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An M-estimator for Robust Centroid Estimation on
the Manifold of Covariance Matrices

Ioana Ilea, Lionel Bombrun, Romulus Terebes, Monica Borda, and Christian Germain

Abstract—This paper introduces a new robust estimation
method for the central value of a set of N covariance matrices.
This estimator, called the Huber’s centroid, is described starting
from the expression of two well-known methods, that are the
center of mass and the median. In addition, a computation
algorithm based on the gradient descent is proposed. Moreover,
the Huber’s centroid performances are analyzed on simulated
data, to identify the impact of outliers on the estimation process.
In the end, the algorithm is applied to brain decoding, based on
magnetoencephalography (MEG) data. For both simulated and
real data, the covariance matrices are considered as realizations
of Riemannian Gaussian distributions and the results are com-
pared to those given by the center of mass and the median.

Index Terms—centroid, classification, center of mass, median,
Huber’s centroid.

I. INTRODUCTION

COVARIANCE matrices are used in a wide variety of
applications in signal and image processing, including

array processing [1], radar detection [2], [3], medical image
segmentation [4], face detection [5], vehicle detection [6],
etc. Another research direction concerns the signal and image
classification, where covariance matrices can be used to model
different kind of dependence, like spatial, temporal, spectral,
polarimetric dependence, etc [7]–[10].

Recently, covariance matrices have been modeled as realiza-
tions of Riemannian Gaussian distributions (RGDs) and used
in classification algorithms such as k-means or Expectation-
Maximization (EM) [9]. This kind of classification procedures
are based on the partition of the dataset in subsets, or clusters,
characterized by their central values, also called centroids.
The dataset’s partition is accomplished by assigning each
observation to the closest cluster in terms of a predefined
distance [11]. This is a recursive procedure and for each
iteration, the centroid’s value is recomputed and the assig-
nation step is repeated. Usually, the cluster’s centroid is the
center of mass, computed by using the squared Euclidean
distance. Despite its popularity, this method is not appropriate
for covariance matrices having a Riemannian geometry. To
solve this problem, the Euclidean distance can be replaced
by an intrinsic metric such as the Riemannian distance. The
main disadvantage of the center of mass is its non-robust
behavior to outliers that can exist in the dataset [11]–[13]. A
robust alternative for the centroid’s computation is the median,
which has been also generalized for Riemannian manifolds [3],
[14], [15]. This estimator is computed by using a gradient
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descent algorithm. Nonetheless, in this algorithm, a division
by the distance between each observed covariance matrix in
the dataset and the median is needed. If those two points are
too close, this distance tends toward zero and may lead to
numerical instability. In such case, Yang propose to exclude
those points, at each iteration of the algorithm [14]. Another
possibility for determining robust centroids in the space of
covariance matrices is the use of the trimming methods [16].
These algorithms imply the elimination of a fixed percentage
of outliers, according to their distance with respect to the
dataset’s mean or median, and the computation of the mean
or the median on the remaining data. Nevertheless, the main
difficulty of the trimmed estimators relies on the way to tune
the percentage of discarded data.

The main contribution of the paper is to propose a novel
centroid estimator, based on the theory of M-estimators. By
considering the so-called Huber’s function [17], [18], we intro-
duce the definition of this estimator and present an algorithm
to estimate it from a sample of N covariance matrices. The
proposed estimator is a trade-off between the center of mass
and the median, where the former is efficient, while the
latter is robust to outliers. Moreover, based on the median
abosolute deviation (MAD) concept, this paper presents a way
to automatically determine the Huber’s threshold.

The paper is structured as follows. Section II recalls the
definition of the centroid from a sample of N observations.
A brief overview of the center of mass and the median
are given. Next, we introduce the proposed Huber’s centroid
estimator and present a gradient descent algorithm to estimate
it. The performance of these estimators is then evaluated on
simulated data. Section III introduces an application to brain
decoding, based on MEG data. Finally, Section IV reports
some conclusions and perspectives of this work.

