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ABSTRACT

We image the lithospheric and upper asthenospheric structure beneath 
the central and eastern parts of the northern Gulf of Aden rifted passive conti­
nental margin with 59 broadband stations to evaluate the role of transform 
fault zones on the evolution of magma-poor continental margins. We used tele­
seismic tomography to compute a relative P wave velocity model in eastern 
Yemen and southern Oman down to 400 km depth. Our model shows low-
velocity anomalies located in the vicinities of five major fracture zones and 
regions of recent volcanism. These low-velocity anomalies are likely caused by 
localized asthenospheric upwelling and partial melting, caused by small-scale 
convection promoted by gradients in the lithosphere-asthenosphere bound­
ary topography near the fracture zones. In addition, low velocities underlie 
regions of elevated topography between major sedimentary basins. We sug­
gest that locally buoyant mantle creates uplift and dynamic topography on the 
rift margin that affects the course of seasonal rivers and the sedimentation at 
the mouth of those rivers. Our new P wave velocity model suggests that the 
dynamic topography and recent volcanism in the central and eastern Gulf of 
Aden could be due to small-scale convection at the edge of the Arabian plate 
and/or in the vicinity of fracture zones.

INTRODUCTION

There are two main categories of passive continental margins: volcanic 
margins where there is evidence of significant magmatism, or magma poor 
where there is not. If magmatism is present, it may be synbreakup or post­
breakup. Explanations for magmatism during breakup include rifting above 

mantle with elevated temperatures (White et al., 2008) or more than normal 
volatile component (Shillington et al., 2009), which promote greater melting. 
Abnormal mantle temperatures are commonly attributed to presence of a 
mantle plume beneath a rift (e.g., Debayle et al., 2001; Chang et al., 2011), or 
from lateral flow and channelization of plume material along thinned litho­
sphere (e.g., Ebinger and Sleep, 1998; Leroy et  al., 2010b). Mantle melting 
can also be promoted by elevated rates of plate thinning, achieved either 
by faster or more localized extension (White and McKenzie, 1989; Bown and 
White, 1995; Bastow and Keir, 2011). Increased melting can also be caused 
by presence of localized thin zones in the plate prior to arrival of a thermal 
anomaly and extension (Armitage et al., 2010). Models predict that the ther­
mal anomaly created by synrift mantle upwelling will cool after breakup. For 
the Gulf of Aden, we expect the mantle to have cooled by 50 °C since breakup 
~18 m.y. ago (Lucazeau et al., 2008), and therefore no magmatism is expected. 
Causes of magmatism both during and after continental rifting include small-
scale convection (e.g., King and Anderson, 1998; Morency et al., 2005) and 
melt focusing (Kendall et  al., 2005), both caused by sharp gradients in the 
lithosphere-asthenosphere boundary topography. In the central and eastern 
Gulf of Aden postrift magmatism exposed at the surface is localized spatially 
(Fig. 1) and associated with the termination of major fracture zones (Figs. 1 
and 2). In this paper we image the seismic velocity structure of the mantle be­
neath the central and eastern Gulf of Aden in order to understand the mantle 
processes responsible for their origin.

The Gulf of Aden provides a unique opportunity to study how magmatism 
affects the breakup process as the passive continental margin transitions in 
character from nonvolcanic in the east to volcanic in the west. The transition is 
most commonly attributed to elevated mantle potential temperatures of 1450 K 
during breakup in the west (Rooney et al., 2012; Ferguson et al., 2013) compared 
to normal mantle potential temperatures in the east. Elevated mantle tem­
peratures in the west are likely caused by presence of the deep-seated plume 
(e.g., Debayle et al., 2001; Bastow et al., 2008). The Gulf of Aden has conjugate 
rifted continental margins that are 50–250 km apart in the magma-rich west, 
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increasing to 500 km apart in the magma-poor east. Some localized patches 
of surface volcanism have been observed on the magma-poor margin of the 
central and eastern Gulf of Aden (Figs. 1 and 2). These two types of passive 
continental margins are well studied, but the transition from one to the other is 
not well known. We study the structure of the lithosphere and upper astheno­
spheric mantle under the northern Gulf of Aden passive continental margin 
from the city of Al Mukalla (49°E, 14.5°N, Yemen) to Ras Madrakah (58°E, 19°N, 
Oman), within which the margin is segmented along strike by five major trans­
form fracture zones (Fig. 2). We use our imaging of mantle structure and its 

spatial relationship to volcanism and major structures such as fracture zones to 
understand the origins of the magmatism after breakup.

