
HAL Id: hal-01385184
https://hal.science/hal-01385184v1

Submitted on 20 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

A fast voxelization algorithm for trilinearly interpolated
isosurfaces

Rachid Namane, Serge Miguet, Fatima Boumghar Oulebsir

To cite this version:
Rachid Namane, Serge Miguet, Fatima Boumghar Oulebsir. A fast voxelization algorithm for tri-
linearly interpolated isosurfaces. The Visual Computer, 2018, �10.1007/s00371-016-1306-0�. �hal-
01385184�

https://hal.science/hal-01385184v1
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

A Fast Voxelization Algorithm For Trilinearly Interpolated
Isosurfaces

Rachid Namane · Serge Miguet · Fatima Boumghar Oulebsir

Received: date / Accepted: date

Abstract In this work we propose a new method for
a fast incremental voxelization of isosurfaces obtained
by the trilinear interpolation of 3D data. Our objec-
tive consists in the fast generation of subvoxelized iso-
surfaces extracted by a point-based technique similar
to the Dividing Cubes algorithm. Our technique in-
volves neither an exhaustive scan search process nor
a graph-based search approach when generating iso-
surface points. Instead an optimized incremental ap-
proach is adopted here for a rapid isosurface extraction.
With a sufficient sampling subdivision criteria around
critical points, the extracted isosurface is both correct
and topologically consistent with respect to the piece-
wise trilinear interpolant. Furthermore, the discretiza-
tion scheme used in our method ensures obtaining thin -
one voxel width - isosurfaces as compared to the given
by the Dividing Cubes algorithm. The resultant sub-
voxelized isosurfaces are efficiently tested against all
possible configurations of the trilinear interpolant and
real-world datasets.

Keywords Voxelized Isosurface · Dividing Cubes ·
Trilinear Interpolant · Incremental Algorithm

R. NAMANE
LRPE Laboratory, ParIMed team, Computer Sciences and
Electronics Faculty, USTHB university, Algiers, Algeria
E-mail: rdnamane@gmail.com

S. MIGUET
LIRIS Laboratory, Lyon 2 University, Lyon, France
E-mail: serge.miguet@univ-lyon2.fr

F. BOUMGHAR
LRPE Laboratory, ParIMed team, Computer Sciences and
Electronics Faculty, USTHB university, Algiers, Algeria
E-mail: fboumghar@usthb.dz

1 Introduction

The accurate isosurface representation and its fast ex-
traction have attracted the attention of researchers for
several decades. The Marching Cubes (MC) algorithm
[5] is arguably the most popular isosurface extraction
technique available. In a nutshell, an isosurface is dis-
cretized using a triangular mesh by combining all tri-
angular patches produced from the grid cells, with the
intention to make it both correct and topologically con-
sistent. An isosurface is correct if it accurately matches
the behavior of a known function (or some assumed in-
terpolant) that describes the phenomenon sampled in
the data set [9]. If each component of an isosurface is
continuous (i.e, there are no holes), then it is topologi-
cally consistent. It is possible for an isosurface to have
a consistent topology but to not be correct [9].

When dealing with isosurface extraction from 3D
data grid, applied algorithms only operate on the dis-
crete data at the vertices of the grid because no surface
function is known a priori. Several works were devel-
oped to improve the topological correctness and accu-
racy of the isosurface representation and many authors
assume that the ideal isosurface is the one homeomor-
phic to the surface induced by the trilinear interpolant
[1–4]. This motivates alternatives to the original MC
algorithm that produce triangular meshes that are ge-
ometrically closer and having the same topology as the
ideal surface.

An alternative to the isosurface polygonal represen-
tation is the use points and normals to represent small
isosurface patches. The use of points in iso-surface visu-
alization was first proposed in the Dividing Cubes (DC)
algorithm [6]. Unlike in MC, where the surface within
an intersected 3D cell is approximated by a polygonal
mesh guided by a local configuration, the DC algorithm

Manuscript Click here to download Manuscript rnamane&all-TVCJ-
2016.pdf

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

2 Rachid Namane et al.

approximates the surface by a set of sufficiently dense
discrete points. The advantage of using points as com-
pared to polygons is their structural simplicity which
is easier to manage, parallelize and no pre-built lookup
tables required for local topological guidance. The main
drawbacks of point-based approaches, as in the DC al-
gorithm, is the high complexity of the exhaustive scan
performed in the extraction process with the large num-
ber of points generated.

The main contribution of our work is therefore to de-
velop a fast and efficient incremental point-based method
for the discrete approximation and generation of isosur-
faces described by trilinear interpolation. In addition,
we attempt to get a voxelized isosurfaces which is thin,
correct and topologically consistent with respect to the
trilinear interpolant without look-up tables. Our incre-
mental generation approach is based on a Bresenham-
like algorithm [10]. Using normal information, the sur-
face is divided into different zones. For not missing any
portion of the surface, the traversal direction in gener-
ating the points of each zone is chosen appropriately.
The extraction process is repeated recursively until all
surface components are correctly retrieved.

The structure of our paper is as follows: after a short
presentation of related work in section 2, we introduce
in section 3 the necessary terms traditionally used in
digital topology. Then in section 4, both the exhaustive
scan search and the graph-based search strategies are
reviewed before giving a detailed explanation about our
incremental approach. The theoretical analysis about
the correctness and consistency of the obtained vox-
elized isosurfaces is discussed in section 5. A further
optimization in the running time of the proposed in-
cremental approach is presented in section 6. The effi-
ciency of our approach will be illustrated in section 7
with the obtained experimental results in terms of both
computational complexity and surface accuracy.

2 Related Work

Since the original Marching Cubes algorithm proposed
in [5], several variants of that algorithm were developed
to resolve topological and geometrical problems related
to the triangle mesh representation. Most of these works
tend to resolve all possible face and internal ambigui-
ties of every grid cell, and at the same time trying to
achieve the best possible polygonal approximation of
the trilinear interpolant [1–3].

The polygonal mesh refinement relies mostly on sup-
plementary points introduced on the faces and in the
interior of the cube. Based on this principle, A. Lopes
and K. Brodie proposed in [3] an extension version of
the MC algorithm. A similar work has been proposed by

M. G . Nielson in [1] but with less triangles since extra
points are added just in the interior of the cuboid and
not on the faces. Both works lead to topological cor-
rect surfaces and their supplementary points are deter-
mined based on the analytical behavioural analysis of
the trilinear interpolant implicit function. In [4], H.Carr
and M. G. Nielson have demonstrated and proved the
correctness and completeness of the full possible config-
urations, classified in three hierarchical levels, already
proposed in [1]. A more recent similar work of [8] pre-
sented by L.Custodio and all, in which the authors ad-
dress some issues related to case ambiguity in the MC
33 algorithm [7] and proposed a disambiguation proce-
dure to solve the raised issues and obtain topological
correct surfaces.

