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ABSTRACT
Many signal and image processing applications are based

on the classification of covariance matrices. These latter are
elements on a Riemannian manifold for which many genera-
tive models have been developed in the literature. Recently,
the Riemannian Laplace distribution (RLD) has been pro-
posed to model the within-class variability of images. In this
context, the present paper proposes an application of RLDs
to the definition of Riemannian Fisher vectors issued from
this Laplacian model. The expression of these descriptors
is derived for mixtures of RLDs and their relation with
the Riemannian vectors of locally aggregated descriptors
is shown. Some comparisons with the bag of Riemannian
words model are also performed. All these aforementioned
descriptors are applied to texture image classification to find
the most discriminating one. Moreover, to determine the best
model for fitting the data, the classification performances
are compared to those given by the Riemannian Gaussian
distribution.

I. INTRODUCTION
Covariance matrices are used in a wide variety of applica-

tions in signal and image processing, including EEG signal
classification [1], object detection [2] and recognition [3],
texture analysis, etc. Being elements in the space Pm of
m×m real, symmetric and positive definite matrices, several
distributions have been introduced to model them, such as
the Wishart distribution [4] and those issued from the so-
called product model [5]. Recently, the Riemannian Gaussian
distribution (RGD) has been proposed in [6] to model the
within-class variability of images. This probability density
function is characterized by two parameters, its central
element and its dispersion around this central element. For
this model, the maximum likelihood estimator (MLE) of the
central value corresponds to the Riemannian center of mass.
While being efficient to model the mean element, this latter
is easily influenced by the presence of aberrant data [7], [8],
[9]. In practice, outliers may arise from faulty measurements,
or they may be explained by the inherent variability of data.
To overcome this problem, a robust estimator of the central
element can be considered. For example, one may use the

Huber M-estimator [10] or the Riemannian median [11],
[12], [13]. A generative model for which the MLE of the
central element is the Riemannian median has recently been
introduced in [14]: the Riemannian Laplace distribution
(RLD).

This paper proposes an application of the RLD to model
local descriptors able to capture the information lying in
signals, images or videos. Starting from a generative model,
local descriptors, such as Fisher vectors (FVs) can be ex-
tracted [15], [16], [17]. These FVs are descriptors derived
from the Fisher kernels [18] and they represent a way to
measure if samples are correctly fitted by a given model.
Introduced initially in the context of Gaussian mixture
models (GMM) [15], FVs have been recently generalized
for Riemannian manifolds, based on the Riemannian Gaus-
sian distributions [19]. The obtained descriptors have been
called Riemannian Fisher vectors (RFVs). Motivated by the
recalled interest of the RLD [14], the main contribution of
this paper is to extend the definition of RFVs to RLDs.
Next, the connection between the RFVs and the Riemannian
version of the conventional vectors of locally aggregated
descriptors (R-VLAD) [3] is also analyzed. Both models are
then applied in the context of texture image classification.
In addition, their behavior is compared to another local
descriptor, already generalized for the Riemannian case, the
bag of Riemannian words (BoRWs) [20]. All the tested
methods are implemented for the RLDs, but also for the
RGDs, in order to find the most suited model able to fit the
data.

The paper is structured as follows. Section II recalls the
definition of RLD and of mixtures of RLDs, and it details the
parameter estimation procedure. Section III introduces the
RFVs for RLDs and their relation with R-VLAD. Section IV
presents an application of the proposed method to texture
image classification and section V reports some conclusions
and future works.

II. RIEMANNIAN LAPLACE DISTRIBUTIONS

Inspired from the well-known Laplace distribution on R,
the RLD has been introduced in [14] on the space Pm of m×
m real, symmetric and positive definite matrices. For a set



Υ = {Yt}t=1:T of T independent and identically distributed
(i.i.d.) samples, the probability density function of the RLD
with respect to the Riemannian volume element is defined
as:

p(Yt|Ȳ, σ) =
1

ζm(σ)
exp

{
− d(Yt, Ȳ)

2σ2

}
, (1)

where Ȳ ∈ Pm and σ > 0 are the location and the dispersion
parameters. ζm is a normalizing constant independent of Ȳ
and d is the Riemannian distance given by d(Y1,Y2) =[∑

i(lnλi)
2
] 1

2 , with λi, i = 1, . . . ,m being the eigenvalues
of Y−1

2 Y1.
Starting from (1), the RLD definition has been extended

to the case of mixtures of RLDs [14]. For a mixture of K
RLDs, the probability density function becomes:

p(Yt|λ) =

K∑
j=1

$j p(Yt|Ȳj , σj), (2)

where λ = {($j , Ȳj , σj)1≤j≤K} is the parameter vec-
tor. $j are the positive weights, with $j ∈ (0, 1) and∑K
j=1$j = 1, while p(Yt|Ȳj , σj) is given by (1).
For each cluster cj , j = 1, . . . ,K, the elements of the

parameter vector λ can be estimated through the maximum
likelihood estimation. Thus, for the cluster cj , the estimated
location ̂̄Yj is the Riemannian median defined as the solu-
tion of: ̂̄Yj = argminȲj