Our work incorporates data from 32 broadband stations in Yemen and 27 
broadband stations in the southern Sultanate of Oman (Dhofar region: Leroy 
et al., 2010a; Ahmed et al., 2013; Korostelev et al., 2014; Corbeau et al., 2014) 
that operated during the 2009–2011 YOCMAL project (young conjugate mar­
gins laboratory) (Fig. 2). In addition, we used the recordings from 30 broadband 
stations from the 2003–2006 Dhofar Seismic Experiment (in Oman; Basuyau 
et al., 2010; Fig. 2). In total we incorporate 833 earthquakes recorded from 2003 
to 2006 and from 2009 to 2011 (Fig. 3) to compute a velocity model for the prop­
agation of P waves in the crust and upper part of the mantle. To do that, we 
used the classical ACH teleseismic tomography method (Aki et al., 1974). This 
method consists of embedding a local three-dimensional model volume that 
is beneath the network within a global spherically symmetric reference model. 
The ACH method is used together with the fast marching method (FMM) (e.g., 
Sethian 1996, 1999, 2001) that rapidly computes traveltimes into the model. We 
aim to characterize the lithospheric and upper asthenospheric structures of the 
passive continental margin of the eastern Gulf of Aden in order to (1) demon­
strate the influence of major transform faults on the passive continental mar­
gins, and (2) provide a better understanding of the origin of surface volcanoes 
and topography.

GEODYNAMIC SETTING

The continental rifting of the Gulf of Aden began ca. 34 Ma (Robinet et al., 
2013); seafloor spreading initiated at the beginning of Miocene, 17.6  Ma 
(d’Acremont et al., 2006, 2010; Leroy et al., 2012). During the same period, mantle 
exhumation was activated east of the Alula-Fartak fracture zone (d’Acremont 
et al., 2006; Leroy et al., 2010a; Autin et al., 2010; Watremez et al., 2011). Exten­
sion proceeded in a west-southwest direction as far as the Gulf of Tadjoura. The 
Gulf of Aden extension direction is oblique to the strike of the rift, resulting in it 
being segmented by several major fracture zones striking N020°–N030° (Fig. 2).

The Gulf of Aden has a magma-poor or nonvolcanic margin to the east (Leroy 
et al., 2004; d’Acremont et al., 2005) and a magma-rich or volcanic margin to the 
west (Tard et al., 1991; Leroy et al., 2012; Ahmed et al., 2013); the magmatism is 
commonly attributed to elevated mantle temperatures associated with a mantle 
plume beneath Afar. It was previously assumed that the major discontinuity of 
Shukra el Sheik (long ~44°E) may indicate the spatial limit of the Afar plume’s 
influence, as it corresponds to a major change in rheology of the lithosphere 
(Hébert et al., 2001). However, several studies propose a limit of influence up 
to Xiis–Al Mukalla fracture zone (e.g., Leroy et al., 2012; Bellahsen et al., 2013). 
The rifted continental volcanic margins near the plume have synrift seaward-dip­
ping reflector sequences to 5 km thick (Tard et al., 1991; Leroy et al., 2012). Sea­
ward-dipping reflectors are sparse in the east, especially in the ocean-continent 
transition (Autin et al., 2010; Leroy et al., 2010a), and no synrift volcanism has 
been observed east of long 46°E (Leroy et al., 2012; see Figs. 1 and 2).
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We studied the eastern part of Yemen and southwestern part of Oman in a 
region from the city of Al Mukalla (49°E, 14.5°N, Yemen) to Ras Madrakah (58°E, 
19°N, Oman) (Fig. 2). The study region includes the landward continuation of 
five main fracture zones that can be mapped at sea, oriented N025°–N030°, 
the Khanshir Al Irqah, Xiis–Al Mukalla, Bosaso-Masilah, Alula-Fartak, and 
Socotra-Hadbeen fracture zones (Leroy et al., 2012; Bellahsen et al., 2013). The 
most striking geological pattern of the area is the presence of recent volcanism 
near the city of Al Mukalla (49°E, 14.5°N, Yemen), and around the southern 
part of Wadi Masilah (Leroy et al., 2010a; purple shaded areas, Fig. 2). Other 
volcanic fields exist on the southern conjugate margin in Somalia, near Bosaso 
and Qandala (Fantozzi and Sgavetti, 1998). Moreover, some recent magmatism 
has been observed offshore in the ocean-continent transition of the eastern 
Gulf of Aden margin (Lucazeau et al., 2009; Autin et al., 2010; Watremez et al., 
2011), offset from the axis of the Sheba ridge (d’Acremont et al., 2010) and be­
low the adjoining continental margin in the north (Basuyau et al., 2010).