We need to mention that in polygon-based approaches
there is always a compromise between a smoother rep-
resentation of the surface and a minimization of supple-
mentary triangles. This means that a good approxima-
tion can be achieved with a finer mesh having a large
number of triangles. However, rendering such meshes
might lead to triangles whose projected area is less than
one pixel, which results in wasting time in their scan-
line rendering.

Another trend in isosurface visualization investigates
the use of points as rendering primitives instead of tri-
angles when multiple facets are projected to a single
pixel. Due to their structural simplicity, less computa-
tional effort has to be spent per primitive which re-
duces significantly computations. In addition, no con-
nectivity or topological information is required which
makes the geometric processing of highly complex 3D-
models more flexible. The Dividing Cubes algorithm [6]
is among the proposed point-based alternatives to solv-
ing problems related to MC-like methods. However, it
has some drawbacks related mainly to its time complex-
ity and the excessive number of points used in surface
representation. Other uses of point-based primitives for
isosurface representation and fast rendering appeared
in [17–20]. In our paper, we are interested by this fam-
ily of isosurface point-based representation approaches,
in which we propose a much more efficient discretiza-
tion scheme for fast generation of most classically used
point-based primitives. Our fast incremental point gen-
eration technique is then based on a Bresenham-like al-
gorithm [10] and its 3D extension [11], and leads to cor-
rect and topologically consistent isosurfaces while avoid
using excessive number of points in their representation.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

A Fast Voxelization Algorithm For Trilinearly Interpolated Isosurfaces 3

3 Notions and Problem Definition

3.1 Notations and Preliminaries

The set Zn (resp. Rn) of points with integer (resp.
real) coordinates is called the discrete (resp. continu-
ous) space and its elements are called discrete (resp. Eu-
clidean) points. Throughout we will assume that n ≤ 3,
and we denote by upper-case letters e.g, A,B,C... (resp.
calligraphic upper-case letters e.g, A,B,C...) the points
of the discrete space Zn (resp. the Euclidean space Rn).
By [a..b], we denote the closed discrete interval in Z
between a and b and by [a, b] the continuous closed in-
terval in R between a and b. For n = 3, a discrete
(resp. continuous) domain D (resp. D) is a subset of
Z3 (resp. R3) given by D = [1..X] × [1..Y] × [1..Z]
(resp. D = [1, X] × [1, Y] × [1, Z]). D can be seen as
a 3D regular grid of size X × Y × Z. Each element in
the grid is called a vertex. An edge is a line joining two
neighboring vertices, i.e. vertices whose coordinates dif-
fer only by one unity, along one of the three coordinate
axes. A 3D cell is the axes-aligned unit cube in the grid
bounded by eight vertices, and which can be defined by
C = [i, i + 1] × [j, j + 1] × [k, k + 1] with i, j, k ∈ Z3.
When the 3D cell is subdivided - along the three co-
ordinate axes - by a × b × c with a, b, c ∈ Z3, we then
talk about a sub-grid of size a × b × c. A 3D sub-cell
is the resulting axes-aligned unit cube in the sub-grid
bounded by eight vertices.

We assume that our input data consists of a 3D
regular grid dataset. This grid can be represented with
a domain D given by D = [1..X]× [1..Y]× [1..Z]. The
3D image denoted by I can be represented as a function
from D to [0, l], where [0, l] is the depth of the image,
and which can be defined for every point P in D by :

I : D → [0, l]

P %→ I(P)

3.2 Introduction to Object Digitization

To obtain more details about the following notions, the
reader is referred to [21]. Below we consider a discrete
(resp. Euclidean) point as an element of Z3 (resp. R3),
and a discrete (resp. Euclidean) object as a set of dis-
crete (resp. Euclidean) points. Let P be a point in a
discrete domain D. The coordinates of a point P are
denoted by the tuple (x, y, z). A voxel is a unit cube the
center of which is P . This voxel is denoted by V(P).

The voxels V(P1) and V(P2), having their center
points at P1(x1, y1, z1) and P2(x2, y2, z2) respectively,
are said to be 26 − neighbors if max(|x2 − x1|, |y2 −
y1|, |z2−z1|) = 1. if V(P1) and V(P2) are 26−neighbors,

they are also said to be 18−neighbors if |x2−x1|+|y2−
y1| + |z2 − z1| ≤ 2. Similarly, if V(P1) and V(P2) are
18−neighbors, they are also said to be 6−neighbors if
|x2−x1|+|y2−y1|+|z2−z1| = 1. Intuitively, these three
neighbouring schemes can be described as a set of voxels
which share one face for 6−neighbors, share at least one
edge for 18 − neighbors, and share at least one vertex
for 26 − neighbors. A k − path, with k ∈ {6, 18, 26},
in a discrete object (A) is a sequence of discrete points
from (A) such that every two consecutive points are
k − neighbors. (A) is called k − connected if there is
a k − path connecting any two points of (A). A k −
component is a maximal k − connected subset of (A).

The problem of discretization is to identify discrete
points (mesh approach) or what cell (paving approach)
belong to the discrete equivalent of an Euclidean ob-
ject. Several discretization schemes have been proposed.
One of the discretization schemes used for digitizing
curves -open or closed- is the Grid Intersect Quan-
tization model, denoted GIQ. Whenever an edge -in
the working lattice- intersects the curve, then the GIQ
model chooses the closest lattice point among the two
ones connecting the intersected edge. In fact, this pro-
cess is similar to the Bresenham algorithm used for line
drawing. For closed curves, the schemeObject Boundary
Quantization, denoted OBQ (respectively Background
Boundary Quantization, denoted BBQ), in which all
what is considered as a part of the discrete object are
extreme points of each intersected edge and which are
located in the interior (respectively exterior or back-
ground) of that object. Figure 1.(a), (b), and (c) illus-
trate these three quantization schemes for 2D curves.
See [22] for a survey on digitization schemes.

In paving approaches, the discretization scheme - in
which the resulting discrete object consists of every cell
intersected by the continuous object - is called super-
cover. This scheme has the advantage of being simple.
However its drawback is the possible presence of what
are called “bubbles” when a continuous curve passes
exactly through a point of the lattice. This is because
all the cells sharing this point will be selected (see Fig-
ure 1.(d) for an example of a 2D line). Although the
probability that a continuous curve passes through a
point of the lattice is very low, some cares can be taken
to resolve this problem. The resulting discrete scheme
is called standard [23].

