Luca Padovani
email: luca.padovani@di.unito.it

Context-Free Session Type Inference

published or not. The documents may come L'archive ouverte pluridisciplinaire

Introduction

Session types [START_REF] Honda | Types for dyadic interaction[END_REF][START_REF] Honda | Language primitives and type disciplines for structured communication-based programming[END_REF][START_REF] Hüttel | Foundations of session types and behavioural contracts[END_REF] are an established formalism for the enforcement of communication protocols through static analysis. Recently, Thiemann and Vasconcelos [START_REF] Thiemann | Context-Free Session Types[END_REF] have proposed context-free session types to enhance the expressiveness of conventional session types. Protocols that benefit from such enhancement include the serialization of tree-like data structures and XML documents [START_REF] Thiemann | Context-Free Session Types[END_REF], interactions with non-uniform objects such as stacks and reentrant locks [START_REF] Nierstrasz | Regular types for active objects[END_REF][START_REF] Florijn | Object protocols as functional parsers[END_REF], and recursive protocols for trust management [START_REF] Südholt | A model of components with non-regular protocols[END_REF]. Thiemann and Vasconcelos [START_REF] Thiemann | Context-Free Session Types[END_REF] study the metatheory of context-free session types, leaving the definition of a type checking algorithm for future work. In this paper we point out additional issues that specifically afflict context-free session type inference and we describe a practical solution to its implementation. The code models a stack, a non-uniform object [START_REF] Nierstrasz | Regular types for active objects[END_REF][START_REF] Ravara | Typing non-uniform concurrent objects[END_REF] offering different interfaces through a session endpoint u depending on its internal state. An empty stack (lines 2-7) accepts either a Push or an End operation. In the first case, the stack receives the element x to be pushed and moves into the non-empty state with the recursive application some x u. In the second case, it just returns the endpoint u. A non-empty stack (lines 8-13) with y on top accepts either a Push operation, as in the empty case, or a Pop operation, in which case it sends y back to the client. When an application some x u terminates, meaning that x has been popped, the stack returns to its previous state, whatever it was (lines 6 and 12). Note that, according to established conventions [START_REF] Gay | Linear type theory for asynchronous session types[END_REF], all session primitives including send return the endpoint u possibly paired with the received message (receive) or injected through a tag that represents an operation (branch). Using the FuSe implementation of binary sessions [START_REF] Padovani | A Simple Library Implementation of Binary Sessions[END_REF], OCaml infers for stack the type S reg → β where S reg is the (equi-recursive) session type that satisfies the equation

S reg = &[Push : ?α;S reg] (1.1)
according to which the client can only push elements of type α. To understand the reason why the End and Pop operations are not allowed by S reg , we have to consider that conventional session types can only describe protocols whose set of (finite) traces is regular, whereas the set of (finite) traces that describe legal interactions with stack is isomorphic to the language of balanced parentheses, a typical example of context-free language that is not regular. The session type S reg above corresponds to the best ω-regular and safe approximation of this contextfree language that OCaml manages to infer from the code of stack. When OCaml figures that the session type cannot precisely track whether the stack is empty or not, it computes the "intersection" of the interfaces of these two states, which results in S reg (along with warnings informing that lines 6 and 11 are dead code).

Driven by similar considerations, Thiemann and Vasconcelos [START_REF] Thiemann | Context-Free Session Types[END_REF] propose context-free session types as a more expressive protocol description language. The key idea is to enforce the order of interactions in a protocol using a general form of sequential composition ; instead of the usual prefix operator. For example, the context-free session types S none and S some that satisfy the equations S none = &[Push : ?α;S some ;S none , End : 1] S some = &[Push : ?α;S some ;S some , Pop : !α]

(1.2) provide accurate descriptions of the legal interactions with stack: all finite, maximal traces described by S none have each Push eventually followed by a matching Pop. The "empty" protocol 1 marks the end of a legal interaction. Using Thiemann and Vasconcelos' type system, it is then possible to work out a typing derivation showing that stack has type S none ;A → A, where A is a session type variable that can be instantiated with any session type.

In the present work we address the problem of inferring a type as precise as S none ;A → A from the code of a function like stack. There are two major obstacles that make the type system in [START_REF] Thiemann | Context-Free Session Types[END_REF] unfit as the basis for a type inference algorithm: (1) a structural rule that rearranges session types according to the monoidal and distributive laws of sequential composition and (2) the need to support polymorphic recursion which, as explained in [START_REF] Thiemann | Context-Free Session Types[END_REF], ultimately arises as a consequence of [START_REF] Ahmed | L 3 : A linear language with locations[END_REF]. Type inference in presence of polymorphic recursion is known to be undecidable in general [START_REF] Kfoury | Type reconstruction in the presence of polymorphic recursion[END_REF], a problem which often requires programmers to explicitly annotate polymorphic-recursive functions with their type. In addition, the liberal handling of sequential compositions means that functions like stack admit very different types (such as S reg → β and S none ;A → A) which do not appear to be instances of a unique, more general type scheme. It is therefore unclear which notion of principal type should guide the type inference algorithm.

These observations lead us to reconsider the way sequential compositions are handled by the type system. More specifically, we propose to eliminate sequential compositions through an explicit, higher-order combinator @> called resumption that is akin to functional application but has the following signature: @> : (T → 1) → T ;S → S (1.3) Suppose that f : T → 1 is a function that, applied to a session endpoint of type T , carries out the communication over the endpoint and returns the depleted endpoint, of type 1. Using @> we can supply to f an endpoint u of type T ;S knowing that f will take care of the prefix T of T ;S leaving us with an endpoint of type S. In other words, @> allows us to modularize the enforcement of a sequential protocol T ;S by partitioning the program into a part -the function f -that carries out the prefix T of the protocol and another part -the evaluation context in which f @> u occurs -that carries out the continuation S.

This informal presentation of @> uncovers a potential flaw of our approach. The type T → 1 describes a function that takes an endpoint of type T and returns an endpoint of type 1, but does not guarantee that the returned endpoint is the same endpoint supplied to the function. Only in this case the endpoint can be safely resumed. What we need is a type-level mechanism to reason about the identity of endpoints. Similar requirements have already arisen in different contexts, to identify regions [START_REF] Walker | On regions and linear types[END_REF][START_REF] Charguéraud | Functional translation of a calculus of capabilities[END_REF] and to associate resources with capabilities [START_REF] Ahmed | L 3 : A linear language with locations[END_REF][START_REF] Tov | Practical affine types[END_REF][START_REF] Tov | Practical Programming with Substructural Types[END_REF]. Reframing the techniques used in these works to our setting, the idea is to refine endpoint types to a form [T] ρ where ρ is a variable that represents the abstract identity of the endpoint at the type level. The signature of @> becomes

@> : ([T] ρ → [1] ρ) → [T ;S] ρ → [S] ρ (1.4)
where the fact that the same ρ decorates both [T] ρ and [START_REF] Ahmed | L 3 : A linear language with locations[END_REF] ρ means that @> can only be used on functions that accept and return the same endpoint. In turn, the fact that the same ρ decorates both [T ;S] ρ and [S] ρ guarantees that f @> u evaluates to the same endpoint u that was supplied to f , but with type S. Going back to stack, how should we patch its code so that the (inferred) session type of the endpoint accepted by stack is S none instead of S reg ? We are guided by an easy rule of thumb: place resumptions in the code anywhere a ; is expected in the corresponding point of the protocol. In this specific case, looking at the protocols (1.2), we turn the recursive applications (some x u) on lines 6 and 12 to (some x @> u). Thus, using the type system we present in this paper, we obtain a typing derivation proving that the revised stack has type [S none] ρ → [START_REF] Ahmed | L 3 : A linear language with locations[END_REF] ρ . Most importantly, the type system makes no use of structural rules or polymorphic recursion and there is no ambiguity as to which protocol stack is supposed to carry out, for occurrences of ; in a protocol are tied to the occurrences of @> in code that complies with such protocol.

As we will see, these properties make our type system easy to embed in any host programming language supporting parametric polymorphism and (optionally) existential types. This way, we can benefit from an off-the-shelf solution to context-free session type checking and inference instead of developing specific checking/inference algorithms. In the remainder of the paper:

-We formalize a core functional programming language called FuSe {} featuring threads, session-based communication primitives and a distinctive low-level construct for resuming session endpoints (Section 2). The semantics of resumption combinators (including @>) will be explained using this construct. -We equip FuSe {} with an original sub-structural type system that features context-free session types and abstract endpoint identities (Section 3). We prove fundamental properties of well-typed programs emphasizing the implications of these properties in presence of resumptions. -We detail two implementations of FuSe {} primitives as OCaml modules which embed FuSe {} type discipline into OCaml's type system (Section 4). The two modules solve the problems of context-free session type checking [START_REF] Thiemann | Context-Free Session Types[END_REF] and inference, striking different balances between static safety and portability.

We defer a more technical discussion of related work to the end of the paper (Section 5). Proofs and additional technical material can be found beyond the page limit (Appendixes A and B). All the code in shaded background can be type checked, compiled and run using OCaml and both implementations of FuSe {} [START_REF] Padovani | A Simple Library Implementation of Binary Sessions[END_REF].

A Calculus of Functions, Sessions and Resumptions

The syntax of FuSe {} is given in Table 1 and is based on infinite sets of variables, identity variables, and of session channels. We use an involution • that turns an identity variable or channel into the (distinct) corresponding identity covariable or co-channel. Each session channel a has two endpoints, one denoted by the channel a itself, the other by the corresponding co-channel a. We say that a is the peer endpoint of a and vice versa. Given an endpoint ε, we write ε for its peer. A name is either an endpoint or a variable. An identity is either an endpoint or an identity (co-)variable. We write ι for the co-identity of ι, which is defined in such a way that ρ = ρ.