The Gulf of Aden oceanic basin is located between two 150-km-thick blocks 
of continental lithosphere (Rolandone et  al., 2013), and has a configuration 
that promotes channelization of plume material from Afar to the east, along 

the Aden and Sheba ridges (Leroy et al., 2010b). It has been proposed that 
the 180  km offset of the Alula-Fartak fracture zone (d’Acremont et  al., 2010) 
limits the flow, causing part of the plume material to be redirected between the 
Alula-Fartak and the Socotra Hadbeen fracture zones (Fig. 2).

In the easternmost part of our study zone, the East Arabian strike-slip fault 
zone is a north-northwest fault zone offshore Ras Madrakah (58°E, 19°N) and 
Masirah Island (58.5°E, 20.5°N, Fig. 2). This strike-slip fault is located between 
two different units: the Masirah ophiolite (obducted oceanic crust of Tithonian 
age) and the Owen basin (oceanic crust of Cenozoic age) (Immenhauser, 1996; 
Whitmarsh, 1979; Prell et al., 1990; Robinet et al., 2013). The Masirah ophiolite 
front is the contact zone between continental units of the Masirah basin to the 
west and the Masirah ophiolite to the east (Fig. 2).

PREVIOUS SEISMOLOGIC STUDIES

Several seismological studies were conducted on the Arabian plate during 
the past few decades. They enable us to better understand the seismic struc­
ture of the crust and the lithosphere, thereby constraining the morphology and 
elastic properties of the Arabian plate, from which its evolution can be inter­
preted (e.g., Hansen et al., 2006; Al-Lazki et al., 2002). The thickness of the crust 
has been estimated as 33–37 km thick in northern Arabia and 41–53 km thick 
in the south (Al-Lazki et al., 2002). Mechie et al. (2013) imaged sharp changes 
in crustal thickness beneath the margins of the southern Red Sea and Gulf of 
Aden, probably due to the presence of high-velocity mafic bodies (Van Aven­
donk et al., 2009). This was confirmed by the study of Ahmed et al. (2013), who 
imaged a transition from a 35-km-thick crust (inland) to a 14-km-thick crust (on 
the coast) across the Red Sea margin. Eastward in southern Oman the thick­
ness of the crust was been estimated to vary from ~35 km inland to 26 km at 
the coast (Tiberi et al., 2007; Al-Hashmi et al., 2011).

Seismological studies have provided large-scale images of the lithosphere 
beneath the Arabian plate (e.g., Benoit et al., 2003; Park et al., 2007). In global 
surface-wave tomographic models, resolution is only achieved in the upper 
~1000  km of the mantle. Chang and Van der Lee (2011) used tomography 
combined with gravity and receiver functions techniques to image the Ara­
bian plate with a resolution of a few hundred kilometers. Hansen and Nyblade 
(2013) computed a P wave velocity model for eastern Africa and southern Ara­
bia, with ~5° of resolution. These studies show that the central and eastern 
Gulf of Aden is characterized by normal wavespeed mantle.

Corbeau et al. (2014) studied the southern Arabian plate at a regional scale, 
using Pn tomography on a relatively dense collection of stations deployed in East 
Africa and Arabia, including our study region; their model displays low-velocity 
anomalies in the uppermost mantle lid under the recent volcanic zones in the 
Gulf of Aden. Corbeau et al. (2014) also suggested that transform faults may act 
as rheological barriers, thus diverting flow away from the ridge, toward present 
locations of recent volcanism. This would support the plume-ridge interaction 
model proposed in Leroy et al. (2010b), in which Afar plume material could be 
channeled beneath a narrow lithospheric corridor under the Aden ridge.

Figure 3. Azimuthal distribution of earthquakes of magnitude 5.5 or more used in this study.
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At a more local scale, the western Gulf of Aden was imaged in Korostelev 
et al. (2014) using teleseismic tomography, and inferred small-scale upwelling 
beneath young rift flank volcanoes. Basuyau et al. (2010) computed a P wave 
velocity model for the region of Dhofar (Oman) using the Dhofar Seismic Ex­
periment network, and imaged two low-velocity anomalies in the upper mantle 
beneath the northern continuity of Alula-Fartak and Socotra-Hadbeen fracture 
zones; they also inferred partial melting associated with these two anomalies.