3.3 Basics of The Trilinear Interpolant and
isosurfacing

The isosurfacing problem can be then rewritten as fol-
lows:
Given the scalar field values T (x, y, z) of the trilinear

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4 Rachid Namane et al.

(a) (b) (c) (d)

Fig. 1 (a), (b), and (c) are the GIQ, OBQ, and BBQ methods for 2D curve representation respectively. (d) A straight line
segment and its super-cover (dashed), which contains a ”bubble”.

Fig. 2 Grid cell notation.

function T (x, y, z), at the vertices of axis-aligned cube
C = [i, i + 1] × [j, j + 1] × [k, k + 1] with (i, j, k) ∈ Z3,
determine the set of points P of the isosurface corre-
sponding to isovalue σ where

P(x, y, z) = {(x, y, z) ∈ C|T (x, y, z) = σ}

Without loss of generality, we transform the cubic
cell C into the unit cube U = [0, 1]×[0, 1]×[0, 1] for con-
venience, so that trilinear interpolant will be expressed
as follows:
Given the grid cell of Figure 2 which is composed of
eight grid vertices with the scalar values T (0, 0, 0), T (1, 0, 0),
..., T (1, 1, 1). Based on the scalar values at these ver-
tices, the trilinear scalar function T on R3 is given by:

T (x, y, z) = a+bx+cy+dz+exy+fxz+gyz+hxyz (1)

Where

a = T (0, 0, 0)

b = T (1, 0, 0)− T (0, 0, 0)

c = T (0, 1, 0)− T (0, 0, 0)

d = T (0, 0, 1)− T (0, 0, 0)

e = T (0, 0, 0)− T (1, 0, 0)− T (0, 1, 0) + T (1, 1, 0)

f = T (0, 0, 0)− T (1, 0, 0)− T (0, 0, 1) + T (1, 0, 1)

g = T (0, 0, 0)− T (0, 1, 0)− T (0, 0, 1) + T (0, 1, 1)

h = T (1, 0, 0)− T (0, 0, 0) + T (0, 1, 0)− T (1, 1, 0)

+ T (0, 0, 1)− T (1, 0, 1)− T (0, 1, 1) + T (1, 1, 1)

The approximated continuous surface S(T ,σ) which is
consistent to T for a given isovalue σ within a unit cube
in R3 can be defined by the zero set of a geometrically
represented implicit function F given by:

F(x, y, z) = T (x, y, z)− σ = 0 (2)

Recall that by definition a cubic cell is being active if
it is intersecting the surface. In a discrete domain D,
this may occur if σ falls between the minimum and the
maximum of all scalar values at the eight vertices of
this cubic cell.

3.4 Problem Statement

Let I be our 3D input image defined on a discrete grid
domain D, and F the implicit trilinear interpolation
function defined on a continuous domain D. F coin-
cides with I on the points of D. For all other points P
of D, F(P) is given by trilinear interpolating values of
I at the eight vertices of the 3D cell containing P. This
allows to define F as a continuous surface, denoted S,
on all points of D. The main problem of our work con-
sists in development of a rapid voxelization algorithm
for extracting an isosurface S, defined by an isovalue
σ, from the 3D input dataset. The voxelized isosurface
generated by our algorithm, denoted S, consists of a
set of discrete points rather than polygons. However,
the point-based representation used in our approach
should guarantee producing correct and topologically
consistent voxelized isosurfaces with respect to S.

4 Searching Strategies in Point-Based
Isosurface Extraction

Several approaches were developed for accelerating and
optimizing isosurface extraction, when dealing with polygonal-
based techniques. To obtain more details about these
approaches, the reader is referred to [16]. We need to

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

A Fast Voxelization Algorithm For Trilinearly Interpolated Isosurfaces 5

mention here that accelerating the search of active cells
in the input 3D image is beyond the scope of our work.
In fact, we are looking to optimize and accelerate the
searching process of isosurface points in the interior of
active cells. Before proceeding to the presentation of
our incremental approach, we are going first to present
briefly the two main different possible strategies that
can be used for isosurface points extraction; the ex-
haustive and the graph-based scan strategies.

4.1 Exhaustive Scan Search

This is the simple and basic strategy applied in the Di-
viding Cubes. The dividing cubes subdivides each cell
intersected by the isosurface into o×p×q sub-cells along
the X, Y , and Z directions respectively, such that the
sub-cells project onto a single pixel on the image plane.
The scalar field values at the vertices of every sub-cell
are obtained off-line by a trilinear interpolation of the
values located at the eight vertices of the cell being sub-
divided. The same process is applied for interpolating
the gradient values, that can be used as approximations
of the surface normals. Thereafter, the searching of the
active sub-cells is performed by applying an exhaustive
search; i.e scan the o× p× q new 3D volume along the
three axis. The computational time is however costly
as the sampling resolution gets finer. The algorithm’s
complexity it exhibits is of O(n3), when o, p, and q are
equal to n. A statistical study on the number of points
extracted as a function of the subdivision parameters is
given in [12]. An optimization of the execution time of
the “dividing-cubes” algorithm was proposed in [13] by
subdividing the input 3D image into blocks of voxels in
order to reduce the time complexity by eliminating the
blocks that do not contain active sub-cells.

4.2 Graph-based Search

The previous exhaustive strategy can be improved by
applying a graph-based searching technique. In this way,
the exhaustive scan process is avoided by propagating
in the neighbourhood of every active sub-cell. However,
in this approach, a starting point must be found for ev-
ery connected component of the isosurface. Since every
connected component must at least intersect one edge
of the cell, an initial preprocessing test is made through
the edges to identify those points. The isosurface is then
tracked through the resulting 3D lattice in the interior
of every active cell. The tracking process is performed
by an iterative examination of the 6− connected neigh-
borhood of every active sub-cell, noting the active ones

which have already been traversed. Flag labels are as-
sociated with every sub-cell, which is useful to check if
it is already traversed. This process continues until all
the active sub-cells have been traversed. We note here
that the average complexity it exhibits is of O(n2), ex-
cept for the O(n3) flags initialization. We will show in
section4.3.6 an optimization that allows to reach an
O(n2) complexity even for this step.