The syntax of expressions is mostly standard and comprises constants, variables, abstractions, applications, and two forms for splitting pairs and matching tagged values. Constants, ranged over by c, comprise the unitary value (), the pair constructor pair, an arbitrary set of tags C for tagged unions, the fixpoint operator fix, a primitive fork for creating new threads, the session primitives create, send, receive, select and branch [START_REF] Gay | Linear type theory for asynchronous session types[END_REF] whose semantics will be detailed shortly. To improve readability, we write (e 1 ,e 2) in place of the saturated application pair e 1 e 2 . In addition, the calculus provides abstraction, application, packing and unpacking of identities. These respectively correspond to introduction and elimination constructs for universal and existential types, which are limited to identities in the formal development of FuSe {} . The distinguishing feature of FuSe {} is the resumption construct {e} u indicating that e uses the endpoint u for completing some prefix of a sequentially composed protocol. As we will see in Example 1, resumptions are key to define operators such as @> introduced in Section 1. Values are fairly standard except for two details that are easy to overlook. First, fix v is a value and reduces only when applied to a

= c | (v,w) | C v data | pair v | fork v | send v | select v partial application | λx.e | Λρ.v | fix v abstraction | ε endpoint ‡ | ε, v package ‡ Process P, Q ::= e thread | P | Q parallel composition ‡ | (νa)P session ‡
further argument. This approach, already used by Tov [START_REF] Tov | Practical Programming with Substructural Types[END_REF], simplifies the operational semantics (and the formal proofs) sparing us the need to η-expand fix each time it is unfolded [START_REF] Wright | A syntactic approach to type soundness[END_REF]. Second, the body of an identity abstraction Λρ.v is a value and not an arbitrary expression. This restriction, inspired by [START_REF] Tov | Practical affine types[END_REF][START_REF] Tov | Practical Programming with Substructural Types[END_REF], simplifies the type system without affecting expressiveness since the body of an identity abstraction is usually another (identity or value) abstraction. In this respect, the fact that fix v is a value allows us to write identity-monomorphic, recursive functions of the form Λρ.fix λf. • • • which are both common and useful in practice. Processes are parallel compositions of threads possibly connected by sessions. Note that the restriction (νa)P binds the two endpoints a and a in P . The definition of free and bound names for both expressions and processes is the obvious one. We identify terms module alpha-renaming of bound names.

Table 2 defines the (call-by-value) operational semantics of FuSe {} , where we write e{v/x} and e{ι/ρ} for the (capture-avoiding) substitutions of values and identities in place of variables and identity variables, respectively. Evaluation contexts are essentially standard, with the obvious addition of {E } u :

Context E ::= [] | E e | v E | ι, E | let ρ, x = E in e | {E } u | let x, y = E in e | match E with {C i ⇒ e i } i∈I
(Λρ.v) [ε] → v{ε/ρ} [R3] fix v w → v (fix v) w [R4]
let x, y = (v,w) in e → e{v, w/x, y}

[R5] match (C k v) with {Ci ⇒ ei}i∈I → e k v k ∈ I [R6] let ρ, x = ε, v in e → e{ε/ρ}{v/x} [R7] {(v,ε)} ε → (v,ε) Reduction of processes P → Q [R8] E [fork v w] → E [()] | v w [R9] E [create ()] → (νa) E [a, (a,a)] a fresh [R10] E [send v ε] | E [receive ε] → E [ε] | E [(v,ε)] [R11] E [select v ε] | E [branch ε] → E [ε] | E [v ε] [R12] E [e] → E [e] if e → e [R13] P | R → Q | R if P → Q [R14] (νa)P → (νa)Q if P → Q [R15] P → Q if P ≡ P → Q ≡ Q
Reduction of expressions is mostly conventional. The reduction rule [R7] erases the resumption { • } ε around a pair (v,ε), provided that the endpoint in the right component of the pair matches the annotation of the resumption. The type system for FuSe {} that we are going to define enforces this condition statically. However, the rule also suggests an implementation of resumptions based on a simple runtime check: {(v,ε)} ε reduces to (v,ε) if ε and ε are the same endpoint and fails (e.g. raising an exception) otherwise. This alternative semantics may be useful if the type system of the host language is not expressive enough to enforce the typing discipline described in Section 3. We will consider this alternative semantics for one of the two implementations of FuSe {} (Section 4.2).

Reduction of processes is essentially the same appearing in [START_REF] Gay | Linear type theory for asynchronous session types[END_REF][START_REF] Thiemann | Context-Free Session Types[END_REF]. Rule [R8] explains the semantics of fork, which spawns a new thread whose body is the application of fork's arguments. Rule [R9] models session initiation, whereby create reduces a pair with the two endpoints of the newly created session. Compared to [START_REF] Gay | Linear type theory for asynchronous session types[END_REF], we have one primitive that returns both endpoints of a new session instead of a pair of primitives that synchronize over shared/public channels. This choice is mostly a matter of simplicity: session initiation based on shared/public channels can be programmed on top of this mechanism. Also, the pair returned by create is packed to account for the fact that the caller of create does not know the identities of the endpoints therein. Rules [R10] and [R11] model the exchange of messages. The first one moves the message from the sender to the receiver, pairing the message with the continuation endpoint on the receiver side. The second one applies the first argument of select to the receiver's continuation endpoint. Typically, the first argument of select will be a tag C which is effectively the message being exchanged in this case. We choose this slightly unusual semantics of select because it models accurately the implementation and, at the same time, it calls for specific features of the type system concerning the type-level identification of endpoints. Rule [R12] lifts reductions from expressions to processes and rules [R13-R15] close reductions under parallel compositions, restrictions, and structural congruence, which is basically the same of the π-calculus and therefore omitted.

Type System

The (finite) syntax of kinds, types, and session types is given below:

Kind κ ::= U | L Type t, s ::= unit | t × s | {C i of t i } i∈I | t → κ s | [T] ι | ∃ρ.t | ∀ρ.t Session type T, S ::= 0 | 1 | ?t | !t | &[C i : T i] i∈I | ⊕[C i : T i] i∈I | T ;S
Instead of introducing concrete syntax for recursive (session) types, we let t, s and T , S range over the possibly infinite, regular trees generated by the above constructors for types and session types, respectively. We introduce recursive (session) types as solutions of finite systems of (session) type equations, such as (1.1). The shape of the equation, with the metavariable S reg occurring unguarded on the lhs and guarded by at least one constructor on the rhs, guarantees that the equation has exactly one solution [START_REF] Courcelle | Fundamental properties of infinite trees[END_REF]. Type equality corresponds to regular tree equality.

The kinds U and L are used to classify types as unlimited and linear, respectively. Types of kind U denote values that can be used any number of times. Types of kind L denote values that must be used exactly once. We have to introduce a few more notions before seeing how kinds are assigned to types.

Types include a number of base types (such as unit and others used in the examples), products t × s, and tagged unions {C i of t i } i∈I . The function type t → κ s has a kind annotation κ indicating whether the function can be applied any number of times (κ = U) or must be applied exactly once (κ = L). This latter constraint typically arises when the function contains linear values in its closure. We omit the annotation κ when it is U. An endpoint type [T] ι consists of a session type T , describing the protocol according to which the endpoint must be used, and an identity ι of the endpoint. Finally, we have existential and universal quantifiers ∃ρ.t and ∀ρ.t over identity variables. These are the only binders in types. We write fid(t) for the set of identities occurring free in t and we identify (session) types modulo renaming of bound identities.

A session type describes the sequence of actions to be peformed on an endpoint. The basic actions ?t and !t respectively denote the input and the output of a message of type t. As in [START_REF] Thiemann | Context-Free Session Types[END_REF] and unlike most presentations of session types, these forms do not specify a continuation, which can be attached using sequential composition. External choices &[C i : T i] i∈I and internal choices ⊕[C i : T i] i∈I describe protocols that can proceed according to different continuations T i each associated with a tag C i . When the choice is internal, the process using the endpoint selects the continuation. When the choice is external, the process accepts the selection performed on the peer endpoint. Therefore, an external choice corresponds to an input (of a tag C i) and an internal choice to an output. Sequential composition T ;S combines two sub-protocols T and S into a protocol where all the actions in T are supposed to be performed before any action in S. We have two terminal protocols: 0 indicates that no further action is to be performed on the endpoint; 1 indicates that the endpoint is meant to be resumed. As we will see, this distinction affects also the kinding of endpoint types: an endpoint whose protocol is 0 can be discarded for it serves no purpose; an endpoint whose protocol is 1 must be resumed exactly once.

We proceed defining a labeled transition system that formalizes the (observable) actions allowed by a protocol. This notion is instrumental in defining protocol equivalence which, in turn, is key in various parts of the type system.

Definition 1 (protocol LTS). Let done(•) be the least predicate on protocols inductively defined by the following axiom and rule:

done(1) done(T) done(S) done(T ;S) Let µ -→ be the least family of relations on protocols inductively defined by the following axioms and rules, where µ ranges over labels ?t, !t, ?C, !C:

?t ?t -→ 1 !t !t -→ 1 k ∈ I &[C i : T i] i∈I ?C k -→ T k k ∈ I ⊕[C i : T i] i∈I !C k -→ T k T µ -→ T T ;S µ -→ T ;S done(T) S µ -→ S T ;S µ -→ S
Protocol equivalence is defined in terms of a bisimulation relation:

Definition 2 (equivalent protocols). We write ∼ for the largest binary relation on protocols such that T ∼ S implies:

done(T) if and only if done(S);

-T µ -→ T implies S µ -→ S and T ∼ S ; -S µ -→ S implies T µ -→ T and T ∼ S .
We say that T and S are equivalent if T ∼ S holds.