DATA

We significantly improve the understanding of mantle structure and melt­
ing processes beneath the eastern Gulf of Aden using data recorded by broad­
band seismic stations on the south of the Arabian plate. Data have been col­
lected from 89 temporary broadband stations: 30 stations deployed during the 
2003–2006 (Dhofar Seismic Experiment; used by Basuyau et al., 2010) and 59 
stations deployed during March 2009 to March 2010 (YOCMAL project; Leroy 
et al., 2010a). The network extends from the city of Al Mukalla in Yemen to 
Ras Madrakah (58°E, 19°N) in the Sultanate of Oman (Fig. 2). The stations are 
all located <350 km from the sea, between the desert and the coast. They are 
not equally distributed in space because the area is not easily accessible. The 
impact of the stations distribution is discussed with the use of a checkerboard 
test. We selected 833 clear events of magnitude ≥5.5 (Fig. 3). Most of the events 
arrived as P (epicentral distance from 30° to 90°), and we also picked events 
that arrived as PP and PKP in order to improve azimuthal covering. The events 
were picked using SAC (Seismic Analysis Code; http://​ds​.iris​.edu​/ds​/nodes​
/dmc​/forms​/sac/) software, after which we computed 11339 delay times with re­
spect to the ak135 reference Earth model (Kennett et al., 1995). The 2003–2006 
events were picked by Basuyau et al. (2010) using the waveform cross-correla­
tion method of VanDecar and Crosson (1990). For the 2009–2011 events, we 
chose to hand-pick the earthquake arrivals as it took the same time and was 
more precise in our case. For each arrival, an error in arrival time was assigned 
(a, b, c, or d) within the range ±0.05 to ±0.2 s. Quality d (which equates to 
picking error of ±0.2 s) was not used, and when no picking was possible due to 
noise, we discarded the data. We used a bandpass filter between 0.2 and 2Hz.

METHOD

The key assumption of teleseismic tomography is that velocity variations 
located far from the network do not significantly affect relative arrival-time re­
siduals derived from teleseismic body waves. We can thus determine velocity 
variations in the volume that is beneath the network of stations. The standard 
ACH method approach is to embed this local three-dimensional model volume 
within a global spherically symmetric reference model (Aki et al., 1977; Benz 
et al., 1992; Saltzer and Humphreys, 1997; Frederiksen et al., 1998). This allows 
rapid traveltime predictions to be made from the source to the boundary of 

the local model. Then more sophisticated ray-tracing techniques are used to 
derive the heterogeneous local model.

The iterative nonlinear method used in this study was developed by Rawlin­
son et al. (2006). The model is defined by a mesh of velocity nodes in spherical 
coordinates (0.25° × 0.25°). Traveltimes from each source to the base of the 
local model are computed through the ak135 global reference model using 
the approach of Kennett and Engdahl (1991). Then, the FMM method is used 
to compute traveltimes from the base of the local model to the network on the 
surface (e.g., Sethian, 1996, 1999, 2001; Sethian and Popovici, 1999; Rawlinson 
and Sambridge, 2005). The inversion is then computed using the subspace 
inversion method (Kennett et al., 1988).

For this study we selected a model composed of nine 50-km-thick layers, 
distributed from the surface down to 450 km. Horizontally, the node spacing is 
0.25° × 0.25° (i.e., the average distance between two stations). The smoothing 
factor, which limits the short wavelength velocity variations, and the damping 
factor were chosen after a series of tradeoff tests following the approach of 
Rawlinson et  al. (2006). Variations in damping and smoothing factors were 
tested in order to address the nonuniqueness of the solution. We chose 
a damping factor of 10 and smoothing factor of 5, which correspond to the 
values chosen by Rawlinson et al. (2006). The one-dimensional reference or 
starting model is ak135; 10 iterations are applied to the relative arrival-time 
residuals to produce a stable solution model. The solution model reduces the 
data variance by 76.5% from 0.7998 s2–0.01882 s2, which corresponds to a root 
mean square reduction from 282.8 ms to 137.2 ms. This data variance is also 
similar to 74% data variance achieved using the same method in Rawlinson 
et al. (2006). The remaining misfit can be attributed to factors such as crustal 
structures and mantle structure beneath the local model volume.

Checkerboard Test

A synthetic checkerboard test is computed in order to investigate the 
robustness of the solution model. For this test we use the same sources, re­
ceivers, and phase types as in our data set to predict the arrival-time residuals 
for a synthetic checkerboard structure. To do that, we placed anomalies at 50, 
150, and 300 km depth that alternate between slow and fast velocities (Figs. 4A, 
4C). The anomalies are 2 × 2 nodes in width. The data set calculated through 
this synthetic velocity model is then inverted, and the retrieved anomalies 
provide an indication of the resolution that can be achieved in our solution 
velocity model. Our network dimensions are ~350 km from north to south, and 
~1100 km from west to east. According to Evans and Achauer (1993), our depth 
resolution corresponds to the lateral extent of our network at the surface. Thus, 
the maximum investigation depth of our teleseismic tomography study corre­
sponds to the minimum lateral extent of our network, which is 350 km depth.