4.3 Incremental Search

To optimize more the extraction process, we developed
an incremental search method. It is based on the in-
cremental point generation of the discrete implicit sur-
face in the trilinear interpolant. This approach is based
on a Bresenham-like algorithm adapted to 3D hyper-
bolic surface generation. The main advantages of this
method are fast surface generation, thinner surface dis-
cretization very closer to GIQ, and much less opera-
tion spent per primitive. In the following, we give a
detailed description of this approach. Before proceed-
ing we need to define our discrete surface and how it
is structured into different zones. First, the generated
discrete surface S can be considered as the union of
the three subsets Sx, Sy, and Sz (S = Sx ∪ Sy ∪ Sz).
Each of these subsets might be itself composed of one
or several surface components belonging to the same
zone type. The number of connected components in
each zone depends on the shape of the trilinear func-
tion in the active 3D cell. We define Sx as the zone type
which consists of the set of points P (x, y, z) such that
argmax(x,y,z)(|gx|, |gy|, |gz|) = |gx|. We define Sy and
Sz in a similar way, i.e argmax(x,y,z)(|gx|, |gy|, |gz|) =
|gy| for Sy and argmax(x,y,z)(|gx|, |gy|, |gz|) = |gz| for
Sz. Based on the previous definition and for efficient
surface discretization, the following three possible cases
considered during the incremental traversal:

• Determine the closest x for every (y, z) in zone Sx.
• Determine the closest y for every (x, z) in zone Sy.
• Determine the closest z for every (x, y) in zone Sz.

4.3.1 Discretization Algorithm

First we present the main steps of our voxel travers-
ing algorithm, then more details will be given in the
next subsections. As we will show later, the algorithm
generates discrete points of the trilinear interpolant by
selecting one of the two possible points after a one-step
increment along the axis to which the part of surface is
most parallel. This axis is changed adaptively as the ori-
entation of the surface is changed based on the normal

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

6 Rachid Namane et al.

associated with each point. In the following, every dis-
crete point generated corresponds to the discrete point
more closest to the exact surface.

The main steps of the discretization algorithm can
be summarized as follows: First, with linear interpola-
tion along edges we locate a starting point on one of
the edges of an active cell or on the neighbourhood of a
previously extracted surface part. Then, we select one
of the three axis which is the most parallel to the sur-
face’s normal; the other two axes belong to the plane
which is the most parallel to the surface. Once these
axes are specified, we incrementally vary the two vari-
ables corresponding to the detected plane and calculate
the remaining one (Bresenham-like method), followed
by updating incrementally the surface’s normal. After
each increment step, we test whether we are still in the
same zone of the surface; i.e check whether the normal
is still most parallel to the same axis. The increment
process is repeated until all points of that zone are ex-
tracted. Finally, we switch to another zone and repeat
the whole extraction process until all parts of the sur-
face are fully extracted.

4.3.2 Algorithm Illustration

For more clear presentation of our method, first we
show its behaviour in generating points for the three
different zone types separately, and then we give its
overall process for generating all surface points. Assum-
ing that the surface’s implicit function is F(x, y, z) = 0,
then we refer by ∆x, ∆y, and ∆z to the step amounts
by which the three variables x, y, and z are incre-
mented/decremented respectively.

The algorithm used for the generation of each sur-
face zone is similar, however the role played by control
variables in the main loops are interchanged. For exam-
ple, the generation of one connected component of Sx

requires two nested loops on y and z coordinates, and
generating at each step the corresponding x coordinate.

In the following, we will give our algorithm’s illus-
tration for the generation of Sx, and it will be the same
thing for Sy and Sz by just changing their axis variables
accordingly. In addition, we refer by Ex

i -in Sx- as an
indicator of how much a point Pi(xi, yi, zi) -generated
at iteration i- is far away from the targeted implicit sur-
face F(x, y, z) = 0. Ey

i and Ez
i are defined in a similar

way in Sy and Sz respectively. In the following we show
that this indicator value, which is related to scalar val-
ues, is proportional to the amount of error related to
distances.

Recall that the scalar value of the trilinear inter-
polant T is equal to σ on the isosurface, less than σ
below the isosurface, and greater than σ above the iso-

surface.
Now, consider F(x, y, z) = T (x, y, z)− σ = 0 to be the
implicit function of the targeted isosurface. Based on
equation (1), and if we let T (x′, y, z) = σ′, then

T (x′, y, z)−T (x, y, z) = Tx(x′−x, y, z) = σ−σ′ = ∆σ = Ex

Where

Tx(x, y, z) = bx+ exy + fxz + hxyz

Finally

x′ − x =
Ex

Tx(x′ − x, y, z)

Similarly, when either variable y or z is changed we
obtain y′− y = Ey

Ty(x,y′−y,z) and z′− z = Ez

Tz(x,y,z′−z) re-
spectively. Since the change in the trilinear interpolant’s
scalar value is proportional to the change in point’s po-
sition, therefore the absolute value of that error will
indicate the proportion of how much a point is far way
from the exact surface. We will be based mainly on this
error to choose the point more closest to the targeted
isosurface during the incremental traversal.

Now let’s illustrate our algorithm for generating points
in Sx. Remember that in Sx, variables z and y are being
changed in two nested loops and x is computed incre-
mentally for each step. The algorithm stops in either
direction if the tracking process either switches to an-
other zone or reaches the boundaries of bounding cubic
volume. Consider the starting point P0, along one of the
edges of an active cell, of coordinates (x0, y0, z0). Based
on equation (2), the initial amount of indicating error
made at that point from being on the exact surface is
given by

Ex
0 = a+ bx0 + cy0 + dz0 + ex0y0 + fx0z0 + gy0z0 + hx0y0z0 − σ

(3)

And using partial derivative formula, the normal com-
ponents at that point are

gx0 = b+ ey0 + fz0 + hy0z0 (4)

gy0 = c+ ex0 + gz0 + hx0z0 (5)

gz0 = d+ fx0 + gy0 + hx0y0 (6)

From P0, a one step increment along Oyz is per-
formed iteratively in two nested loops. After every in-
crement step, the point more closest to the exact surface
along the Ox is chosen among the two possible ones (
xi, or x(i+∆x)), where xi is the x − component of the
point extracted in the previous iteration and ∆x is the
step increment which is equal to ±1.