Nj∑
n=1

d(Ȳj ,Yjn), (3)

with Yjn , n = 1, . . . , Nj being the set of elements Yj

in the cluster cj and Nj representing the cardinal of Yjn .
In addition, the estimated dispersion σ̂j is obtained as the
solution of:

σ2
j ×

d

dσj
log ζm(σj) =

1

Nj

Nj∑
n=1

d( ̂̄Yj ,Yjn), (4)

while the estimated weights $̂j are given by:

$̂j =
Nj∑K
j=1Nj

. (5)

In practice, the location ̂̄Yj is determined by means of
a gradient descent algorithm detailed in [11], while the
dispersion σ̂j is obtained by a classical Newton-Raphson
algorithm [14]. Furthermore, it has been shown that ̂̄Yj and
σ̂j are unique and ̂̄Yj is a consistent estimator of Ȳj [14].

Based on the elements recalled in this section, the next
part introduces the RFVs for RLDs.

III. FISHER VECTORS FOR RIEMANNIAN
LAPLACE DISTRIBUTIONS

Fisher vectors have been recently generalized for Rieman-
nian Gaussian distributions [19]. Starting from their initial
definition, the Fisher vectors are extended here to RLDs.

III-A. Definition

Let Υ = {Yt}t=1:T be a sample of T i.i.d observations
following a mixture of K RLDs. Under the independence
assumption, the probability density function of Υ is given
by:

p(Υ|λ) =

T∏
t=1

p(Yt|λ), (6)

where λ = {($j , Ȳj , σj)1≤j≤K} is the parameter vector
and p(Yt|λ) is the probability density function given in (2).

In order to obtain the FV, the gradient of the probability
density function characterizing the data has to be determined.
In practice, this is achieved by computing the gradient of the
log-likelihood with respect to the model parameters, called
the Fisher score [18]. For the sample Υ, the Fisher score
UΥ is given by:

UΥ = ∇λ log p(Υ|λ) = ∇λ
T∑
t=1

log p(Yt|λ). (7)

In classification problems, the gradient of the log-
likelihood is often normalized by using the Fisher informa-
tion matrix Fλ. For this purpose, Fλ is given by [18]:

Fλ = EΥ[UΥU
T
Υ] (8)

and the normalized Fisher score becomes [15]:

F
−1/2
λ ∇λ log p(Υ|λ). (9)

Up to our knowledge, there is no closed-form expression
for this Fisher information matrix. Practically, it can be
estimated by carrying out a Monte Carlo integration. In this
case, N i.i.d samples from the mixture of K RLDs should
be generated. The interested reader is referred to [14] for a
generation algorithm. Nonetheless, due to the computation
cost of this approach, the Fisher information matrix is often
approximated by the identity matrix [15]. In the following,
the Riemannian Fisher Vectors are derived by computing
the Fisher score UΥ. For that, closed-form expressions of
the derivatives of the log-likelihood function with respect to
λ can be computed based on the following observations:
• the probability γi(Yt) that the observation Yt is gen-

erated by the ith RLD is computed as:

γi(Yt) =
$i p(Yt|Ȳi, σi)∑K
j=1$j p(Yt|Ȳj , σj)

; (10)

• to ensure the constraints of positivity and sum to one
for the weights, the derivative of the log-likelihood
with respect to this parameter needs the following
parametrization [16]:

$i =
exp(αi)∑K
j=1 exp(αj)

. (11)



As a result, the expressions of the derivatives are:

∂ log p(Υ|λ)

∂Ȳi
=

T∑
t=1

γi(Yt)
LogȲi

(Yt)

2 σ2
i d(Yt, Ȳi)

, (12)

∂ log p(Υ|λ)

∂σi
=

T∑
t=1

γi(Yt)

{
−Z

′(σi)

Z(σi)
+
d(Yt, Ȳi)

σ3
i

}
,

(13)

∂ log p(Υ|λ)

∂αi
=

T∑
t=1

γi(Yt) (1−$i), (14)

where LogȲi
(·) is the Riemannian logarithm mapping.

In the end, the FVs for the RLD is obtained by concate-
nating some, or all the derivatives in (12), (13) and (14).