Figures 4B and 4D display the retrieved velocity models. At all depths, the 
resolution is best in the central part of our network, Dhofar (Oman), due to 
increased station density and crossing rays. The westernmost part of the net­
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work consists of two profiles (in Yemen), so the distribution of the stations is 
linear and there are fewer ray crossings and poorer resolution. However, the 
synthetic checkerboard structures are distorted but can be retrieved. At depths 
of 150 and 300 km, the number of crossing rays increases under the region, so 
the resolution improves. Under 400 km, the rays are too dispersed to reliably 
interpret the structures.

RESULTS

Structures at Shallow Depth

The result of our inversion displays anomalies with a higher amplitude 
(ranging –3.75% to +5%) at crustal depth (≤ 30 km) in the west of the study area 
(Fig. 5). From Hasik (56°E, 18°N) to the Ras Madrakah peninsula (58°E, 19°N, 
Fig. 2), velocity anomalies are low amplitude. The anomalies imaged at crustal 
depth can be related to geological structures observed at the surface. Generally, 
low-velocity anomalies are at sedimentary basins, and high-velocity anomalies 
are beneath basement outcrops. The crustal low-velocity anomalies located 

along the coast of eastern Yemen could be related to the Masilah and Jiza-
Qamar basins, filled with Jurassic (for Masilah) or Campanian (for Jiza-Qamar) 
to Paleocene–early Eocene sediments (Fig. 6A). However, these low-velocity 
anomalies are also located near volcanic fields, such as Al-Mukalla or Wadi 
Masilah (purple shaded areas, Fig. 2). This may suggest that low velocities are 
caused by partial melt and elevated temperatures within the plumbing systems 
associated with these volcanoes. A positive velocity anomaly in the eastern 
part of Yemen near Thamud (50°E, 17.5°N) is associated with the Cretaceous 
Hadramaut arch (Fig. 2), and one east of Salalah (54°E, 17°N) is consistent with 
Mirbat Precambrian basement outcrop along the margin, where prerift sedi­
mentary cover is absent. In southern Oman, two other low-velocity anomalies 
may correspond to the Ashawq basin depocenter and to the 3 km of sediments 
deposited in the Salalah plain (Fig. 6A). The low-velocity anomalies of southern 
Dhofar are close to the Ashawq-Salalah volcanic zone mapped by bathymetry 
and seismic data in the Ashawq-Salalah segment (Autin et al., 2010; Lucazeau 
et al., 2008; Leroy et al., 2010b) (Fig. 2, purple shaded area). Near Ras Madrakah 
(58°E, 19°N) the low-velocity anomaly in the easternmost part of our study area 
seems to be consistent with a Cretaceous sedimentary basin partly covered by 
the Masirah ophiolite (Robinet, 2013; Robinet et al., 2013).
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B  Output in map

C   Initial Synthetic model in vertical cross section

D  Output model in vertical cross section
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Structures Observed at Depth

The mantle beneath central and eastern Yemen is not homogeneous, 
but is characterized by variations in seismic velocity. Generally, low-
velocity anomalies are observed in discrete lobes that are 100–300  km 
in width. The Al  Mukalla low-velocity anomaly (Fig. 6A) is located at 
the northward continuity of Xiis–Al Mukalla fracture zone, and west of 
Bosaso-Masilah fracture zone. This anomaly can be observed from the sur­
face to the bottom of our velocity model (Fig. 7, cross-sections A-A′ and 
B-B′; Fig. 8, cross-section F-F′), with a maximum amplitude at 50 km depth. 
The anomaly is close to Al Mukalla volcano (Fig. 6; Fig. 7, cross-section 
A-A′; Fig. 8, cross-section F-F′).

Under the Wadi Masilah and Wadi Dhahawn zones, there are low-velocity 
anomalies that join at ~100 km depth (Fig. 7, cross-section B-B′; Fig. 8, cross-sec­
tion G-G′). As we have no resolution between Al Mukalla, Wadi Masilah, and 
Wadi Dhahawn for the upper 100 km, we cannot determine if these anoma­
lies are one linked feature or multiple low-velocity anomalies. Their maximum 
amplitude is ~–2.5% for Wadi Masilah and Wadi Dhahawn and ~–3.75% for 
Al Mukalla at 50 km depth. Deeper, the amplitude decreases, but low velocities 
are still present to depths of 350 km.

The Shaen-Simar (52.5°E, 17.5°N) low-velocity anomaly was imaged by 
Basuyau et  al. (2010) as between 60 and 200  km depth, with a width of 
~100 km. We retrieve this anomaly at the same location and same depth 
range, as seen in Figures 5 and 7 (cross-section C-C′). The Shuwaymiyyah 
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low-velocity anomaly (55.5°E, 17.5°N, Fig. 5; Fig. 7, cross-section C-C′; Fig. 8, 
cross-section I-I′) corresponds to their eastern anomaly. We also retrieve it at 
the same location and depth range. This anomaly seems to be smaller than 
that at Shaen-Simar (52.5°E, 17.5°N), and to have a lower amplitude (~–1.8% at 
100 km depth). These two anomalies are imaged along the landward contin­
uation of two main fracture zones, Alula-Fartak and Socotra-Hadbeen. Owing 
to a greater number of stations, and a wider spatial extent of the network, we 
achieve better resolution for these two anomalies; they were on the edges of 
the model of Basuyau et al. (2010), and are now at the center of our network, 
so they are better constrained.