II. THE HUBER’S ESTIMATOR FOR CLUSTER CENTROIDS

A. Centroids and estimation methods

Many signal and image processing applications including
classification [9], segmentation [19], or filtering [3] require
the computation of the central value of a covariance matrix
dataset, which represents the subject of this section. Let
{M1, . . . ,MN} be a random sample of N covariance matri-
ces. The centroid estimator of this set, denoted ̂̄M, is defined
as being the minimizer of the following cost function f(M):̂̄M = argmin

M
f(M). (1)

Depending on the choice of f(M), different estimators of
the centroids have been introduced in the literature. In the
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following, we briefly recall the definition of the center of mass
(CM) [20]–[22] and the median (Med) [2], [15] and next we
introduce the proposed M-estimator.

a) The center of mass is one of the most popular estimators,
for which the cost function is:

fCM (M) =
1

N

N∑
i=1

d2(M,Mi), (2)

where d(·) represents the Rao’s Riemannian distance between
two covariance matrices defined as [23]:

d(M1,M2) =

[
1

2

m∑
i=1

(lnλi)
2

] 1
2

, (3)

where λi, i = 1 . . .m are the eigenvalues of M−1
2 M1.

Even though this method is largely used, it has a major
drawback: it is easily influenced by the outliers present in the
dataset [14], [15]. In order to reduce the impact of aberrant
data on the estimated centroid’s value, several possibilities
are available. Some authors have proposed in [15], [16] the
use of some trimming based methods to remove the outliers
before the computation of (2). By deleting the elements that
differ from the rest of the dataset, some new ones will become
oultiers. If the removal procedure is repeated, the dataset may
become too small for further reliable analysis. Therefore, a
more appropriate solution is the use of robust methods for
computing the centroid, like the median [15].

b) The median is defined by using the distance function:

fMed(M) =
1

N

N∑
i=1

d(M,Mi). (4)

It has to be mentioned that the estimation of the center of
mass and the median from a set of covariance matrices have
been recently studied in [3], [14], [15].

The center of mass and the median are two extreme solu-
tions: the first one is efficient for datasets with no outliers,
while the second one is robust to the presence of aberrant
observations. In the following, we propose a trade-off between
these two methods by introducing a Huber-like estimator.

B. The Huber’s estimator

1) Definition of the Huber’s centroid
In this section, we introduce a novel centroid estimator on

the manifold of covariance matrices, based on the theory of
M-estimators [17], [18], [24]. In this case, the cost function
in (1), denoted fu(M) for the M-estimator, can be expressed
by means of a scalar weight function u(·), as follows:

fu(M) =
1

N

N∑
i=1

u
(
d(M,Mi)

)
d2(M,Mi), (5)

where u(·) is a positive-valued function which gives a weight
to each observation Mi in the computation of the centroid.
Obviously, the weight function u(·) should decrease to zero
to ensure that the outliers have a smaller contribution to
the centroid’s estimate than the other observations. Note that
even if the center of mass (2) and the median (4) have

expressions similar to (5) for respectively u(d(M,Mi)) = 1
and u(d(M,Mi)) = 1

d(M,Mi)
, they do not belong to the

family of M-estimators since the regularity conditions of their
corresponding weight function u(·) defined in [24] are not
satisfied.

In [17], Huber introduces the so-called Huber’s function
u(·) defined as:

u
(
d(M,Mi)

)
= min

(
1,

T

d(M,Mi)

)
(6)

where T is a threshold value controlling the contribution of
outliers in the estimation. By combining (5) and (6), the
proposed Huber’s centroid estimator is the covariance matrix
M, which minimizes the following cost function:

fH(M) =
1

N

N∑
i=1

d2(M,Mi) 1{d(M,Mi)≤T}+

+
T

N

N∑
i=1

d(M,Mi) 1{d(M,Mi}>T}, (7)

where 1{a≤b} is the indicator function, which equals 1 if
a ≤ b and 0 otherwise. Threshold T represents a measure
for discriminating between normal and aberrant data and
therefore, it controls the estimator’s behavior. In other words,
for a large value of T , the Huber’s estimator behaves as the
center of mass, while for a small value it is equivalent to the
median.