Note that 0 is equivalent to all non-resumable session types that cannot make any progress. For example, T 1 = T 1 ;S and T 2 = 1;T 2 are all equivalent to 0. The congruence property of ∼ is particularly important in our setting since we use sequential composition as a modular construct for structuring programs. We do not identify equivalent session types and assume that sequential composition associates to the right: T ;S;R means T ;(S;R). Although equivalence is decidable, this fact has little importance in our setting compared to [START_REF] Thiemann | Context-Free Session Types[END_REF] since ∼ is never used in the typing rules concerning user syntax.

Proposition 1 (properties of ∼). The following properties

We are now ready to classify types according to their kind. We say that t is unlimited if t :: U and that it is linear otherwise, namely if t :: κ implies κ = L. Every type has kind L, since it is always safe to use a value of any type exactly once. Conversely, base types and function types with kind annotation U are unlimited. Note that the kind of a function type t → κ s solely depends on κ, but not on the kind of t or s. For example,

Definition 3 (kinding

[?int] ι → int is unlimited even if [?int] ι is not. Endpoint types [T] ι are unlimited if T ∼ 0:
non-resumable endpoints on which no further actions can be performed can be discarded. On the contrary, [START_REF] Ahmed | L 3 : A linear language with locations[END_REF] ι is linear, since it denotes an endpoint that must be resumed. The kind of existential and universal types, products and tagged unions is determined by that of the component types. For example, the type t = {Nil of unit, Cons of int × t} of integer lists is unlimited, whereas the type int × [START_REF] Ahmed | L 3 : A linear language with locations[END_REF] ι is linear.

As usual, the session types associated with peer endpoints must be dual to each other to guarantee communication safety. Duality expresses the fact that every input action performed on an endpoint is matched by a corresponding output performed on its peer and is defined thus:

Definition 4 (session type duality). Session type duality is the function • coinductively defined by the following equations:

0 = 0 1 = 1 ?t = !t !t = ?t &[C i : T i] i∈I = ⊕[C i : T i] i∈I ⊕[C i : T i] i∈I = &[C i : T i] i∈I T ;S = T ;S
It is easy to verify that duality is an involution, that is T = T . The type system makes use of two environments: identity environments ∆ are sets of identities written ι 1 , . . . , ι n , representing the endpoints statically known to a program fragment; type environments Γ are finite maps from names to types written u 1 : t 1 , . . . , u n : t n associating a type with every (free) name occurring in an expression. We write ∆, ∆ for ∆ ∪ ∆ when ∆ ∩ ∆ = ∅. We write Γ (u) for the type associated with u in Γ , dom(Γ) for the domain of Γ , and Γ 1 , Γ 2 for the union of Γ 1 and Γ 2 when dom(Γ 1) ∩ dom(Γ 2) = ∅. We extend kinding to type Table 3. Type schemes of FuSe {} constants.

() : unit pair : t → s → κ t × s t :: κ Cj : tj → {Ci of ti}i∈I j ∈ I fix : ((t → s) → t → s) → t → s fork : (t → unit) → t → unit create : unit → ∃ρ.([T]ρ × [T] ρ) send : t → [!t;T]ι → κ [T]ι t :: κ receive : [?t;T]ι → t × [T]ι select : ([Tj] ι → κ {Ci of [Ti] ι }i∈I) → [⊕[Ci : Ti] i∈I]ι → κ [Tj]ι j ∈ I branch : [&[Ci : Ti] i∈I]ι → {Ci of [Ti]ι}i∈I
environments in the obvious way, writing Γ :: κ if Γ (u) :: κ for all u ∈ dom(Γ). We also need a more flexible way of combining type environments that allows names with unlimited types to be used any number of times.

Definition 5 (environment combination [15]

). We write + for the partial operation on type environments such that:

Γ + Γ def = Γ , Γ if dom(Γ) ∩ dom(Γ) = ∅ (Γ , u : t) + (Γ , u : t) def = (Γ + Γ), u : t if t :: U Note that Γ + Γ is undefined if Γ and
Γ contain associations for the same name with different or linear types. When Γ :: U, we have that Γ + Γ is always defined and equal to Γ itself.

The type schemes of FuSe {} constants are given in Table 3 as associations c : t. Note that, in general, each constant has infinitely many types. Although most associations are as expected, it is worth commenting on a few details. First, observe that the kind annotation κ in the types of pair, send and select coincides with the kind of the first argument of these constants. In particular, when t is linear and pair/send/select is supplied one argument v of type t, the resulting partial application is also linear. Second, in accordance with their operational semantics (Table 2) all the primitives for session communications (send, receive, select, and branch) return the very same endpoint they take as input as indicated by the identity ι that annotates the endpoint types in both the domain and range of these constants. Note also that in an application select v ε the function v is meant to be applied to the peer of ε. This constraint is indicated by the use of the co-identity ι and is key for the soundness of the type system. Finally, create returns a packaged pair of endpoints with dual session types. The package must be opened before the endpoints can be used for communication.

The typing rules for FuSe {} are given in Table 4 and derive judgments ∆; Γ e : t for expressions and ∆; Γ P for processes. These judgments are well formed if all the identities occurring free in Γ and t are included in ∆. From now on we make the implicit assumption that all judgments are well formed. We now discuss the most important aspects of the typing rules. In [t-const], the implict well-formedness constraint on typing judgments restricts the set of types that we can give to a constant to those whose free identities occur in ∆. In [t-const] and [t-name], the unused part of the type environment must be unlimited, to make sure that no linear name is left unused. The elimination rules for products and tagged unions are standard. Note the use of + for combining type environments so that the same linear resource is not used multiple times in different parts of an expression. Rules [t-fun] and [t-app] deal with function types. In [t-fun], the kind annotation on the arrow must be consistent with the kind of the environment in which the function is typed. If any name in the environment has a linear type, then the function must be linear itself to avoid repeated use of such name. By contrast, the kind annotation plays no role in [t-app]. Abstraction and application of identities are standard. The side condition in [t-id-app] makes sure that the supplied identity is in scope. This condition is not necessarily captured by the well formedness of judgments in case ρ does not occur in t.

Packing and unpacking are also standard. The identity variable ρ introduced in [t-unpack] is different from any other identity known to e 2 . This prevents e 2 from using ρ in any context where a specific identity is required. Also, well formedness of judgments requires fid(s) ⊆ ∆, meaning that ρ is not allowed to escape its scope. The most interesting and distinguishing typing rule of FuSe {} is [t-resume]. Let us discuss the rule clockwise, starting from {e} u and recalling that the purpose of this expression is to resume u once the evaluation of e is completed. The rule requires u to have a type of the form [T ;S] ι , which specifies the identity ι of the endpoint and the protocols T and S to be completed in this order. Within e the type of u is changed to [T] ι and the evaluation of e must yield a pair whose first component, of type t, is the result of the computation and whose second component, of type [START_REF] Ahmed | L 3 : A linear language with locations[END_REF] ι , witnesses the fact that the prefix protocol T has been entirely carried out on u. Once the evaluation of e is completed, the type of the endpoint in the pair is reset to the suffix S. The same identity ι relates all the occurrences of the endpoint both in the type environments and in the expressions. Note that the annotation u in { • } u does not count as a proper "use" of u. Its purpose is solely to identify the endpoint being resumed.

The typing rules for processes are mostly unremarkable. In [t-session] the two peers of a session are introduced both in the type environment and in the identity environment. The protocols T and S of peer endpoints are required to be dual to each other modulo protocol equivalence. The use of ∼ accounts for the possibility that sequential compositions may be arranged differently in the threads using the two peers. For instance, one thread might be using an endpoint with protocol T , and its peer could have type 1;T in a thread that has not resumed it yet. Still, T ∼ 1;T = 1;T .

We state a few basic properties of the typing discipline focusing on those more closely related to resumptions. To begin with, we characterize the type environments in which expressions and processes without free variables reduce. Definition 6. We say that Γ is ground if dom(Γ) contains endpoints only; that it is well formed

if ε ∈ dom(Γ) implies Γ (ε) = [T] ε ; that it is balanced if ε, ε ∈ dom(Γ) implies Γ (ε) = [T] ε and Γ (ε) = [S] ε and T ∼ S.
Note that in a well-formed environment the type associated with endpoint ε is annotated with the correct identity of ε, that is ε itself.

As usual for session type systems, we must take into account the possibility that the type associated with session endpoints changes over time. Normally this only happens when processes use endpoints for communications. In our case, however, also expressions may change endpoint types because of resumptions. In order to track these changes, we introduce two relations that characterize the evolution of type environments alongside expressions and processes. The first relation is the obvious extension of equivalence ∼ to type environments:

Definition 7 (equivalent type environments). Let Γ = {ε i : [T i] εi } i∈I and Γ = {ε i : [S i] εi } i∈I . We write Γ ∼ Γ if T i ∼ S i for every i ∈ I.
The second relation includes ∼ and mimics communications at the type level: Definition 8. Let be the least relation between type environments such that:

Γ Γ if Γ ∼ Γ Γ , ε : [!t;T] ε , ε : [?t;S] ε Γ , ε : [T] ε , ε : [S] ε Γ , ε : [⊕[C i : T i] i∈I] ε , ε : [&[C i : S i] i∈I] ε Γ , ε : [T k] ε , ε : [S k] ε if k ∈ I
Concerning subject reduction for expressions, we have: That is, an irreducible expression that is not a value is a term that is meant to reduce at the level of processes. Note that a resumption {(v,ε)} ε is not a value and is meant to reduce at the level of expressions via [R7]. Hence, Theorem 2 guarantees that in a well-typed program all such resumptions are such that ε = ε . An alternative reading for this observation is that each endpoint is guaranteed to have a unique identity in every well-typed program.