The last important low-velocity anomaly displayed in our model 
(Madrakah-Masirah, Fig. 5; Fig. 7, cross-sections D-D′, E-E′; Fig. 8, cross-section 
G-G′) is located in the extreme part of the Ras Madrakah (58°E, 19°N) peninsula 
at 0–70 km depth, and then it deepens toward the north-northeast (to 58.25°E, 

20°N). As the network did not extend to Masirah Island (58.5°E, 20.5°N), our 
model only places some constraints on structure below 200 km near the south­
ern edge of our study region (Fig. 7, cross-section E-E′; Fig. 8, cross-section 
J-J′). This anomaly is located between the Masirah ophiolite front and the East 
Arabian strike-slip fault zone (Figs. 6A, 6B).

DISCUSSION

Our study provides an image of the structure of the lithosphere and upper 
asthenosphere below the southern Arabia passive continental margin. These 
results allow us to discuss the influence of major transform faults on the pas­
sive continental margins and the origin of surface structures of the margin, 
such as volcanoes and topography.
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Transform Fault Zones and Volcanism

The low velocities observed in our model are located beneath the passive 
continental margin of the Gulf of Aden, in the vicinity of major fracture zones. 
Models predict that the thermal anomaly created by synrift mantle upwelling 
will cool after breakup. For the Gulf of Aden, models of post-breakup thermal 
relaxation predict that the mantle cooled by 50  °C since breakup ca. 18 Ma 
(Lucazeau et al., 2008). The low-velocity anomalies are therefore unlikely due 
to the synrift thermal or melt related anomalies, since they should have cooled. 
An alternative mechanism is required.

King and Anderson (1998) inferred that at the edge of a continent, the ther­
mal conditions drive a strong and unsteady flow. This means that the condi­
tions of the lithosphere can promote mantle flow at the edges of continents. 
Numerical modeling by Morency et al. (2005) computed that ~30–40 m.y. after 
rifting, downward instabilities and then small-scale convection can develop 
under a cooling oceanic lithosphere. This is likely to occur near the ocean-
continent transition (Lucazeau et al., 2008, 2009, 2010). Moreover, in the case of 
transform faults, instabilities develop for each fault, much faster (~16 m.y.) than 
under an oceanic lithosphere without transform faults. Transform faults juxta­
pose lithosphere of different ages and thicknesses (e.g., Dumoulin et al., 2008).
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Flow initiates under the lithosphere from the young side toward the old 
side of the transform fault, with thermal erosion of the thick lithosphere (Fig. 9; 
Dumoulin et al., 2008; Gerya, 2013). The lithospheric steps at depth and the 
location of the fracture zones at the surface show an offset; consequently, 
volcanoes can be observed on the old side of the fracture zone. Sleep (2002) 
noticed this paradox of volcanoes located on the old side of fracture zones, 
and explained it by additional heat supplied by small-scale convection under 
the lithosphere and by disappearance of lithospheric relief beneath a fracture 
zone. The magmatism may have no expression at the surface (Fig. 9).

Our study area is located at the edge of a continent, and is segmented 
by major fracture zones. The natural conditions are therefore similar to those 
in the model of Dumoulin et al. (2008). The oceanic lithosphere is older than 
16  Ma, and so small-scale convection can initiate in the vicinity of fracture 
zones (Morency et  al., 2005). In our model, we image several low-velocity 
anomalies along the Gulf of Aden, from the surface to our maximum investi­
gation depth (Fig. 5). Basuyau et al. (2010) noted two low-velocity anomalies 
in Dhofar from 60 to 200 km depth in the continuation of the Alula-Fartak and 
Socotra-Hadbeen fracture zones (Fig. 5). Channelization of a mantle flow from 
the Afar hotspot along the oceanic ridge and the fracture zones is invoked 
to explain these anomalies as well as the numerous active volcanoes (Leroy 
et al., 2010b; Corbeau et al., 2014).

The other low-velocity anomalies of our velocity model are also close 
to fracture zones (between 0 and 100 km), the Xiis–Al Mukalla and Bosaso-

Masilah fracture zones, and the East Arabian strike-slip fault. Their locations 
could also be consistent with a small-scale convection model (Fig. 6A).