Now assume that incrementing alongOz corresponds
to the inner most loop of the algorithm. Therefore,
z variable is incremented with ∆z; z(i+∆z) equals to

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

A Fast Voxelization Algorithm For Trilinearly Interpolated Isosurfaces 7

Fig. 3 The two possible cases that may happen along Ox

after one step increment of z. (a) case when ∂x
∂z

> 0. (b) case

when ∂x
∂z

< 0. In both cases ∂x
∂z

= − gz

gx
.

zi+∆z, where ∆z equals ±1 depending on the direction
of the traversal along (Oz); upward or downward. The
traversal direction can be determined based on the sign
of the normal components at the point. If the point ex-
tracted in the previous iteration was P (xi, yi, zi), then
in the current iteration we look for the nearest discrete
point to the exact surface among the two possible ones
which are P (xi, yi, z(i+∆z)) or P (x(i+∆x), yi, z(i+∆z)).
∆x equals ±1, and it can be determined by just test-
ing the sign of the partial derivative of x with respect
to z based on the implicit function theorem. Figure 3
shows the two possible cases that may happen for the
z incrementation.

The recurrence formulas for the errors of the two
possible points at the current step are

Ex
(i+∆z)

= Ex
i + δEz (7)

Ex
(i+∆z)+∆x

= Ex
(i+∆z) + δEx (8)

where

δEz = K + L×∆z (9)

δEx = M +N ×∆x (10)

WhereK,L,M , and N are coefficients that depend only
on y. Since y is unchanged, these coefficients are calcu-
lated one time as function of y0 just before running
the loop process. Since Ex

(i+∆z)
= F(xi, y0, zi+∆z) and

Ex
(i+∆z)

= F(xi+∆x , y0, zi+∆z), the previous coefficients
can be calculated as follows:

K = (d×∆z) + (g × y0 ×∆z) (11)

L = (f ×∆z) + (h× y0 ×∆z) (12)

M = (b×∆x) + (e× y0 ×∆x) (13)

N = (f ×∆x) + (h× y0 ×∆x) (14)

Either P (xi, y0, zi+∆z) or P (xi+∆x , y0, zi+∆z) is cho-
sen according to argmin(|Ex

i+∆z
|, |Ex

(i+∆z)+∆x
|). Once

this point is deduced, the normal components are up-
dated accordingly to check whether we are still in the

same zone. This is performed using the following equa-
tions

gx(i+1) = gx(i) + α×∆z (15)

gz(i+1) =

{
gz(i) if xi+1 = xi

gz(i) + α×∆x if xi+1 = xi +∆x

(16)

gy(i+1) = β + γ ×∆z (17)

where

α = f + h× y0 (18)

β =

{
unchanged if xi+1 = xi

β + e×∆x if xi+1 = xi +∆x

(19)

γ =

{
unchanged if xi+1 = xi

γ + h×∆x if xi+1 = xi +∆x

(20)

Where α is a constant calculated just before start-
ing the iterative process. Once the normal components
are updated and their new values still satisfy the cur-
rent zone requirements, we pass to the next iteration.
Otherwise, P (xi+1, yi+1, zi+1) generated at the current
iteration (i+1) is added to Sx, and the same process is
repeated for one step increment along (Oy) in the outer
loop. The generation of discrete points in Sx is ter-
minated when that zone boundaries are reached along
both (Oy) and (Oz).

Algorithm 1 summarizes the iterative process for
generating points of Sx along Oz.

Algorithm 1 points of Sx generation along Oz

Input: The current active 3D cell C
Output: The set of points P (x, y, z) added to the isosur-
face S
Let P0(x0, y0, z0) be a starting point in Sx along one of
the edges in C
Let i = i0
while Pi ∈ (Sx ∩ C) do

zi+1 = zi +∆z

Ex
(i+∆z)

= Ex
i + δEz

Ex
(i+∆z)+∆x

= Ex
(i+∆z)

+ δEx

if (|Ex
(i+∆z)+∆x

| < |Ex
(i+∆z)

|) then
xi+1 = xi +∆x

end if
Incrementally update normal components
if (|gx| > |gy| > |gz|) then

if Pi+1(xi+1, yi+1, zi+1) /∈ S then
S = S ∪ Pi+1(xi+1, yi+1, zi+1)

end if
end if
i = i+ 1

end while

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

8 Rachid Namane et al.

4.3.3 Overall Algorithm Behaviour

From the starting points on the edges of the active 3D
cell, all the corresponding portions of the discrete sur-
face are extracted. This is considered as the first stage
of the extraction algorithm in which its iterative process
was explained previously. The second stage of the algo-
rithm is performed in the same manner as the first one,
except that the starting points are now the end bound-
aries of the different zones extracted in the previous
stage which were already stored in memory. This is to
guarantee that no hole appears in the discrete surface.
The process is repeated until all points are extracted;
i.e all zones meet to form the full different discrete con-
nected components of the desired discrete isosurface in
the interior of the cell.

Figure 4 shows the resulting subvoxelized isosurfaces
for two different configuration examples of the trilinear
interpolant. For both examples, The scalar values at
the eight vertices of the 3D cell are given and the iso-
value is chosen to be σ = 90. Points in zones Sx, Sy,
and Sz are shown in red, green, and blue colors respec-
tively. Starting points are shown in yellow color. In the
first example, and starting from the cell’s edge, all sur-
face components are generated during one stage. In the
second example, surface components are generated by
applying the incremental process for two stages. Notice
that not all starting point candidates for this second
stage will be used. In fact, if any one of these points is
generated from another one, then this later is omitted
for being a starting point candidate.

4.3.4 Speed Up Hashing Functions

In equation (1), if any two variables are fixed and the
third one is computed then this latter, if it exists, is
always unique. In other words, if all points of the surface
are projected on any of the three planes (Oxy, Oxz, or
Oyz) then no more than one point can be projected
on the same location. This is true if we consider the
euclidean space. In discrete space, this may not be the
case especially for points of the surface that are close
to an asymptotic plane.

To avoid processing every point more than one time,
and therefore speed up the extraction process, three
simple hashing functions were used which are hx(i, j, k) =
(j, k), hy(i, j, k) = (i, k), and hz(i, j, k) = (i, j). Their
corresponding Hash tables contain a linked list of the
3rd component for points having the same projection
on their corresponding plane. Each point is hashed to
only one table according to its greatest normal compo-
nent. When two or all normal components are equal, an
arbitrary choice of any table is taken in order to avoid

any collision that may happen. Experimental studies
showed us that the length of the linked list in every
hash table is almost one element, except for special con-
figurations where this length is two, but not more, for
just few surface points.

The advantage of these hashing functions is to use
just (3×n2) Booleans instead of (n3) that help to check
points traceability during the incremental search. This
reduces the complexity of their initialization process
from O(n3) to O(n2).