In this paper, we propose an algorithm to estimate the
Huber’s centroid by means of a gradient descent algorithm
which minimizes the distance function given in (7). The
gradient of fH(M) with respect to M that is ∇(fH(M)) can
be written as:

∇(fH(M)) = − 2

N

N∑
i=1

LogM(Mi) 1{d(M,Mi)≤T}

− T
N

N∑
i=1

LogM(Mi)

d(M,Mi)
1{d(M,Mi}>T}, (8)

where LogM is the Riemannian logarithm mapping [25], [26].
Once that this value is obtained, the centroid can be updated
as:

Mit+1 = ExpMit
(−sit ∇(fH(Mit))), (9)

with sit being the descent step and ExpM the Riemannian
exponential mapping [25], [26]. In practice, the Armijo’s
backtracking procedure [27] is used to fix sit at each iteration
of the algorithm.

This recursive process is repeated as long as the norm
of ∇(fH(Mit)), denoted Dit, is greater than a precision
parameter ε, or until a maximum number of iterations Nmax

is reached. Practically, Dit is given as:

Dit = ||∇(fH(Mit))|| = tr
(
(M−1

it ∇(fH(Mit)))
2
)
. (10)

In the end, the Huber’s centroid ̂̄MH estimator is obtained.
A pseudo-code description of the Huber’s centroid estimation
is given in Algorithm 1.

As observed in (8), the first and the second terms correspond
respectively to the gradient of the cost function for the center
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Algorithm 1 Huber’s centroid estimator
1: Input: M1, . . . ,MN , T , ε, Nmax

2: Initialize M using the sample mean
3: it = 1
4: while (Dit > ε) and (it ≤ Nmax) do
5: Estimate M using one iteration of (9).
6: Compute the gradient norm, Dit, according to (10).
7: it = it+ 1
8: end while
9: Output: M

of mass and median centroids. For the second term, it can
be seen that the division by distance d(Mit,Mi) is needed.
In some cases, that is when an observation Mi is close to
the current centroid’s estimate Mit, their distance is close
to 0 yielding to potential numerical unsuitability. To avoid
this, in [14] the author proposes to exclude, at each iteration
it, the observations Mi that are too close from Mit. By
using the proposed Huber’s centroid, this problem is solved
automatically by considering the threshold T . In conclusion,
by choosing an appropriate value for T , the division by zero in
the gradient (8) will be avoided, which represents an important
advantage of the proposed method.

2) Determination of an automatic Huber’s threshold
As explained before, the performance of the Huber’s cen-

troid estimator depends greatly on the threshold T that dis-
criminates between aberrant and normal data. There is hence
a need to fix it automatically or at least to give an idea of
the order of magnitude of T . In practice, T is application
dependent and is related to the intrinsic variability of the
observed data. By considering first and second order statis-
tics, the Riemannian Gaussian distribution (RGD) has been
introduced in [26]. This distribution is characterized by two
parameters: the central value M̄ and the dispersion σ. Its
probability density function of the RGD is given by

p(M|M̄, σ) =
1

Z(σ)
exp

{
− d2(M, M̄)

2σ2

}
, (11)

where Z(σ) is a normalization factor independent of the
centroid M̄, and d(M, M̄) is the Riemannian distance defined
in (3).

In order to estimate the threshold’s value, a robust estimator
of the dispersion parameter σ is required. Inspired by previous
works on robust statistics [28], we propose to extend the
concept of median absolute deviation (MAD) to the case of
covariance matrices which live in a Riemannian space. The
MAD of the set M1, . . . ,MN is defined as the median of
the Riemannian distances d computed between each sample
Mi and the Riemannian median (denoted RMed(M)):

MAD = median(d(Mi, RMed(M)). (12)

Once the MAD is computed, the robust estimate σ̂ of the
RGD’s dispersion can be obtained as:

σ̂ =
K

m
×MAD, (13)

where m is the size of covariance matrices and K is a con-
stant depending on the distribution of d

(
Mi, RMed(M)

)
/σ.