Theorem 3 (SR for processes).

Let ∆; Γ P where Γ is ground, well formed and balanced. If P → Q, then ∆; Γ Q for some Γ such that Γ * Γ .

Apart from being a fundamental sanity check for the type system, Theorem 3 states that the communications occurring in processes are precisely those permitted by the session types in the type environments. Therefore, Theorem 3 gives us a guarantee of protocol fidelity. A particular instance of protocol fidelity concerns sequential composition: a well-typed process using an endpoint with type T ;S is guaranteed to perform the actions described by T first, and then those described by S. Other standard properties including communication safety and (partial) progress for processes can also be proved [START_REF] Padovani | A Simple Library Implementation of Binary Sessions[END_REF].

Example 1 (resumption combinators).

In prospect of devising a library implementation of FuSe {} , the resumption expression {• } u is challenging to deal with, for its typing rule involves an non-trivial manipulation of the type environment whereby the type of u changes as u flows into and out of the expression. In practice, it is convenient to encapsulate { • } u expressions in two combinators that can be easily implemented as higher-order functions (Sections 4.2 and 4.3):

@= def = λf.λx.{f x} x @> def = λf.λx.let _, x = {((),f x)} x in x
The combinator @= is a general version of @> that applies to functions returning an actual result in addition to the endpoint to be resumed. We derive

[t-name] ∆; f : [T] ι → κ t × [1] ι f : [T] ι → κ t × [1] ι [t-name] ∆; x : [T] ι x : [T] ι [t-app] ∆; f : [T] ι → κ t × [1] ι , x : [T] ι f x : t × [1] ι [t-frame] ∆; f : [T] ι → κ t × [1] ι , x : [T ;S] ι {f x} x : t × [S] ι [t-fun] ∆; f : [T] ι → κ t × [1] ι λx.{f x} x : [T ;S] ι → κ t × [S] ι [t-fun] ∆; ∅ λf.λx.{f x} x : ([T] ι → κ t × [1] ι) → [T ;S] ι → κ t × [S] ι
for every T , ι, t and S such that fid(T) ∪ fid(t) ∪ fid(S) ∪ {ι} ⊆ ∆. A similar derivation allows us to derive

∆; ∅ @> : ([T] ι → κ [1] ι) → [T ;S] ι → κ [S] ι
In the implementation we will give @= and @> their most general type by leveraging OCaml's support for parametric polymorphism. Other resumption combinators for functions using 2 or more endpoints can be defined similarly.

Example 2 (alternative communication API).

It could be argued that the communication primitives send and receive are not really "primitive" because their types make use of both I/O actions and sequential composition. Alternatively, we could equip FuSe {} with two primitives send' and receive' having the same operational semantics as send and receive but the following types:

send' : t → [!t] ι → κ [1] ι t :: κ receive' : [?t] ι → t × [1] ι
Starting from send' and receive', send and receive could then be derived with the help of @= and @>, used below in infix notation:

send def = λz.λx.send' z @> x receive def = λx.receive' @= x
We find a communication API based on send' and receive' appealing for its cleaner correspondence between primitives and session type constructors. In particular, with this API the resumption combinators account for all occurrences of ; in protocols. In the formal model of FuSe {} , we have decided to stick to the conventional typing of send and receive for continuity with other presentations of similar calculi [START_REF] Gay | Linear type theory for asynchronous session types[END_REF][START_REF] Wadler | Propositions as sessions[END_REF][START_REF] Thiemann | Context-Free Session Types[END_REF]. Example 3. This example illustrates the sort of havoc that could be caused if two endpoints had the same identity. As a particular instance, we see the importance of distinguishing the identity of peer endpoints. The derivation . . .

x : [1] ι , y : [1] ι (y,x) : [1] ι × [1] ι x : [1] ι , y : [1;S] ι {(y,x)} y : [1] ι × [S] ι . . . x : [S] ι , ŷ : [1] ι (x,ŷ) : [S] ι × [1] ι x : [1] ι , y : [1;S] ι let ŷ, x = {(y,x)} y in (x,ŷ) : [S] ι × [1] ι x : [1;T] ι , y : [1;S] ι {let ŷ, x = {(y,x)} y in (x,ŷ)} x : [S] ι × [T] ι x : [1;T] ι λy.{let ŷ, x = {(y,x)} y in (x,ŷ)} x : [1;S] ι → L [S] ι × [T] ι λx.λy.{let ŷ, x = {(y,x)} y in (x,ŷ)} x : [1;T] ι → [1;S] ι → L [S] ι × [T] ι
can be used to type check a function that, applied to two endpoints x and y whose types are [1;T] ι and [1;S] ι respectively, returns a pair containing the same two endpoints, but with their types changed to [S] ι and [T] ι . If there existed two endpoints ε 1 and ε 2 with the same identity ι from two different sessions, the function could be used to exchange their protocols, almost certainly causing communication errors in the rest of the computation. If ε 1 and ε 2 were the peers of the same session, then communication safety would still be guaranteed by the condition T ∼ S, but protocol fidelity would be violated nonetheless.

Context-Free Session Types in OCaml

In this section we detail two different implementations of FuSe {} communication and resumption primitives as OCaml functions. We start defining a few basic data structures and a convenient OCaml representation of session types (Section 4.1) before describing the actual implementations. The first one (Section 4.2) is easily portable to any programming language supporting parametric polymorphism, but relies on lightweight runtime checks to verify when an endpoint can be safely resumed. The second implementation (Section 4.3) closely follows the typing discipline of FuSe {} presented in Section 3, but relies on more advanced features (existential types) of the host language. The particular implementation we describe is based on OCaml's first-class modules [START_REF] Frisch | First-class modules and composable signatures in Objective Caml 3.12[END_REF][START_REF] Yallop | First-class modules: hidden power and tantalizing promises[END_REF]. We conclude the section revisiting and extending the running example of [START_REF] Thiemann | Context-Free Session Types[END_REF] (Section 4.4).

Basic Setup

To begin with, we define a simple module Channel that implements unsafe communication channels. In turn, Channel is based on OCaml's Event module, which implements communication primitives in the style of Concurrent ML [START_REF] Reppy | Concurrent Programming in ML[END_REF]. An unsafe channel is just an Event.channel for exchanging messages of type unit. The unit type parameter is just a placeholder, for communication primitives perform unsafe casts (with Obj.magic) on every exchanged message. Note that Event.send and Event.receive only create synchronization events, and communication only happens when these events are passed to Event.sync. Using Event channels is convenient but not mandatory: the rest of our implementation is essentially independent of the underlying communication framework.

The second ingredient of our library is an implementation of atomic boolean flags. Since OCaml's type system is not substructural we are unable to distinguish between linear and unlimited types and, in particular, we are unable to prevent multiple endpoint usages solely using the type system. Following ideas of Tov and Pucella [START_REF] Tov | Stateful Contracts for Affine Types[END_REF] and Hu and Yoshida [START_REF] Hu | Hybrid Session Verification through Endpoint API Generation[END_REF] and the design of FuSe [START_REF] Padovani | A Simple Library Implementation of Binary Sessions[END_REF], the idea is to associate each endpoint with a boolean flag indicating whether the endpoint can be safely used or not. The flag is initially set to true, indicating that the endpoint can be used, and is tested by every operation that uses the endpoint. If the flag is still true, then the endpoint can be used and the flag is reset to false. If the flag is false, then the endpoint has already been used in the past and the operation aborts raising an exception. Atomicity is needed to make sure that the flag is tested and updated in a consistent way in case multiple threads try to use the same endpoint simultaneously. We represent an atomic boolean flag as a Mutex.t, that is a lock in OCaml's standard library. The value of the flag is the state of the mutex: when the mutex is unlocked, the flag is true. Using the flag means attempting to acquire the lock with the non-blocking function Mutex.try_lock. As for Event channels, the mutex is a choice of convenience more than necessity. Alternative realizations, possibly based on lightweight compare-and-swap operations, can be considered.

We conclude the setup phase by defining a bunch of OCaml singleton types in correspondence with the session type constructors: The type parameter ϕ is the type of the exchanged message in msg and a polymorphic variant type representing the available choices in tag. The type paramteres α and β in seq stand for the prefix and suffix protocols of a sequential composition α;β. The data constructors of these types are never used and are given only because OCaml is more liberal in the costruction of recursive types when these are concrete rather than abstract. Hereafter, we use τ 1 , τ 2 , . . . to range over OCaml types and α, β, . . . , ϕ to range over OCaml type variables. Considering that OCaml supports equi-recursive types, we ignore once again the concrete syntax for expressing infinite session types and work with infinite trees instead. OCaml uses the notation τ as α for denoting a type τ in which occurrences of α stand for the type as a whole.

A Dynamically Checked, Portable Implementation

The first implementation of the library that we present ignores identities in types and verifies the soundness of resumptions by means of a runtime check. In this case, an endpoint type [T] ι is encoded as the OCaml type (τ 1 ,τ 2) t where τ 1 and τ 2 are roughly determined as follows:

when T is a self-dual session type constructor (either 0, 1, or ;), then both τ 1 and τ 2 are the corresponding OCaml type (0, 1, or seq, respectively); -when T is an input (either ?t or &[C i : T i] i∈I), then τ 1 is the encoding the received message/choice and τ 2 is 0; dually when T is an output.