5 Voxelized Isosurface Correctness and
Consistency Theoretical Analysis

5.1 Correctness and Consistency

As explained before, topological correctness implies that
the discrete approximation should be homeomorphic to
the implicit surface of the trilinear interpolant (i.e, it
accurately matches its behavior). Consistency if satis-
fied if no holes are generated in the voxelized approxi-
mation.

To verify the accuracy of the extracted voxelized
isosurface, we are going to prove that all points gen-
erated incrementally belong to the super-cover of the
continuous surface S. In other words, we want to prove
that the points generated incrementally are a subset of
the points generated by the DC algorithm. Based on a
recursive approach, we are going to show that if a sub-
voxel extracted at iteration “i” is being intersected with
the trilinear interpolant implicit function, then the sub-
voxel extracted at the next iteration “i + 1” would be
intersected too. Furthermore and without loss of gen-
erality, we limit our proof for one slice across a certain
surface zone which can be extended to the whole surface
by just using appropriate variables across every volume
slice within any surface zone.

Before proceeding further, let’s first consider that
we are in the deepest loop of Sx extraction process.
Meaning that y variable is kept unchanged, z variable
is incremented and the closest x variable, denoted X,
is determined. Given F(x, y, z) = 0 as an implicit sur-
face function, this function can be rewritten in the form
x = Fy(z). Then we refer by Ei = Xi − Fy(zi) which
represents the horizontal error along Ox between a gen-
erated point P (Xi, y, zi) and the point P (xi, y, zi) on
the exact surface. In addition, the sub-voxel containing
P is intersected with the exact surface if and only if
|Ei| ≤ 1

2 . In the following, F ′
y(z) refers to the derivative

of Fy(z) with respect to z. The curve is most parallel
to the Oz axis if |F ′

y(z)| ≤ 1

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

A Fast Voxelization Algorithm For Trilinearly Interpolated Isosurfaces 9

(a) (b) (c)

Fig. 4 (a) One grid cell synthetic dataset. (b) First stage of extraction. (c) Second stage of extraction.

Lemma 1 If |Ei| ≤ 1
2 , and |F ′

y(zi + t)| ≤ 1 for all
t ∈ [0, 1], then |Ei+1| ≤ 1

2 .

Proof Without loss of generality, assume that P (xi, y, zi)
is the point generated at iteration i and ∆z = 1. ∆z is
the step amount by which zi is incremented, meaning
zi+1 = zi +∆z.
Since Fy(z) is continuous and differentiable over [zi, zi+1],
then applying intermediate values theorem we get

Fy(zi+1)− Fy(zi) =
[
Fy(zi + t)

]1
0

(21)

=

∫ 1

0
F ′

y(zi + t)dt (22)

≤
∫ 1

0
|F ′

y(zi + t)|dt (23)

≤
∫ 1

0
1dt (24)

≤ 1 (25)

Fy(zi+1) ≤ Fy(zi) + 1 (26)

Now let P (Xi, y, zi) and P (Xi+1, y, zi+1) be the discrete
points generated at iterations i and i+1 respectively. In
other side, let P (xi, y, zi) and P (xi+1, y, zi+1) be their
corresponding points laying on the surface S.
According to the horizontal error defined above, we
have the following two statements:

Ei = Xi − xi = Xi − Fy(zi)

Ei+1 = Xi+1 − xi+1 = Xi+1 − Fy(zi+1)

Based on these two statements and using equation (26)
we can write:

Ei+1 ≤ Xi+1 − (Fy(zi) + 1) (27)

Ei+1 ≤ Xi +∆x − (Fy(zi) + 1) (28)

Ei+1 ≤ (Xi − Fy(zi) + (∆x − 1)) (29)

|Ei+1| ≤ |Xi − Fy(zi)|+ |∆x − 1| (30)

|Ei+1| ≤ |Ei|+ |∆x − 1| (31)

|Ei+1| ≤
1

2
+ |∆x − 1|; as |Ei| ≤

1

2
(32)

Since |∆x − 1| ≤ 1 then, equation (32) implies that
|Ei+1| ≤ 3

2 .
|Ei+1| ≤ 3

2 means that we have two possible cases for
xi+1 which is either xi when kept unchanged or xi + 1
when incremented by one. Since the smallest one which
is chosen every iteration, this yields that |Ei+1| ≤ 1

2 and
this completes our proof.

Clearly, this proof shows that the set of incremen-
tally extracted points are a subset of the supercover
of the surface S. Furthermore, the way in which sur-
face points are tracked along the three coordinate axes
makes every resulting discrete surface component free
from holes.

5.2 Sampling Issues For Topology Preserving

In the full trilinear function T over R3, saddle points
are approached by contour surfaces from all directions

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

10 Rachid Namane et al.

[4]. If the analysis range is limited to a bounding cuboid
in R3, there exist two kinds of saddles, face and body.
Face saddle occurs on a face having two diagonally op-
posed vertices with different signs. Body saddles in the
interior of the cuboid are points where the gradient of
T vanishes. There are exactly 0, 1, or 2 body saddle
points with distinct isovalues [1]. One of the properties
of both face and body saddles is that the axis-parallel
lines through them have constant isovalue [4], and iso-
surfaces only change overall topology at these saddle
points. There are five possible cases for the number of
face and body saddles that may exist, and the most
complicated case occurs when there are six face saddles
[14].

The voxelized isosurface is correct and topologically
consistent if it accurately matches the behaviour of the
trilinear interpolant function without missing any point.
This means that for topology preserving purposes, our
discretization scheme should ensure that both surfaces
must be having always the same number of continuous
connected components and the same number of tunnels.
Which implies that the accuracy of our approximate
representation depends on the rate of sampling (i.e,
the resolution of subdivision). A sufficient discretiza-
tion sampling resolution should be specified in order
to guarantee that all separated components should not
meet, and tunnels should not be filled. With respect to
this, and discarding the degenerate cases, a sufficient
condition for topology preservation is to make sure that
voxels containing saddle points and some of their neigh-
bours are not active. For face saddles, voxels at saddle
points with two of their 6 − connected neighbors but
along different axes, should not be active. This is to
make sure separating different components on the face.
The same thing for body saddle where voxels at the
body saddles with their 6−connected neighbours should
not be active in order to keep all components that may
exist separated and any tunnel not to be filled. A simple
checker subroutine can be added to verify the previous
conditions and to tell whether the chosen subdivision
factors fulfil those conditions or we need to sample fur-
ther.