Dynamic Topography and Uplift of the Southern Arabian Plate

The Gulf of Aden continental northern margin is characterized by elevated 
plateaus of more than 1000 m high, incised by a network of wadis (seasonal 
rivers). These high plateaus are located between the sea and Rub’ Al Khali 
desert (Fig. 10). Higher plateaus are found to the west of our study zone (Hadra­
maut plateaus, ~1000 m high), and lower ones are found to the east.

A residual topography model was computed by Daradich et al. (2003) by 
correcting the observed topography for crustal thickness variations assum­
ing isostatic compensation of the crust. This residual topography map shows 
two zones of high topography dynamically supported by upper mantle 
structures in the eastern Gulf of Aden. The first extends from Al  Mukalla 
to the Jiza-Qamar basin, and the second is north of Mirbat (57°E, 17.5°N, 
Fig. 2). Daradich et al. (2003) explained that elevated topography is dynami­
cally supported by seismically slow and thermally buoyant structures in the 
upper mantle.

In order to investigate whether the elevated topography observed in our 
study region is only due to isostatic compensation or could be supported dy­
namically (i.e., by hot mantle indicated by the low-velocity anomalies of our 
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model), we determined the expected elevation of the central and eastern Gulf 
of Aden margins using lithospheric isostatic balancing. We use the crustal 
thickness estimated by receiver functions in Yemen (our data) and Dhofar 
(Tiberi et al., 2007; Leroy et al., 2012; this study) and a 100-km-thick lithosphere 
to calculate the isostatic topography ziso (Fig. 11):

	 ziso = (f1lc + f2lm) – H,	  (1)

where lc is the crust thickness, lm is the lithosphere thickness, f1 = (ra – rc)/ra, and 
f2 = (ra – rm)/ra. Estimating that the isostatic topography matches the observed 
topography for a 40-km-thick crust (density rc = 2850 kg/m3) and a 100-km-thick 
lithosphere (density rm = 3250 kg/m3) requires an asthenosphere density (ra) 
of 3180 kg/m3. The average mid-oceanic ridge elevation, H, is 2.4 km (Lachen­
bruch and Morgan, 1990). The residual topography is derived from the differ­
ence between the observed and isostatic topography.

These rapid computations only allow us to interpret general trends rather 
than short wavelength variations; there can be errors of a few kilometers on 

the crustal thickness estimated by receiver functions. In Yemen and in Dhofar, 
the margin is not at isostatic equilibrium (i.e., the observed and isostatic topog­
raphy do not match; see Fig. 11). The observed topography is higher than the 
isostatic topography, so we have a positive residual topography. This means 
that the observed topography cannot be explained by isostasy. Therefore, 
there is probably dynamic support for the topography in the region from the 
presence of buoyant upper mantle. This support seems weaker in the eastern 
part of the model, as the topographies are much lower than in the west. It is 
also possible that the denudation of the margin plays an important role in its 
uplift, as isostatic response to erosion is often a large component of surface 
uplift rate (Molnar and England, 1990).

The structures imaged by Daradich et  al. (2003) coincide with the low-
velocity zones imaged in our solution model at upper mantle depths of 50 
and 70 km depth. Their resolution is only ~1 pixel/100 km. With our velocity 
model, however, we can decipher several smaller low-velocity zones. In Fig­
ure 10 we can see an image of the upper mantle velocity anomalies (at 70 km 
depth) on a topographic map. The largest wadi in Yemen, Wadi Masilah (51°E, 
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15°N), crosses the Hadramaut region and is bounded by low-velocity anoma­
lies to the south and north. The northern anomaly corresponds to high topog­
raphy and is the starting point for another wadi, heading toward Rub’ Al Khali 
desert (Saudi Arabia). The southern low-velocity anomaly is located under the 
Hadramaut plateaus. Between Wadi Masilah and Wadi Dhahawn, under the 
Fartak high (52°E, 15.5°N), another low velocity can be observed. In the Ras 
Madrakah peninsula (58°E, 19°N), the strong low-velocity anomaly in the upper 
mantle corresponds to a localized area elevated to 150 m with respect to the 
surroundings.

Several models have been developed in order to explain why uplift can 
occur. In thermal models, Keen (1985) and Buck (1986) proposed that uplift 
can result from heating of the rift flanks by small-scale convection during rift­
ing. For others (e.g., Cox, 1980; White and McKenzie, 1989), uplift could result 
from magmatic underplating due to the partial melting of the asthenosphere. 
However, even if the sea level was never high in central Yemen (lacustrine 
sedimentation; Leroy et al., 2012), the uplift observed in the central and east­
ern Gulf of Aden is recent and postrift (e.g., Bunce et al., 1974; Beydoun, 1991; 
Autin et al., 2010), and no large magmatic underplating has been described 
previously.