More precisely, types and session types are encoded thus:

Definition 9 (encoding of types and session types). Let • and • be the encoding functions coinductively defined by the following equations:

0 = (0,0) t 1 = (1,1) t ?t = (t msg,0) t !t = (0, t msg) t &[C i : T i] i∈I = ({C i of T i } i∈I tag,0) t ⊕[C i : T i] i∈I = (0,{C i of T i } i∈I tag) t T ;S = ((T , S) seq,(T , S) seq) t [T] ι = T
where • is extended homomorphically to all the remaining type constructors erasing kind annotations on arrows and existential and universal quantifiers.

Note that identities ι in endpoint types are simply erased; we will revise this choice in the second implementation (Section 4.3). The encoding is semantically grounded through the relationship between sessions and linear channels [START_REF] Kobayashi | Type systems for concurrent programs[END_REF][START_REF] Demangeon | Full abstraction in a subtyped picalculus with linear types[END_REF][START_REF] Dardha | Session types revisited[END_REF][START_REF] Padovani | A Simple Library Implementation of Binary Sessions[END_REF] and is extended here to sequential composition for the first time. The distinguishing feature of this encoding is that is makes it easy to express session type duality constraints solely in terms of type equality:

Theorem 4. If T = (τ 1 ,τ 2) t, then T = (τ 2 ,τ 1) t.
That is, we pass from a session type to its dual by flipping the type parameters of the t type. This also works for unknown or partially known session types: the dual of (α,β) t is (β,α) t.

We can now look at the concrete representation of the type (α,β) t: type (α,β) t = { chan : Channel.t; pol : int; once : Flag.t }

An endpoint is a record with three fields, a reference chan to the unsafe channel used for the actual communications, an integer number pol ∈ {+1, -1} representing the endpoint's polarity, and an atomic boolean flag once indicating whether the endpoint can be safely used or not. Of course, this representation is hidden from the user of the library and any direct access to these fields occurs via one of the public functions that we are going to discuss.

The FuSe {} primitives for session communication are implemented by corresponding OCaml functions with the following signatures, which are directly related to the type schemes in Table 3 through the encoding in Definition 9:

val create : unit → (α,β) t × (β,α) t val send : ϕ → (0,ϕ msg) t → (1,1) t val receive : (ϕ msg,0) t → ϕ × (1,1) t val select : ((β,α) t → ϕ) → (0,ϕ tag) t → (α,β) t val branch : (ϕ tag,0) t → ϕ val (@=) : ((α,β) t → ϕ × (1,1) t) → (((α,β) t,(γ,δ) t) seq,((β,α) t,(δ,γ) t) seq) t → ϕ × (γ,δ) t
Note the use of parametric polymorphism to give these functions their most general types. We implement the alternative communication API with the primitives send and receive because their type signatures are simpler. From these functions, send and receive can be easily derived as shown in Example 2. We also omit @> which is just a particular instance of @= (Example 1).

Since this version of the library ignores endpoint identities, the endpoints returned by create are already unpackaged. The implementation of create is The flag associated with the endpoint u is used before communication takes place, so that subsequent (unsafe) uses of the same endpoint are detected and signalled with an exception. Symmetrically, the validity flag is refreshed just before the endpoint is returned to the user.

We complete the module with the implementation of @=, shown below:

let (@=) scope u = let res, v = scope (Obj.magic u) in if u.chan == v.chan && u.pol = v.pol then (res, Obj.magic v) else raise Error
The endpoint u is passed to scope, which evaluates to a pair made of the result res of the computation and the endpoint v to be resumed. The cast Obj.magic u is necessary to turn the type of u from T ;S to T , as required by scope. The second line in the body of @= checks that the endpoint v resulting from the evaluation of scope is indeed the same endpoint u that was fed in it. Note the key role of the polarity in checking that u and v are the same endpoint and the use of the physical equality operator ==, which compares only the references to the involved unsafe channels. An exception is raised if v is not the same endpoint as u. Otherwise, the result of the computation and v are returned. The cast Obj.magic v effectively resumes the endpoint turning its type from 1 to S. The two casts roughly delimit the region of code that we would write within { • } u in the formal model.

A Statically Checked Implementation

The second implementation we present reflects more accurately the typing information in endpoint types, which includes the identity of endpoints. In this case, we represent an endpoint type [T] ρ as an OCaml type (τ 1 ,τ 2 ,ρ,ρ) t where τ 1 and τ 2 are determined from T in a similar way as before. In addition, the phantom type parameter ρ is the (abstract) identity of the endpoint and ρ that of its peer (we represent identity variables as OCaml type variables and assume that ρ is another OCaml type variable distinct from ρ). More formally, the revised encoding of (session) types into OCaml types is given below:

Definition 10 (revised encoding of types and session types). Let • ι and

• be the encoding functions coinductively defined by the following equations:

0 ι = (0,0,ι,ι) t 1 ι = (1,1,ι,ι) t ?t ι = (t msg,0,ι,ι) t !t ι = (0, t msg,ι,ι) t &[C i : T i] i∈I ι = ({C i of T i ι } i∈I tag,0,ι,ι) t ⊕[C i : T i] i∈I ι = (0,{C i of T i ι } i∈I tag,ι,ι) t T ;S ι = ((T ι , S ι) seq,(T ι , S ι) seq,ι,ι) t [T] ι = T ι
where • is extended homomorphically to all the remaining type constructors erasing kind annotations on arrows and existential and universal quantifiers.

In Definition 10, ι is always an identity (co-)variable for we apply the encoding to user types in which these variables are never instantiated. Once again, the relation between the encoding of a session type and that of its dual can be expressed in terms of type equality:

Theorem 5. If T ι = (τ 1 ,τ 2 ,ι,ι) t, then T ι = (τ 2 ,τ 1 ,ι,ι) t.
The concrete representation of (α,β,ι,ι) t is the same that we have given in Section 4.2. As an optimization, the pol field of that representation could be omitted since there it is only necessary to verify an endpoint equality condition which is statically guaranteed by the implementation we are discussing now.

The easiest way of representing an existential type in OCaml is by means of its built-in module system [START_REF] Mitchell | Abstract types have existential type[END_REF]. In our case, we have to make sure that create returns a packaged pair of peer endpoints, each with its own identity. The OCaml representation of this type can be given by the following module signature module type Package = sig type i and j val unpack : unit → (α,β,i,j) t × (β,α,j,i) t end which contains two abstract type declarations i and j, corresponding to the identities of the two endpoints, and a function unpack to retrieve the endpoints once the module with this signature has been opened. Concerning the implementation of Package, there are two technical issues we have to address, both related to the fact that there cannot be two different endpoints with the same identity. First, we have to make sure that each session has its own implementation of the Package module signature. To this aim, we take advantage of OCaml's support for first-class modules [START_REF] Frisch | First-class modules and composable signatures in Objective Caml 3.12[END_REF][START_REF] Yallop | First-class modules: hidden power and tantalizing promises[END_REF], allowing us to write a function (create in the specific case) that returns a module implementation. The second issue is that we cannot store the two endpoints directly in the module, for the types of the endpoints contain type variables (α and β in the above signature) which are not allowed to occur free in a module. For this reason, we delay the actual creation of the endpoints at the time unpack is applied. This means, however, that the same implementation of Package could in principle be unpacked several times, instantiating different sessions whose endpoints would share the same identities. To make sure that unpack is applied at most once for each implementation of Package we resort once again to an atomic boolean flag.

The signatures of the functions implementing the communication primitives are essentially the same that we have already seen in Section 4.2, except for the presence of identity variables ρ and σ and the type of create, which now returns a packaged pair of endpoints:

val create : unit → (module Package) val send : ϕ → (0,ϕ msg,ρ,σ) t → (1,1,ρ,σ) t val receive : (ϕ msg,0,ρ,σ) t → ϕ × (1,1,ρ,σ) t val select : ((β,α,σ,ρ) t → ϕ) → (0,ϕ tag,ρ,σ) t → (α,β,ρ,σ) t val branch : (ϕ tag,0,ρ,σ) t → ϕ val (@=) : ((α,β,ρ,σ) t → ϕ × (1,1,ρ,σ) t) → (((α,β,ρ,σ) t,(γ,δ,ρ,σ) t) seq, ((β,α,σ,ρ) t,(δ,γ,σ,ρ) t) seq,ρ,σ) t → ϕ × (γ,δ,ρ,σ) t
Note in particular the type of select, where we refer to both an endpoint and its peer by flipping the type parameters corresponding to session types (α and β) and those corresponding to identity variables (ρ and σ) as well.

The implementation of create is shown below, in which Previous.create refers to the version of create detailed in Section 4.2:

let create () =
let once = Flag.create () in (module struct type i and j let unpack () = Flag.use once; Previous.create () end : Package)

The implementation of the I/O primitives is the same as in Section 4.2 and need not be repeated here. The resumption combinator shrinks to a simple cast let (@=) = Obj.magic since the equality condition on endpoints that is necessary for its soundness is now statically guaranteed by the type system. With this implementation of FuSe {} , a session is typically created thus where client and server are suitable functions that use the two endpoints of the session without making any assumption on their identities. Otherwise, the abstract types A.i and A.j would escape their scope, resulting in a type error.