More precisely, K is obtained by studying the statistics of
z = d(M,M̄)

mσ since by definition of the MAD, we have:

1

2
= p
(
d(M, M̄) ≤MAD

)
= p

(
d(M, M̄)

mσ
≤ MAD

mσ

)
.

(14)
In practice, it has been observed on simulated data that the dis-
tribution of z is independent of M̄ and σ1. By combining (13)
and (14), the constant K = 1/

(
φ−1(0.5)

)
, knowing that φ−1

is the inverse of the cumulative distribution function of z.
Experiments have shown that K ≈ 1.312. Finally, the Huber’s
threshold is obtained by multiplying the estimated standard
deviation σ̂ by a constant c, which will give T = c × σ̂. A
common value for c is 1.5 as recommended in [28].

C. Performance Analysis

In the following, the influence of outliers on the proposed
Huber’s centroid estimator is studied. The obtained results are
presented in this section and they are compared to those given
by the center of mass and the median.

For this experiment, covariance matrices are generated as
realizations of RGDs. For more information concerning the
generation of samples from an RGD, the interested reader is
referred to section III-A of [26]. In our case, the simulated
covariance matrix datasets are obtained for centroids M̄ of
size m×m having the form M̄(i, j) = ρ|i−j| for i, j ∈ J1,mK.

Since the centroid is a covariance matrix, the manifold
of the space of covariance matrices should be taken into
account for the estimators’ performance evaluation. In the
literature, many authors have proposed to define the concept
of intrinsic analysis for statistical estimation [29]–[31]. To this
aim, the notions of intrinsic root-mean square error (RMSE)
and intrinsic bias vector field have been introduced. We briefly
recall here their definitions.

Let ̂̄M be the estimated centroid of the dataset, that is
the estimate of the centroid M̄. The intrinsic RMSE is given
by [29]–[31]:

RMSE =

√
E
[
d2(̂̄M, M̄)

]
, (15)

where d(·) is the Riemannian distance defined in (3). In
addition, the bias vector field b(M̄) of ̂̄M is given by [29]–
[31]:

b(M̄) = LogM̄EM̄

[̂̄M] = E
[
LogM̄

̂̄M], (16)

knowing that EM̄

[̂̄M] = ExpM̄E
[
LogM̄

̂̄M]. Since the bias
vector field b(M̄) in (16) is a covariance matrix, we compute
its norm according to (10) to plot it in the following figures.

To study the influence of outliers on the centroid’s esti-
mation, a dataset containing 1000 matrices of size 2 × 2 is
created. These matrices have an RGD distribution of dispersion
σ = 0.1 and centroid M̄ obtained for ρ = 0.7. To this original
data set, some outliers are added. They are i.i.d. covariance
matrices samples issued from an RGD of centroid 10 ×Mo,
with Mo obtained for ρo = 0.1. Here, the dispersion for the
outlier samples σo is set to 0.1.

1The use of z is equivalent to the standardization step z = x−µ
σ

for a
univariate normal distribution.
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Fig. 1. The RMSE (a) and the bias vector field (b) as functions of the outlier
percentage.

Figs. 1 draws the results obtained for the intrinsic RMSE
(a) and for the intrinsic bias vector field (b) as functions of
the percentage of outliers, knowing that 5000 Monte Carlo
runs have been used to evaluate the estimators’ performance.
The behavior of the center of mass (in blue), the median (in
black) and the Huber’s centroid with fixed threshold T = 1
and T = 0.5 (in green) and automatically computed value
for T (in red) are analyzed, when the percentage of aberrant
data varies from 0 to 40%. As observed, the center of mass
is clearly influenced by the presence of outliers while for
robust estimators, like the median or the Huber’s centroid,
this influence in less important.