III-B. Interpretation

FVs can be viewed as methods for determining if samples
are correctly fitted by a given model. Using these descrip-
tors, a sample is characterized by its deviation from the
model [16], measured by the Fisher score. More precisely,
a large value for the gradient of the log-likelihood implies
that the model does not correctly fit the data.

By taking into consideration only the derivatives with
respect to the central value, a special case of FVs can be
obtained: the VLAD features, or the R-VLAD features for
the Riemannian manifold [3].

To build the R-VLAD features for the RLDs, several steps
are needed. First, only the derivatives with respect to Ȳi

(12), are considered. Next, a hard assignment scheme is
applied:

γi(Yt) =

{
1, if Yt ∈ ci
0, otherwise,

(15)

with Yt ∈ ci being the elements Yt assigned to the
cluster ci, i = 1, . . . ,K. In the end, the assumption of
homoscedasticity is added, that is σi = σ ,∀i = 1, . . . ,K.

IV. APPLICATIONS TO IMAGE CLASSIFICATION

In this section, the RFVs are applied to texture image clas-
sification by using both RGDs and RLDs to model the space
of covariance matrices. The purpose of the experiments is
to find the most suited distribution to fit the data and to
determine the most discriminating RFVs.

IV-A. Databases

The experiments reported in this paper are carried out
using the VisTex [21] database. This database consists in
40 texture classes, each of them having 64 images of size
64 × 64 pixels. In the following, the feature extraction and
classification steps are detailed.

IV-B. General framework
As previously mentioned, the experimental workflow con-

sists in two stages. First, the descriptors modeling the tex-
tural information are extracted and the Riemannian feature
vectors are computed by considering (12) to (14). Second, a
supervised classification algorithm is used to classify those
RFVs.

In this paper, the textural information is captured by
using region covariance descriptors (RCovDs) based on
simple features. Thus, for an image I , characteristics like
the image intensity and the norms of the first and second
order derivatives are extracted for each pixel (x, y) ∈ I . As
a result, a vector v of 5 elements is obtained [23]:

v(x, y) =
[
I(x, y),

∣∣∣ ∂I(x,y)∂x

∣∣∣ , ∣∣∣ ∂I(x,y)∂y

∣∣∣ , ∣∣∣ ∂2I(x,y)

∂x2

∣∣∣ , ∣∣∣ ∂2I(x,y)

∂y2

∣∣∣]T ,

(16)
where I(x, y) is the image intensity of pixel (x, y) ∈ I .

Starting from these vectors, the RCovDs are defined as
being the estimated covariance matrices of vectors v(x, y)
computed on a sliding patch of size 15 × 15 pixels. In
addition, an overlap of 8 pixels is considered for the patches.
Therefore, each texture class in the VisTex database is
represented by a set of 36 covariance matrices of size
5×5. To speed-up the computation time, the fast covariance
computation algorithm based on integral images presented
in [23] has been implemented. In the end, each texture class
is represented by a set Y1, . . . ,YT of T covariance matrices,
with Yt ∈ P5, t = 1, . . . , T .

Knowing that supervised classification methods are con-
sidered later, the database is equally and randomly divided in
order to obtain the training and the testing sets. Further on,
the patches in the training set are used to create a codebook.
For this step, a within-class approach is implemented. More
precisely, each texture class is modeled by a mixture of K
Riemannian distributions (RGD or RLD) and the estimated
parameters { ̂̄Yj , σ̂j , $̂j}1≤j≤K represent the codewords.
The codebook is obtained by concatenating the codewords
previously extracted for each class. The estimation procedure
is carried out here by using the intrinsic k-means algorithm
detailed in Section II, with K being set to 3.

Once that the codebook is determined, the BoRWs, RFV
and R-VLAD models can be derived for both RGD [19] and
RLD (see Section III) distributions. After their computation,
a normalization step is required. In the RFV framework, the
classical power and `2 normalizations are applied [20]. The
`2 normalization has been proposed in [24] to minimize
the influence of the background information on the image
signature, while the power normalization corrects the inde-
pendence assumption made on the patches [25]. The same
normalization scheme is applied for R-VLAD models. For
the BoRW algorithm, only `2 normalization is performed, as
recommended in [26].

For the final classification step, the SVM algorithm with a
Gaussian kernel and the k-NN method have been considered.



In the next section, only the best results are reported, that
are the ones given by the SVM approach. For this method,
the dispersion parameter in the Gaussian kernel is optimized
by considering a cross-validation procedure on the training
set.