Extended Example: Trees Over Sessions

In this section we revisit and expand an example taken from [START_REF] Thiemann | Context-Free Session Types[END_REF] to show how context-free session types help improving the precision of (inferred) protocols and the robustness of code. We start from the declaration type α tree = Leaf | Node of α × α tree × α tree defining an algebraic representation of binary trees, and we consider the following function, which sends a binary tree over a session endpoint. Note that, for the sake of readability, in this section we assume that OCaml polymorphic variant tags are curried as in the formal model and write for example Node instead of its η-expansion fun x → Node x. The auxiliary function send_tree_aux serializes a (sub)tree t on the endpoint u, whereas send_tree invokes send_tree_aux once and finally sends a sentinel label `Done that signals the end of the stream of messages. FuSe infers for send_tree the type α tree → T reg → A where T reg is the session type

T reg = ⊕[`Leaf : T reg , `Node : !α;T reg , `Done : A] (4.1)
and A is a session type variable (the code in send_tree does not specify in any way how u will be used when send_tree returns). Without the sentinel `Done, the protocol T reg inferred by OCaml would never terminate (like S reg in (1.1)) making it hardly useful. Even with the sentinel, though, T reg is very imprecise. For example, it allows the labels `Node, `Leaf, and `Done to be selected in this order, even though send_tree never generates such a sequence. 1To illustrate the sort of issues that this lack of precision may cause, it helps to look at a consumer process that receives a tree sent with send_tree: This function consists of a main body (lines 2-8) responsible for building up a (sub)tree received from u, the bootstrap of the reception phase (line 9), and a final reception that awaits for the sentinel (lines 10-12). For receive_tree, OCaml infers the type T reg → α tree × A. The fact that send_tree and receive_tree use endpoints with dual session types should be enough to reassure us that the two functions communicate safely within the same session. Unfortunately, our confidence is spoiled by two suspicious catch-all cases (lines 8 and 12) without which receive_tree would be ill typed. In particular, omitting line 8 would result in a non-exhaustive pattern matching (lines 3-7) because label `Done can in principle be received along with `Leaf and `Node. A similar issue would arise omitting line 12. Omitting both lines 8 and 12 would also be a problem. In search of a typing derivation for receive_tree, OCaml would try to compute the intersection of the labels handled by the two pattern matching constructs, only to find out that such intersection is empty.

We clean up and simplify send_tree and receive_tree using resumptions: In send_tree we use the simple resumption @> since the function only returns the endpoint u. In receive_tree we use @= since the function returns the received tree in addition to the continuation endpoint. Note that we no longer need an explicit sentinel message `Done that marks the end of the message stream because the protocol now specifies exactly the number of messages needed to serialize a tree. For the same reason, the catch-all cases in receive_tree are no longer necessary. For these functions, OCaml respectively infers the types α tree → [T cf] ρ → [START_REF] Ahmed | L 3 : A linear language with locations[END_REF] ρ and [T cf] ρ → α tree × [START_REF] Ahmed | L 3 : A linear language with locations[END_REF] ρ where T cf is the session type such that

let
T cf = ⊕[`Leaf : 1, `Node : !α;T cf ;T cf]
The leftmost occurrence of ; in !α;T cf ;T cf is due to the communication primitive (either send or receive) and the rightmost one to the resumption.

Note that the only difference between the revised send_tree and the homonymous function presented in [START_REF] Thiemann | Context-Free Session Types[END_REF] is the occurrence of @>. All the other examples in [START_REF] Thiemann | Context-Free Session Types[END_REF] can be patched similarly by resuming endpoints at the appropriate places.

Related work

The work most closely related to ours is [START_REF] Thiemann | Context-Free Session Types[END_REF] in which Thiemann and Vasconcelos introduce context-free session types, develop their metatheory, and prove that session type equivalence is decidable. In [START_REF] Thiemann | Context-Free Session Types[END_REF], the only typing rules that can eliminate sequential compositions are those concerning send and receive. This choice calls for a type system with (1) a structural rule that rearranges sequential compositions in session types and (2) support for polymorphic recursion. As a consequence, context-free session type checking, left as an open problem in [START_REF] Thiemann | Context-Free Session Types[END_REF], appears to rely crucially on type annotations provided by the programmer. In contrast, our approach relies on the use of resumptions inserted in the code. As we have seen in Section 4, this approach makes it easy to embed the resulting typing discipline in a host programming language and to take advantage of its type inference engine. Overall, we think that our approach strikes a good balance between expressiveness and flexibility: resumptions are unobtrusive and typically sparse, their location is easy to spot in the code, and they give the programmer complete control over the occurrences of sequential compositions in session types, resolving the ambiguities that arise with context-free session type inference (Sections 1 and 4.4).

A potential limitation of our approach compared to [START_REF] Thiemann | Context-Free Session Types[END_REF] is that we require processes operating on peer endpoints of a session to mirror each other as far as the placement of resumptions is concerned. For example, a process using an endpoint with type (!int;1);?bool may interact with another process that uses an endpoint with type (?int;1);!bool, but not with a process using an endpoint with type ?int;!bool even though (?int;1);!bool ∼ ?int;!bool. Both processes must resume the endpoints they use after the exchange of the first message. Understanding the practical impact of this limitation requires an extensive analysis of code that deals with context-free protocols. We have not pursued such investigation, but we can make two observations nonetheless. First, resumptions are often used in combination with recursion and interacting recursive processes already tend to mirror each other by their own recursive nature. We can see this by comparing send_tree and receive_tree (Section 4.4) and also by looking at the examples in [START_REF] Thiemann | Context-Free Session Types[END_REF]. Second, it is easy to provide explicit coercions corresponding to laws of ∼. Such coercions, whose soundness is already accounted for by Theorem 1, can be used to rearrange sequential compositions in session types. For example, a coercion (A;1);B → A;B composed with a function ?int;!bool → α would turn it into a function (?int;1);!bool → α. The use of coercions augments the direct involvement of the programmer, but is a low-cost solution to broaden the cases already addressed by plain resumptions.

FuSe [START_REF] Padovani | A Simple Library Implementation of Binary Sessions[END_REF] is an OCaml implementation of binary sessions that combines static protocol enforcement with runtime checks for endpoint linearity [START_REF] Tov | Stateful Contracts for Affine Types[END_REF][START_REF] Hu | Hybrid Session Verification through Endpoint API Generation[END_REF] and resumption safety (Section 4.2). Support for sequential composition of session types based on resumptions was originally introduced in FuSe to describe iterative protocols, showing that a class of unbounded protocols could be described without resorting to (equi-)recursive types. The work of Thiemann and Vasconcelos [START_REF] Thiemann | Context-Free Session Types[END_REF] prompted us to formalize resumptions and to study their implications to the precision of protocol descriptions. This led to the discovery of a bug in early versions of FuSe where peer endpoints were given the same identity (cf. the discussion at the end of Example 3) and then to the development of a fully static typing discipline to enforce resumption safety (Sections 3 and 4.3).

The use of type variables abstracting over the identity of endpoints has been inspired by works on regions and linear types [START_REF] Walker | On regions and linear types[END_REF][START_REF] Charguéraud | Functional translation of a calculus of capabilities[END_REF], by L 3 [1], a language with locations supporting strong updates, and Alms [START_REF] Tov | Practical affine types[END_REF][START_REF] Tov | Practical Programming with Substructural Types[END_REF], an experimental generalpurpose programming language with affine types. In these works, abstract identities are used to associate an object with the region it belongs to [START_REF] Walker | On regions and linear types[END_REF][START_REF] Charguéraud | Functional translation of a calculus of capabilities[END_REF], or to link the (non-linear) reference to a mutable object with the (linear or affine) capability for accessing it. Interestingly, in these works separating the reference from the capability (hence the use of abstract identities) is not really a necessity, but rather a technique that results in increased flexibility: the reference can be aliased without restrictions to create cyclic graphs [START_REF] Ahmed | L 3 : A linear language with locations[END_REF] or to support "dirty" operations on shared data structures [START_REF] Tov | Practical affine types[END_REF]. In our case, endpoint identities are crucial for checking the safety of resumptions. ∆, ρ; Γ v : s. From Lemma 5 we deduce ∆; Γ {ε/ρ} v{ε/ρ} : s{ε/ρ}. From the (implicit) hypothesis that every typing judgment is well formed we deduce ρ ∈ fid(Γ), hence Γ {ε/ρ} = Γ . We conclude by taking Γ def = Γ .

Case [R3]. Then e = fix v w → v (fix v) w = e . From [t-app] and the type scheme of fix we deduce that Γ = Γ 1 + Γ 2 + Γ 3 and ∆; Γ

= Γ . Case [R7]. Then e = {(v,ε)} ε → (v,ε) = e . From [t-resume] and the hypothesis that Γ is well formed we deduce Γ = Γ , ε : [T ;S] ε and ∆; Γ , ε : [T] ε (v,ε) : s×[1] ε and t = s×[S] ε . From [t-
app] and the type scheme of pair we deduce that Γ , ε :

[T] ε = Γ 0 + Γ 1 + Γ 2 and ∆; Γ 0 pair : s → [1] ε → κ s × [1]

A.4 Progress for expressions

We provide a syntactic characterization of those expressions that do not reduce further. These are not necessarily values, for expressions may contain redexes involving primitives that reduce only at the level of processes.

Theorem 2 (progress for expressions). If Γ is ground and well formed and ∆; Γ e : t and e →, then either e is a value or e = E [K v] for some E , v, w, and K ∈ {fork w, create, send w, receive, select w, branch}.

Proof. If e is a value there is nothing left to prove, so we assume that e is not a value and proceed by induction on the structure of e and by cases on its shape. We only discuss a few representative cases, the others being simpler or similar.

Case e = x. This case is impossible because Γ is ground.

Case e = e 1 e 2 . Then Γ = Γ 1 + Γ 2 and ∆; Γ 1 e 1 : s → κ t and ∆; Γ 2 e 2 : s where Γ 1 :: κ. We further distinguish three subcases. If e 1 is not a value, then by induction hypothesis we deduce that e 1 = E [K v] for some E , K, and v and we conclude by taking E def = E e 2 . If e 1 is a value but e 2 is not, then by induction hypothesis we deduce that e 2 = E [K v] for some E , K, and v and we conclude by taking E def = e 1 E . If both e 1 and e 2 are values, we deduce that:

e 1 cannot be an abstraction or fix v, for otherwise e would reduce; e 1 cannot be an identity abstraction or endpoint or package or (), C v, (v,w) because it has an arrow type; e 1 cannot be fix, fork, pair, C, send, select, pair v or else e would be a value.