6 Incremental Extraction Time Optimization

For further extraction time reduction in the incremen-
tal generation method, our algorithm was further opti-
mized by generating first all zones boundaries then fill-
ing rapidly the interior of every zone. The prior knowl-
edge of all zones limits makes the generation of points
at the interior of the zones more straightforward. This
is because the normal change checking is no more nec-
essary which reduces much more the extraction time.

6.1 Zone Boundaries Extraction

The boundaries of all zones are first extracted on the
faces of the cube then in its interior. On the faces, limit
points are extracted incrementally starting from a point
of intersection between the isosurface and a given edge
of the cube. Starting from the end points of the discrete
curves extracted previously on the faces, limit points
separating surface zones in the interior of the cube are
extracted in a zig-zag sequence by searching in the 26-
neighbour of already extracted point belonging to one
zone in order to find the next limit point belonging
to the adjacent zone. Already traversed branches are
skipped.

6.2 Zone Interior Filling

Once all zone boundaries are extracted, the remaining
parts of the isosurface, i.e zone interior filling, is pro-
cessed based on a scan-line polygon fill like algorithm.
The scan extrema points are the limit points found in
the previous stage. The type, either lower or upper, of
every extrema point is also deduced during their extrac-
tion by checking the sign of the normal components at
that point with the type of its adjacent zone. All surface
portions of the same zone type are filled by first sorting
extrema points, laying on the same row, in the plane
to which the surface is most aligned. Then incremen-
tally generating the corresponding hyperbolic arc that
falls between its corresponding lower and upper end-
points. The sorting process is not a bottleneck while
trying to optimize our algorithm. This due to the lim-
ited number of extrema points on each plane’s row. In
most of the time there are either two or four extrema
points. The main advantage of our optimization is to
avoid calculating the normal components as described
in the proposed incremental search method discussed
previously.

6.3 Discussion

As seen from equations (7) to (10), our incremental
algorithm uses only six arithmetic operations for the
computation of each point. This has to be compared to
the twenty− three arithmetic operations required by a
direct implementation of the implicit surface equation
(2). The computation of the surface’s normal in our
method requires one test and four arithmetic opera-
tions when the coordinate of the generated point, along
the axis most perpendicular to the surface, doesn’t change.
However it requires one test and eight arithmetic opera-
tions when this coordinate is incremented/decremented

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

A Fast Voxelization Algorithm For Trilinearly Interpolated Isosurfaces 11

1 2 3.1 3.2 4.1.1 4.1.2

5 6.1.1 6.1.2 6.2 7.1 7.2

7.3 7.4.1 7.4.2 8 9 10.1.1

10.1.2 10.2 11 12.1.1 12.1.2 12.2

13.1 13.2 13.3 13.4 13.5.1 13.5.2

Fig. 5 The discrete approximation of all possible topological configurations of the trilinear interpolant using the same notation
as in [3] for their labelling.

(equations (15) to (20)). In case the surface’s normal is
required for further processing, as in surface shading,
this later is already obtained by our method with less
number of operations as compared to the twenty− one
additional operations required when computing it di-
rectly as in equations (4) to (6).
With the optimization performed (zone boundaries ex-
tracted first), the need for the normal information is
no more required. In this case, the extraction process
consists of just three steps. The first step is for extract-
ing zone boundaries as shown above. The second step
is for sorting extrema points on the plane to which the
surface is most aligned. The last step is for the incre-
mental scan hyperbolic curves filling between lower and
upper endpoints (zone interior filling). Since the normal
at each point is no more computed here, the algorithm
complexity is further reduced as compared to algorithm
1.

7 Experimental Results and Analysis

In Figure 5, we present the obtained results for all pos-
sible configurations of the trilinear interpolant function
including tunnel cases and multiple isosurface compo-
nents per cell. Notice that the same notation as in [3] for
labelling the cases was adopted here. For visual clarity,
the different zones in every connected component are vi-
sualized with different colors by involving the free open
source C++ DGtal Library [24] in our design environ-
ment. The three colors correspond to the three surface
zones Sx, Sy and Sz.

Figure 6.(a) represents a synthetic grid dataset of
size 3 × 3 × 3, with random scalar values between 0
and 255, extracted with isovalue value 150 and a sam-
pling resolution of 50× 50× 50. Figure 6.(b) is (8− bit,
41×41×41) marschnerlobb dataset extracted with iso-
value 192 and sampling resolution of 5× 5 × 5. Figure

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

12 Rachid Namane et al.

(a) (b) (c)

Fig. 6 (a) 3× 3× 3 synthetic random scalar values grid dataset. (b) marschnerlobb Dataset. (c) A part of the CT scan of an
engine block.

Fig. 7 Examples of a real CT medical datasets. (a) Ex-
tracted with DC algorithm. (b)Extracted with our incremen-
tal algorithm.

6.(c) is a part of the voxelized isosurface of the CT scan
of two cylinders engine block extracted with isovalue 80
and sampling resolution of 5×5×5. Both the marschn-
erlobb and the engine datasets were downloaded from
volvis.org.

In Figure 7, we show some isosurface examples of
real CT medical datasets extracted with an isovalue of
80 and a sampling resolution of 5 × 5 × 5. The DC
algorithm was applied on the first row and with our
incremental approach on the second row. Isosurfaces of
isovalue 80 and sampling resolution of 5×5×5 extracted
from the (8− bit, 256× 256× 256) Aneurism Dataset,
downloaded from volvis.org, are shown in Figure 8. As
we can see from these figures, there is no visual differ-
ence between images extracted by DC and our incre-
mental approach, whereas our representation requires
less points and shorter time for surface extraction as
will be seen in the next figures and tables.

In Figure 9 the results of optimizing the incremen-
tal method are presented. Four different configurations
have been chosen and shown in every column. Each row
represents one step of the optimization process. The

(a) (b)

Fig. 8 Example of the Aneurism Dataset. (a) Extracted with
DC algorithm. (b) Extracted with our incremental algorithm.

first row represents the results of the zones boundaries
extraction stage for the four different configurations. In
the second row we show all zone limits with their pro-
jection in their corresponding most aligned plane for
every zone type. The last row shows the results of the
surface filling process.

In Figure 11, a comparative study for the running
time of the three isosurfacing methods (DC, graph-
based, and our incremental method with normal check-
ing) is given. As examples, we have chosen the three
most complex configurations of figure 5 for our tests;
i.e configs. 13.4, 13.5.1, and 13.5.2. All computation re-
sults were performed on a Mobile DualCore Intel Core
i5-460M, 2.533 GHZ provided with an NVIDIA GeForce
GT 425M. In this figure, we plotted curves for the run-
ning time (T) for the different methods as a function of
the input sampling resolution N along each axis. There-
fore, the resulting sub-voxelized resolution in the input
active 3D cell is of (N × N × N). Notice that given
running time consists of the time required for points
generation with normal checking. The running time re-
quired for flag initialization is not considered.