III. APPLICATION TO MEG BASED BRAIN DECODING

In this section, we apply the proposed centroid estimator
to brain decoding, based on MEG data. The database used
for the Biomag 2014 Decoding Challenge: Brain Decoding
Across Subjects (DecMeg2014) [32] has been considered. The
idea of brain decoding consists in predicting the stimulus
presented to the subject from the concurrent brain activity [33].
For this experiment, two categories of visual stimulus have
been considered: face and scrambled face. Therefore, the
problem to solve can be viewed as a two-class classification
task. A detailed description of the neuroscientific experiment
implemented to collect the data can be found in [34].

The database contains 16 training and 7 testing subjects.
For each training subject, approximately 580 trials have been
considered, giving a training set of 9414 trials. Next, for each
trial, covariance matrices of size 16× 16 have been extracted,
as described in [35]. Further on, a modified version of the
unsupervised classification method presented in [35] has been
implemented. First, a regularized logistic regression model has
been trained to obtain the initial labels for the unsupervised
classification algorithm (k-means). Second, the centroids of
each class (face or scrambled face) are computed. For this step,
several estimators have been considered: the center of mass,
the median, the Huber’s estimator with both fixed (T = 0.2
and T = 0.5) and automatically computed thresholds and also
the trimmed based methods [16], when d = 5% of discarded
extreme data. For this latter, only the best result has been
retained, that is the mean-based trimmed median. Next, for
each testing subject, covariance matrices have been computed
and the classification has been performed by two approaches.
First, the winner method of the DecMeg2014 competition has
been implemented, for which the test trials have been assigned
to the closest class, by using the minimum distance to mean

TABLE I
CLASSIFICATION RESULTS FOR MEG BASED BRAIN DECODING.

Estimator MDM MGD
CM 74.106 73.845
Med 73.627 74.150

Huber T = 0.2 74.847 75.109
Huber T = 0.5 74.063 73.976

Huber T = auto 74.455 74.106
Trimming (d = 5%) [16] 74.412 74.542

(MDM) Riemannian classifier [36]. Second, the covariance
matrices have been modeled as RGDs and each trial has
been assigned to the centroid maximizing the log-likelihood
criterion derived from (11).

The obtained results are shown in Table I and several
remarks can be made. By analyzing the above table, it can
be seen that the use of Huber’s estimator may increase the
classification performance. The obtained values are compara-
ble or higher to those given by the other robust estimators, but
without their disadvantages: division by zero for the median,
or choice of the percentage d of discarded observation for
the trimmed estimators. Interestingly, note that the estimated
Hubers’s threshold T is recomputed at each k-means iter-
ation. And in this experiment, it varies between 0.38 and
0.46 across the test subjects and the classes. Moreover, the
proposed estimated value of T by the MAD gives an order
of magnitude of the threshold we may consider in the Huber
estimation algorithm. This value can be readjusted to improve
the classification performance as observed in Table I.

IV. CONCLUSION

In this article, a new method called the Huber’s centroid,
for the estimation of the central value of a covariance matrix
dataset has been introduced. This estimator is a trade-off
between the center of mass and the median. The definition
of the Huber’s centroid and its computational algorithm have
been detailed. In addition, an algorithm for choosing the
appropriate threshold value for the Huber’s estimator has been
developed. Further on, the Huber’s centroid, has been applied
to the case of covariance matrices representing realizations of
Riemannian Gaussian distributions. The robustness to outlier
values has been studied on simulated data, but also in the
context of brain decoding, that is a two-class classification
experiment. The results have been compared to those given
by two well-known estimators that are the center of mass and
the median but also to those given by trimmed based methods.

Further works will include the statistical modeling of z =
d
(
Mi, M̄

)
/mσ to derive the analytical expression of K. In

addition, the proposed centroid will be used to build the
codebook for patch-based image classification algorithms.
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