Then, e 1 must be one of create, receive, branch, fork w, send w, or select w. We conclude by taking E Case e = let x, y = e 1 in e 2 . Then ∆; Γ e 1 : t×s for some Γ ground and e 1 →. Also, e 1 cannot be a value for the only values of type t × s are pairs whereas we know that e does not reduce. By induction hypothesis we deduce that e 1 = E [K v] for some E , K, and v. We conclude by taking E def = let x, y = E in e 2 .

Case e = {e } ε . Then Γ = Γ , ε : [T ;S] ε and ∆; Γ , ε : [T] ε e : t × [START_REF] Ahmed | L 3 : A linear language with locations[END_REF] ε for some e → and t. If e is not a value, then by induction hypothesis we deduce that From the hypothesis that Γ is balanced we deduce that I = J and T i ∼ S i for every i ∈ I. In particular, T j ∼ S j , that is T j ∼ S j . Let Γ 13

B Supplement to Section 4

We only prove Theorem 4. The proof of Theorem 5 is essentially the same. Theorem 4. If T = (τ 1 ,τ 2) t, then T = (τ 2 ,τ 1) t.

Proof. By cases on the structure of T . We omit trivial and symmetric cases.

Case T = ?t. Then T = (t msg,0) t and we conclude by observing that T = !t = (0, t msg) t.

Case T = &[C i : T i] i∈I .
Then &[C i : T i] i∈I = ({C i of T i } i∈I tag,0) t and we conclude by observing that T = ⊕[C i : T i] i∈I = (0,{C i of T i } i∈I tag) t = (0,{C i of T i } i∈I tag) t using the definition of duality, Definition 9, and the fact that duality is an involution.

Case T = T 1 ;T 2 . Then T = ((T 1 , T 2) seq,(T 1 , T 2) seq) t and we conclude by observing that T = ((T 1 , T 2) seq,(T 1 , T 2) seq) t = ((T 1 , T 2) seq,(T 1 , T 2) seq) t using the definition of duality, Definition 9, and the fact that duality is an involution.

 let stack = let rec none u = match branch u with | Push u → let x, u = receive u in none (some x u) | End u → u and some y u = match branch u with | Push u → let x, u = receive u in some y (some x u) | Pop u → send y u in none Let us consider the OCaml code on the right to illustrate the problem concretely.

hold: 1 .

 1 (equivalence) ∼ is reflexive and transitive; 2. (associativity) T ;(S;R) ∼ (T ;S);R; 3. (unit) 1;T ∼ T ;1 ∼ T . 4. (congruence) T ∼ T and S ∼ S imply T ;S ∼ T ;S .

 module

 &[ϕ] or ⊕[ϕ] *) type (α,β) seq = Sequence (* α;β *)

 let create () = let ch = Channel.create () in { chan = ch; pol = +1; once = Flag.create () }, { chan = ch; pol = -1; once = Flag.create () } and consists of the creation of a new unsafe channel ch and two records referring to it with opposite polarities and each with its own validity flag. The communication primitives are defined in terms of corresponding operations on the underlying unsafe channel and make use of an auxiliary function let fresh u = { u with once = Flag.create () } that returns a copy of u with once overwritten by a fresh flag. We have: let send x u = Flag.use u.once; Channel.send x u.chan; fresh u let receive u = Flag.use u.once; (Channel.receive u.chan, fresh u) let select f u = Flag.use u.once; Channel.send f u.chan; fresh u let branch u = Flag.use u.once; Channel.receive u.chan (fresh u)

 let module A = (val create ()) in (* create session *) let a, b = A.unpack () in (* unpack endpoints *

let send_tree t u = let rec send_tree_aux t u = match t with |

 with Leaf → select `Leaf u | Node (x, l, r) → let u = select `Node u in let u = send x u in let u = send_tree_aux l u in let u = send_tree_aux r u in u in select `Done (send_tree_aux t u)

let

 receive_tree u = let rec receive_tree_aux u = match branch u with | Leaf u → Leaf, u | Node u → let x, u = receive u in let l, u = receive_tree_aux u in let r, u = receive_tree_aux u in Node (x, l, r), u | _ → assert false (* impossible *) in let t, u = receive_tree_aux u in match branch u with | Done u → (t, u) | _ → assert false (* impossible *)

 rec send_tree t u = match t with | Leaf → select `Leaf u | Node (x, l, r) → let u = select `Node u in let u = send x u in let u = send_tree l @> u in (* resumption *) let u = send_tree r u in u let rec receive_tree u = match branch u with | Leaf u → Leaf, u | Node u → let x, u = receive u in let l, u = receive_tree @= u in (* resumption *) let r, u = receive_tree u in Node (x, l, r), u

1 def= Γ , Γ 2 def= 2 def= Γ 2 +

 1222 ε and ∆; Γ 1 v : s and ∆; Γ 2 ε :[START_REF] Ahmed | L 3 : A linear language with locations[END_REF] ε where Γ 0 :: U and s :: κ. From [t-name] we deduce that T = 1. We conclude by taking Γ def = Γ , ε : [S] ε and by observing that Γ ∼ Γ .Next are two results that allow us to reason on the typability of a subexpression that occurs in the hole of an evaluation context and on the fact that such sub-expression can be replaced by another one having the same type. Lemma 6 (typability of subterms). If D is a derivation of ∆; Γ E [e] : t, then there exist Γ 1 , Γ 2 , and s such that Γ = Γ 1 +Γ 2 and D has a sub-derivation D concluding ∆; Γ 1 e : s and the position of D in D corresponds to the position of [] in E .Proof. By induction on E . We only discuss two cases, the others being analogous.Case E = []. We conclude by taking Γ ∅, and s def = t. The sought sub-derivation D is D itself. Case E = E e . From [t-app] we deduce that there exist Γ 1 , Γ 2 , and t such that Γ = Γ 1 + Γ 2 and ∆; Γ 1 E [e] : t → κ t and ∆; Γ 2 e : t . Let D be the sub-derivation concluding ∆; Γ 1 E [e] : t → κ t. By induction hypothesis there exist Γ 1 , Γ 2, and s such that Γ 1 = Γ 1 + Γ 2 and D has a sub-derivation D concluding ∆; Γ 1 e : s such that the position of D in D corresponds to the position of [] in E . We conclude by taking Γ Γ 2 and observing that D is a sub-derivation of D and that its position within D corresponds to the position of [] in E . Lemma 7 (replacement). If: 1. D is a derivation of ∆; Γ 1 + Γ 2 E [e] : t, 2. D is a sub-derivation of D concluding that ∆; Γ 2 e : s, 3. the position of D in D corresponds to the position of [] in E , 4. ∆; Γ 3 e : s, 5. Γ 1 + Γ 3 is defined, then ∆; Γ 1 + Γ 3 E [e] : t. Proof. By induction on E .

def=

 Γ 13 , ε : [T j] ε and Γ 22 def = Γ 22 , ε : [T j] ε and let Γ 1 def = Γ 10 + Γ 11 + Γ 13 and Γ 2 def = Γ 20 + Γ 21 + Γ 12 + Γ 22 . From Lemma 7, Lemma 3, and [t-app] we deduce ∆; Γ 1 E [ε] : unit and ∆; Γ 2 E [v ε] : unit. Let Γ def = Γ 1 + Γ 2 . We derive ∆; Γ Q with one application of [t-par] and we conclude by observing that Γ Γ (one accounts for the actual choice, the other for T j ∼ S j). Case [R12]. Then P = E [e] → E [e] = Q where e → e . From [t-thread] we deduce ∆; Γ E [e] : unit. From Lemma 6 we deduce that there exist Γ 1 , Γ 2 , and t such that Γ = Γ 1 + Γ 2 and ∆; Γ 1 e : t. From Theorem 1 we deduce ∆; Γ 1 e : t for some Γ 1 ∼ Γ 1 . From Lemma 7 and using one application of [r-thread] we derive ∆; Γ 1 + Γ 2 E [e]. We conclude by taking Γ def = Γ 1 + Γ 2 and observing that Γ ∼ Γ . Case [R13]. Then P = P 1 | P 2 → P 1 | P 2 = Q where P 1 → P 1 . From [t-par] we deduce Γ = Γ 1 + Γ 2 and ∆; Γ i P i for i = 1, 2. By induction hypothesis we derive ∆; Γ 1 P 1 for some Γ 1 such that Γ 1 * Γ 1 . We conclude by taking Γ def = Γ 1 + Γ 2 using one application of [t-par] and Proposition 3.Case [R14]. Then P = (νa)P → (νa)Q = Q where P → Q . From [t-session] we deduce ∆, a, a; Γ , a : [T] a , a : [S] a P and T ∼ S. Note that Γ , a : [T] a , a : [S] a is well formed, ground and balanced if so is Γ . By induction hypothesis we deduce that there exist Γ , T , and S such that ∆, a, a; Γ , a : [T] a , a : [S] a Q and Γ , a : [T] a , a : [S] a * Γ , a : [T] a , a : [S] a , hence Γ * Γ . From Proposition 3 we deduce that T ∼ S . We conclude with one application of [t-session]. Case [R15]. Easy consequence of Lemma 9 and the induction hypothesis.

Table 1 .