IV-C. Results and discussion
In this section, the classification results obtained on the

VisTex database are discussed. Table I reports the classifi-
cation performances in terms of overall accuracy. In order
to find these values, the database has been partitioned 10
times in training and testing sets. In addition, the Fisher
information matrix given in (8) is considered to be the
identity matrix.

In this table, the first column specifies the descriptor’s
type (BoRW, RFV, or R-VLAD). The second column (Ho-
mosced.) refers to the homoscedasticity assumption. If this
assumption is true, all the clusters cj have the same disper-
sion parameter σj . The third column (Prior) corresponds to
the weights $j . If this parameter is set to false, the same
weight is given to all the clusters of the mixture model.
The last two columns present the classification performances
when mixtures of RGDs and RLDs model the space of
estimated covariance matrices.

In this experiment, the contribution of each parameter
(weight, dispersion and centroid) to the classification accu-
racy is also analyzed. For example, the row “RFV : $”
indicates the classification results when only the derivatives
with respect to the weights are considered to calculate the
RFV (see (14)), etc.

The carried out experiments have multiple purposes. First,
the RGD and RLD models are analyzed in order to discover
the most suitable distribution for data modeling. Second, the
descriptors are compared to find the most accurate one for
the present problem. Third, for the RFVs, the contribution
of each parameter (weight, dispersion and centroid) to the
classification accuracy is tested.

By observing the classification results, the following
conclusions can be noticed. First, for these experiments,
the use of RLDs brings little improvements in terms of
classification accuracy. The most important raises can be
spotted by considering the ”RFV: σ” (about 7%) and the
”RFV: σ,$” (about 5%) features. Moreover, combining the
RFV associated to the centroid Ȳ with those associated
to the weight and dispersion parameters yields to a gain
of about 3% for both RGDs and RLDs. In addition, the
proposed RFVs outperform significantly the state-of-the-art
BoRW and R-VLAD descriptors [3]. A significant gain of 3
to 4% is observed. This gain is quite logical since the RFVs
can be interpreted as a generalization of R-VLAD features.

V. CONCLUSION

In this paper, a new local model for image classification
in the Riemannian space has been introduced. Recently, this

Table I. Classification results on the VisTex database in
terms of overall accuracy.

Method Homosced. Prior RGD RLD
BoRW false true 87.22 ± 1.19 87.70 ± 1.75
BoRW false false 87.51 ± 0.92 88.10 ± 1.42

BoRW [20] true false 87.20 ± 1.55 87.69 ± 0.93
BoRW true true 76.67 ± 2.35 69.01 ± 5.39

RFV : $ false true 90.31 ± 0.94 90.84 ± 0.91
RFV : σ false true 81.42 ± 1.12 88.51 ± 0.87
RFV : Ȳ false true 87.22 ± 1.15 87.71 ± 1.06

RFV : σ,$ false true 83.05 ± 1.15 88.59 ± 0.56
RFV : Ȳ, $ false true 87.85 ± 0.97 88.43 ± 1.11
RFV : Ȳ, σ false true 90.41 ± 0.86 91.07 ± 0.53

RFV : Ȳ, σ,$ false true 90.43 ± 0.84 90.98 ± 0.89
R-VLAD [3] true false 87.94 ± 0.58 87.38 ± 0.73

space has been modeled by several distributions, including
the Wishart distribution, the Riemannian Gaussian distribu-
tion, or the Riemannian Laplace distribution. In order to
have a good representation of the data, the choice of an
appropriate probabilistic generative model is very important.
For instance, in real life, datasets usually contain outliers that
modify their structure. Therefore, a robust model, like the
RLD, may be needed to control the impact of these aberrant
values. Motivated by the distribution’s robustness properties,
this paper proposes the use of RLDs in the definition of
Fisher vectors. Thus, the main contribution of this work
is the extension of the Riemannian Fisher vectors to the
Laplacian model. First, the definition of the RLD has been
recalled and the new descriptors have been introduced for
mixtures of RLDs. Next, their relation with the R-VLAD
model has been shown. Once that the theoretical background
has been fixed, the proposed RFVs for Riemannian Laplace
distribution have been applied to texture image classification
on the VisTex database. Moreover, another descriptor of
the state-of-the-art, the bag of Riemannian words, has been
considered. In the end, the classification results have been
compared to those obtained for the same descriptors derived
for the RGD model. As a conclusion, it can be mentioned
that RLDs may bring little improvement to the classification
accuracy. In addition, the proposed RFVs outperforms the
BoRW and R-VLAD descriptors.

Further works on this subject will concern the derivation
of an analytical expression of the Fisher information matrix
of the Riemannian Laplace distribution.
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