rewrite problem (DEF) as

(DEF 1) z (s) = rf (t 0 + rs, z(s) + x 0 ), s ∈ [-1, 1], z(0) = 0.
Denote by

W = {(z, r) ∈ C 1 ([-1, 1], X) × R : r ∈ (-r 0 , r 0 ), z(s) ∈ U ∀s ∈ [-1, 1]}.
W is an open subset of the graded Fréchet space

C 1 ([-1, 1], X) × R. Set F : W → C([-1, 1 
], X) × X, defined by F (z, r) = (z (s) -rf (t 0 + rs, z(s) + x 0 ), z(0)), s ∈ [-1, 1], (z, r) ∈ W.

Then for each r ∈ (0, r 0 ), F (r, •) is Gâteaux differentiable on W with derivative given by D z F (z, r)u = (u (s)-rD x f (t 0 +rs, z(s)+x 0 )u(s), u(0)), s ∈ [-1, 1], (r, s) ∈ W, u ∈ C 1 ([-1, 1], X).

Obviously, (0, 0) ∈ W and F (0, 0) = (0, 0), and moreover, z ∈ C 1 ([-1, 1], X) is a solution of problem (DEF1) with respect to r ∈ (-r 0 , r 0 ) if and only if F (z, r) = (0, 0). So it suffices to show that the mapping F verifies all the assumptions (i), (ii) and (iii) of Corollary 8 with (x, p) := (0, 0), (x, p) := (x, r). Assumption (i) is obvious. To verify (ii), for any k ∈ N, for (z, r) ∈ W, u ∈ C 1 Hence, u(•) k ≤ (e r 0 c k + r 0 c k e r 0 c k + 1) (v, v 0 ) k , and (iii) follows. According to Corollary 8, there is a neighborhood U (x 0 ) ⊆ U of x 0 and r 1 > 0, as well as a sequence of non-negative reals (τ k ) such that for all k ∈ N, d k (x, S(r)) ≤ τ k F (x, r) k , for all (x, r) ∈ U (x 0 ) × [0, r 1 ],

  ([-1, 1], X), making use of relation (40), one hasD z F (z, r)u k = u (•) -rD x f (t 0 + rs, z(•) + x 0 )u(•) k + u(0) k ≤ u (•) k + r 0 c k u(•) k + u(•) k ≤ (2 + r 0 c k ) u k . Thus (ii) follows. To verify (iii), for (z, r) ∈ W, (v, v 0 ) ∈ C([-1, 1], X) × X, then D z F (z, r)u = (v, v 0 ), u ∈ C 1 ([-1, 1], X) if and only if u is a solution of the linear differential equation: (LDE) u (s) = A(s)u(s) + v(s), s ∈ [-1, 1], u(0) = v 0 where, A(s) := rD x f (t -0 + rs, z(s) + x 0 ) (s ∈ [-1, 1]) is a continuous linear mapping from X to itself, according to condition (40). Thanks to Proposition 3.4 in[START_REF] Poppenberg | An application of the Nash-Moser theorem to ordinary differential equations in Fréchet spaces[END_REF], Problem (LDE) has a unique solutionu ∈ C 1 ([-1, 1], X). That is, D z F (z, r) is invertible with L(z, r) := D z F (z, r) -1 (v, v 0 ) = u, u solving (LDE), for (v, v 0 ) ∈ C([-1, 1], X) × X. Let now (v, v 0 ) ∈ C([-1,1], X) × X, be given, and let u ∈ C 1 ([-1, 1], X) be a solution of problem (LDE). One hasA(s)u(s) k ≤ r 0 c k u(s) k , for all k ∈ N, s ∈ [-1, 1]. (42)Therefore, for any k ∈ N, by considering the corresponding integral equation of (LDE), one hasu(t) k ≤ v k + v 0 k + r 0 c k t 0 u(s) k , ∀t ∈ [0, 1].Thanks to the Gronwall lemma, applied to the function α(t) := u(t) k , t ∈ [0, 1], one obtains u(t) k ≤ e r 0 c k t (v, v 0 ) k , for all t ∈ [0, 1].Similarly, for t ∈ [-1, 0], by setting w(s) := u(-s), s ∈ [0, 1], one also hasw(t) k ≤ v k + v 0 k + r 0 c k t 0 w(s) k , ∀t ∈ [0, 1]. Hence, u(t) k ≤ e -r 0 c k t (v, v 0 ) k , for all t ∈ [-1, 0]. Thus, sup s∈[-1,1] u(s) k ≤ e r 0 c k (v, v 0 ) k , ∀k ∈ N.(43)Furthermore, from equation (LDE), using relations (42), (43), one obtains sup s∈[-1,1] u (s) k ≤ r 0 c k sup s∈[-1,1] u(s) k + sup s∈[-1,1] v(s) k ≤ r 0 c k e r 0 c k (v, v 0 ) k + v k ≤ (r 0 c k e r 0 c k + 1) (v, v 0 ) k .

  1 , d 2 , real numbers r 0 ∈ (0, +∞], C > 0 and non-decreasing sequences of non-negative reals (µ k ) k∈N , (µ k ) k∈N , and (m k ) k∈N , (a k ) k∈N with m k ≥ 1, a k ≥ 1 such that the following conditions are satisfied:

(i) For each p ∈ P, gph F p is closed and the multifunction F (x, •) : P ⇒ Y is lower semicontinuous at p;
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where, S(r) = {z ∈ C 1 ([-1, 1], X) : (z, r) ∈ W, F (z, r) = 0}. Suppose now f is a mapping of class C 1 on [t 0 -r 0 , t 0 + r 0 ] × U. We shall show that when r > 0 is sufficiently small, there is a unique z ∈ C 1 ([-1, 1], X) with (z, r) ∈ W such that F (x, r) = (0, 0). Indeed, since f is a C 1 -mapping on [t 0 -r 0 , t 0 + r 0 ] × U, there is a sequence of non-negative reals (ε k ) such that for all k ∈ N,

This shows that there is some sequence of non-negative (d k ) such that

Let r ∈ (0, r 0 ) be given, and let z 1 , z 2 in C 1 ([-1, 1], X) be two solutions of equation (DEF1) with respect to r. Then, one has

By making use similarly of the Gronwall lemma as above for this differential equation with its solution z 1 -z 2 , one derives z 1 = z 2 . The proof is completed.

Remark 10. Note that, by the same argument, the conclusion of the preceding theorem remains true if condition (40) is replaced by the following one: there is a constant C > 0 such that for all k ∈ N, one has
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