 1 FuSe {} : syntax (‡ marks the runtime syntax not used in source programs).

	Notation x, y ∈ Var	variables
		ρ ∈ IdVar	identity variables
		a, b ∈ Channel	session channels
		ε ∈ Channel ∪ Channel	endpoints
		u ∈ Channel ∪ Channel ∪ Var	names
		ι ∈ Channel ∪ Channel ∪ IdVar ∪ IdVar	identities
	Expression e ::= v	value
		| x	variable
		| e e	value application
		| e [ι]	identity application
		| let x, y = e1 in e2	pair splitting
		| match e with {Ci ⇒ ei}i∈I	pattern matching
		|	ι, e	packing
		| let ρ, x = e1 in e2	unpacking
		| {e} u	resumption
	Value	v, w ::	

Table 2 .

 2 FuSe {} : operational semantics.

	Reduction of expressions	e → e
	[R1]	(λx.e) v → e{v/x}
	[R2]	

Table 4 .

 4 FuSe {} : static semantics.

	Typing rules for expressions	∆; Γ e : t
	[t-const]		[t-split]
		Γ :: U	∆; Γ1 e1 : t1 × t2	∆; Γ2, x : t1, y : t2 e2 : t
	∆; Γ c : t	c : t	∆; Γ1 + Γ2 let x, y = e1 in e2 : t
	[t-name]		[t-case]
	∆; Γ , u : t u : t	Γ :: U	

∆; Γ1 e : {Ci of ti}i∈I ∆; Γ2 ei : ti → κ i t (i∈I) ∆; Γ1 + Γ2 match e with {Ci ⇒ ei}i∈I : t [t-fun] ∆; Γ , x : t e : s ∆; Γ λx.e : t → κ s Γ :: κ [t-app] ∆; Γ1 e1 : t → κ s ∆; Γ2 e2 : t ∆; Γ1 + Γ2 e1 e2 : s [t-id-fun] ∆, ρ; Γ v : t ∆; Γ Λρ.v : ∀ρ.t [t-id-app] ∆; Γ e : ∀ρ.t ∆; Γ e [ι] : t{ι/ρ} ι ∈ ∆ [t-resume] ∆; Γ , u : [T]ι e : t × [1]ι ∆; Γ , u : [T ;S]ι {e} u : t × [S]ι [t-pack] ∆; Γ e : t{ι/ρ} ∆; Γ ι, e : ∃ρ.t ι ∈ ∆ [t-unpack] ∆; Γ1 e1 : ∃ρ.t ∆, ρ; Γ2, x : t e2 : s ∆; Γ1 + Γ2 let ρ, x = e1 in e2 : s Typing rules for processes ∆; Γ P [t-thread] ∆; Γ e : unit ∆; Γ e [t-par] ∆; Γi Pi (i=1,2) ∆; Γ1 + Γ2 P1 | P2 [t-session] ∆, a, a; Γ , a : [T]a, a : [S] a P ∆; Γ (νa)P T ∼ S

Theorem 2 (progress for expressions).

 Theorem 1 guarantees that resumptions in well-typed programs do not change arbitrarily the session types of endpoints. The only permitted changes are those allowed by session type equivalence. Concerning progress, we have: If Γ is ground and well formed and ∆; Γ e : t and e →, then either e is a value or e = E [K v] for some E , v, w, and K ∈ {fork w, create, send w, receive, select w, branch}.

Theorem 1 (SR for expressions). Let ∆; Γ e : t where Γ is ground and well formed. If e → e , then ∆; Γ e : t for some Γ such that Γ ∼ Γ .

 1 fix : ((s → t) → s → t) → s → t and ∆; Γ 2 v : (s → t) → s → t and ∆; Γ 3 w : s. From Lemma 1 we deduce Γ 1 :: U and Γ 2 :: U. In particular, Γ 2 = Γ 2 + Γ 2 . From [t-app] we deduce ∆; Γ 1 + Γ 2 v (fix v) : s → t. From [t-app] we deduce ∆; Γ e : t and we conclude by taking Γ Then e = let ρ, x = ε, v in e → e {ε/ρ}{v/x} = e . From [t-unpack] we deduce Γ = Γ 1 + Γ 2 and ∆; Γ 1 ε, v : ∃ρ.s and ∆, ρ; Γ 2 , x : s e : t. From [t-pack] we deduce ∆; Γ 1 v : s{ε/ρ} and ε ∈ ∆. From the (implicit) assumption that every typing judgment is well formed we deduce ρ ∈ fid(Γ 2) ∪ fid(t), hence Γ 2 {ε/ρ} = Γ 2 and t{ε/ρ} = t. From Lemma 5 we deduce ∆; Γ 2 , x : s{ε/ρ} e {ε/ρ} : t. From Lemma 4 we deduce ∆; Γ 1 + Γ 2 e {ε/ρ}{v/x} : t and we conclude by taking Γ

	def = Γ .
	Case [R6]. def

The claim made in[START_REF] Thiemann | Context-Free Session Types[END_REF] that send_tree_aux is ill typed is incorrect. There exist typing derivations for send_tree_aux proving that it has type α tree → T → T for every T that satisfies the equation T = ⊕[`Leaf : T, `Node : !α;T, . . .].

A Supplement to

Proof. All properties are proved by simple applications of the coinduction principle. For illustrative purposes we focus on item [START_REF] Dardha | Session types revisited[END_REF]. It suffices to show that R def = ∼ ∪ {(T ;S, T ;S) | T ∼ T , S ∼ S } is included in ∼. Suppose (T 1 ;T 2 , S 1 ;S 2) ∈ R. By definition of R we deduce T i ∼ S i for i = 1, 2. We now prove conditions 1-3 of Definition 2 in order.

Concerning condition (1), we deduce

A.2 Auxiliary notions for type environments

Note that every environment Γ such that Γ :: U is trivially balanced, since all the endpoints in its domain must be associated with types of the form [T] ε where T ∼ 0. Proposition 3. Let Γ R Γ where R ∈ {∼, }. The following properties hold:

Proof. Trivial from Definitions 7 and 8.

A.3 Subject reduction for expressions

Definition 11 (subkinding). Let ≤ be the least total order on kinds such that U ≤ L. We say that κ 1 is subkind of

The following lemma relates the kind of a value with that of the environment in which it is typed. Lemma 1. If ∆; Γ v : t and t :: κ, then Γ :: κ.

Proof. By induction on the structure of v and by cases on its shape.

By inspecting Table 3 we observe that t :: κ implies t i :: κ for every 1 ≤ i ≤ n. By induction hypothesis we deduce Γ i :: κ for every 1 ≤ i ≤ n, hence we conclude Γ :: κ.

Case v = λx.e. From [t-fun] we deduce t = t 1 → κ t 2 where κ ≤ κ and Γ :: κ , hence we conclude Γ :: κ.

Case v = Λρ.w. From [t-id-fun] we deduce t = ∀ρ.s and ∆, ρ; Γ w : s. From the hypothesis t :: κ and Definition 3 we deduce s :: κ. By induction hypothesis we conclude Γ :: κ.

Case v = ε. Then Γ = Γ , ε : t. From [t-name] we deduce Γ :: U hence we conclude Γ :: κ.

Case v = ε, w . From [t-pack] we deduce t = ∃ρ.s and ∆; Γ w : s{ε/ρ}. From the hypothesis t :: κ and Definition 3 we deduce s :: κ hence s{ε/ρ} :: κ. By induction hypothesis we conclude Γ :: κ.

Hereafter we write fn(e) for the set of names occurring free in e.

Lemma 2. If ∆; Γ e : t, then fn(e) ⊆ dom(Γ).

Proof. A simple induction on the derivation of ∆; Γ e : t.

The type system enjoys an almost standard weakening property. Note that weakening is allowed for unlimited environments only.

Lemma 3 (weakening). If

Proof. A simple induction on the derivation of ∆; Γ 1 e : t.

Lemma 4 (value substitution). If

Proof. By induction on the derivation of [START_REF] Ahmed | L 3 : A linear language with locations[END_REF] and by cases on the last rule applied. We only discuss a few significant cases.

Case [t-const]. Then e = c for some constant c and (Γ 1 , x : s) :: U. In particular, s :: U. From Lemma 1 we deduce Γ 2 :: U and we conclude with Lemma 3.

Case [t-name]. Then e = u and Γ 1 , x : s = Γ , u : s where Γ :: U. We distinguish three subcases, depending on whether u is an endpoint or a variable other than x or x itself. If u = ε or u = y = x, then s :: U. From Lemma 1 we deduce Γ 2 :: U and we conclude with Lemma 3. If u = x, then Γ 1 = Γ and e{v/x} = v and we conclude from [START_REF] Charguéraud | Functional translation of a calculus of capabilities[END_REF] and Lemma 3.

If e is a value, then e = (v,w) for some v and w, for those are the only values with a product type. Further, it must be the case that w = ε, for endpoints are the only values that can have type [START_REF] Ahmed | L 3 : A linear language with locations[END_REF] ε and Γ is well formed by hypothesis. This is absurd because e does not reduce.

A.5 Subject reduction for processes

The following results rely on an easy weakening property concerning the identity environment: Lemma 8. The following properties hold:

1. If ∆; Γ e : t, then ∆, ∆ ; Γ e : t; 2. If ∆; Γ P , then ∆, ∆ ; Γ P . Proof. By an easy induction on the respective derivations.

The next result states the obvious property that typing of processes is preserved by structural congruence. Lemma 9. If ∆; Γ P and P ≡ Q, then ∆; Γ Q.

Proof. An easy induction on the derivation of P ≡ Q and by cases on the last rule applied. Theorem 3 (SR for processes). Let ∆; Γ P where Γ is ground, well formed and balanced. If P → Q, then ∆; Γ Q for some Γ such that Γ * Γ .

Proof. By induction on the derivation of P → Q and by cases on the last rule applied. We only discuss a few representative cases.

Case recalling that protocol duality is an involution, that ∼ is reflexive, and taking