Traveltime tomography gives the present state of the upper mantle in 
terms of velocity variations, but it precludes any direct interpretation concern­
ing their origin. Several factors, such as temperature, chemical composition, 
or anisotropy, can affect the velocity of seismic waves (e.g., Karato, 1993; 
Sobolev et al., 1996). Low-velocity anomalies are generally interpreted as of 
thermal origin in the mantle. The abnormally slow features observed in our 
solution model could correspond to abnormally hot and buoyant upper mantle 
structures. Uplift can then be created by buoyancy due to elevated mantle tem­
peratures. The links between mantle structures and uplift have been studied at 
the large scale (e.g., Burke, 1996; Gurnis et al., 2000; Daradich et al., 2003). It is 
commonly accepted that large mantle structures such as a mantle plume can 
cause topographic swells of as much as 2 km in elevation and many hundreds 
to a few thousands of kilometers in diameter (e.g., Şengör, 2001; Saunders 
et al., 2007; Gurnis et al., 2000; Forte et al., 2010; Faccenna et al., 2014).

The elastic-viscous-plastic model of Burov and Guillou-Frottier (2005) pre­
dicts that upper mantle structure can produce transient topographic signatures 
such as uplift and subsidence at a large (>500 km) and small scale (down to 50–
100 km). For an upper mantle structure of diameter 100 km, located between 
100 and 200 km depth, the range of wavelength for an observable topographic 
signature will be 50–100 km (Burov and Guillou-Frottier, 2005). Therefore, the 
low-velocity–high-temperature structures that we observe in our solution 
model may trigger small-scale uplift on the Gulf of Aden northern margin.

The anomalously hot and buoyant upper mantle structures imaged in our 
model could have uplifted the central and eastern Gulf of Aden margin. At a 
smaller scale, these processes could have uplifted the Fartak high and thus 
have shifted the bed of Wadi Masilah, creating another smaller river, Wadi 
Dhahawn. This is consistent with the analysis of Bunce et al. (1974), in which 
they presented evidence for a shift of drainage area from Wadi Dhahawn 

to the southern Wadi Masilah; they noticed a large volume of sediments in 
Deep Sea Drilling Project Site 232 (Leg 24), to the west of Alula-Fartak frac­
ture zone, just in the continuity of Wadi Masilah. In these sediments, several 
slumping episodes dated 6–5 Ma mark one or more tectonic events related 
to the uplift of the margin (Bunce et  al., 1974). Moreover, the bathymetric 
and seismic reflection study of Baurion (2009) confirmed that the large vol­
ume of sediments offshore Wadi Dhahawn are not consistent with the pres­
ent-day drainage area. According Baurion, 2009, the Fartak high was uplifted 
ca. 10 Ma and cut Wadi Masilah into two smaller wadis. As a consequence 
the upper mantle small-scale convection can have an important effect on the 
drainage network through generation of topography. This has been shown at 
a large scale in Africa (Moucha and Forte, 2011). In addition in Oman, Roger 
et al. (1989), Platel and Roger (1989), and Leroy et al. (2012) explained the 
presence of Dhofar paleobeaches (beach rock) 13–25 m above sea level by a 
very recent rapid uplift of the region (post–2 Ma to present). These elevated 
features are above low velocities in our model (Ashawq and north of the city 
of Salalah).

CONCLUSIONS

We used teleseismic relative arrival-time tomography to compute a 
P wave velocity model of the upper mantle beneath the central and eastern 
Gulf of Aden margins. The strong correlation between low velocities in the 
mantle and region of uplift strongly suggests that mantle processes create 
dynamic support of the topography of the Hadramaut plateaus (Yemen to 
56°E, 18°N, and Oman), and for the easternmost part of the Ras Madrakah 
peninsula (58°E, 19°N, Oman). The plateaus created by the uplift likely af­
fect the course of wadis and the sedimentation at the mouth of the wadis. 
The localized nature of the low-velocity structures and spatial correlation 
to volcanism at the surface suggests that they are the expression of small-
scale convection created by the step in temperatures and thickness of litho­
sphere at the edge of the Arabian plate. The transform faults create another 
step between two distinct types of lithosphere (old versus young) and can 
also trigger small-scale convection. Our work shows that spatially local­
ized postrift magmatism in predominantly magma-poor rifted margins can 
be caused by localized small-scale convection focused near the steps in 
lithosphere-asthenosphere boundary topography and mantle temperatures 
at the juncture between fracture zones and the rifted margin. Such a mech­
anism facilitates both volcanism and localized dynamic uplift of the rifted 
margin well after breakup has occurred.
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