To trace the complexities of these running times,
mainly for graph-based and our incremental approach,
we plotted in figure 10 the curves for T

N2 versus the in-
put sampling resolution along each axis N ; where T is

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

A Fast Voxelization Algorithm For Trilinearly Interpolated Isosurfaces 13

(a) (b) (c) (d)

Fig. 9 Zones boundaries extraction and surface filling (a) Config. 1 (b) Config. 9 (c) Config. 13.5.1 (d) Config. 13.5.2

the computational time already shown in figure 11. We
can see clearly that, both the graph-based and our in-
cremental methods are changing quadratically but our
incremental approach is faster; i.e (T

N2 ≈ K1) for graph
search and (T

N2 ≈ K2) for incremental search whereK1,
and K2 are positive constants with K2 < K1.

Table 1, 2, and 3 show a comparison between the
three methods - DC, graph-based, and our incremental
approach- in terms of the total number of points gener-
ated within the previous three test configurations. We
can see that the number of points generated by our
incremental algorithm is significantly reduced as com-
pared to the other two methods especially for high sam-
pling resolutions. In fact the resulting discrete surface,
produced by both DC and graph-based, corresponds to
the super-cover of the continuous trilinear interpolant
surface. Therefore the obtained discrete surfaces are 6-
connected, in this case. In counter part, the discrete
surface produced by our incremental approach corre-
sponds to the GID discretization scheme described pre-
viously. Therefore it is an 18-connected discrete surface.
Since the number of points in a 6-connected surface is
higher than the number of points in an 18-connected
one, the surface generated by our method is thinner
than the one generated by both DC and graph-based
approaches. The results show that the number of points

Table 1 Comparison of the three extraction methods in
terms of the number of extracted points for config. 13.5.2

Reso.(N ×N ×N) DC/Graph.(♯pts) Our Algo.(♯pts)

50× 50× 50 (6538pts) (4409pts)
100× 100× 100 (26123pts) (17287pts)
150× 150× 150 (58785pts) (39391pts)
200× 200× 200 (104499pts) (70008pts)
250× 250× 250 (163268pts) (109329pts)
300× 300× 300 (235109pts) (157581pts)

extracted by our algorithm is almost half the number
of points produced by DC and graph-based techniques.

Table 2 Comparison of the three extraction methods in
terms of the number of extracted points for config. 13.5.1

Reso.(N ×N ×N) DC/Graph.(♯pts) Our Algo.(♯pts)

50× 50× 50 (6505pts) (4186pts)
100× 100× 100 (26047pts) (16743pts)
150× 150× 150 (58623pts) (37626pts)
200× 200× 200 (104229pts) (66689pts)
250× 250× 250 (162839pts) (104067pts)
300× 300× 300 (234472pts) (149580pts)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

14 Rachid Namane et al.

(a) (b) (c)

Fig. 10 Time Complexity Analysis. (a) Config.13.4. (b) Config.13.5.1. (c) Config.13.5.2.

(a) (b) (c)

(a′) (b′) (c′)

Fig. 11 Computational Time Vs Sampling Resolution. (a)− (a′) Config.13.4. (b)− (b′) Config.13.5.1. (c)− (c′) Config.13.5.2.

Table 3 Comparaison of the three extraction methods in
terms of the number of extracted points for config. 13.4

Reso.(N ×N ×N) DC/Graph.(♯pts) Our Algo.(♯pts)

50× 50× 50 (7177pts) (5813pts)
100× 100× 100 (28709pts) (22947pts)
150× 150× 150 (64526pts) (51579pts)
200× 200× 200 (114761pts) (90907pts)
250× 250× 250 (179372pts) (142095pts)
300× 300× 300 (258142pts) (204500pts)

In Figure 12, we give some configuration examples
in which we show how the discrete topology changes as
a function of the discretization sampling resolution. As
an example, the first column of this figure represents
the case where the topology is not preserved due to
the low sampling resolution (separated components are
touching and tunnels are filled). For more illustration
about what we have discussed in section 5.2, inactive
sub-cells covering surface saddle points are shown in

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

A Fast Voxelization Algorithm For Trilinearly Interpolated Isosurfaces 15

(a)

(b)

(c)

Fig. 12 The effect of the discretization sampling resolution on the correcteness of the discrete surface topology.(a) Config.
6.1.1 (b) Config. 4.1.1 (c) Config. 4.1.2

yellow. Here we can see that the state, active or inac-
tive, of these sub-cells covering saddle points and their
6 − connected neighbours have an effect on the cor-
rectness of the resulting voxelized surface. In terms of
implementation, the topological correctness of the re-
sulting discrete isosurface can be checked with a simple
iterative algorithm.

8 Conclusion and Future Work

In this work, we have presented a point-based isosurface
extraction method based on an incremental voxeliza-
tion approach. As compared to the DC and graph-based
approaches, our method produces thinner discrete iso-
surfaces in a fast and optimized way. Furthermore, our
voxelization technique guarantees obtaining correct and
topologically consistent isosurfaces. Our method has
been successfully tested on all different topological con-
figurations of the trilinear interpolant. The complexity
of our incremental algorithm is significantly reduced as
compared to either an exhaustive scan or to a graph-
based approach.

We have proved that the discrete surface generated
by our incremental algorithm is a subset of the surface
generated by DC algorithm and which is consistent with
the trilinear interpolant. In addition, we have discussed
the problem about the choice of the sufficient discretiza-

tion sampling resolution which ensures the topologi-
cal correctness of the voxelized surface around critical
points.

The use of the trilinear interpolant for isosurface
approximation is mainly due to its simplicity. How-
ever this type of interpolant generates G0 continuous
surfaces. For that reason, we plan to smoothly blend
the generated discrete patches to make them globally
G1 continuous without changing their topologies. One
way to solve this problem is by applying an appropriate
re-parametrization of the domain of the scalar field as
done in [15] followed by a discretization scheme similar
to ours. Further direction includes developing a simi-
lar strategy for higher order interpolant, such as tricu-
bic spline, in order to obtain G1 continuous surfaces
with low computational time. Finally, a more impor-
tant computational time reduction can be achieved via
a GPU implementation. One possible way to achieve
this is by finding starting points laying on surface face
curves and then extracting different parts of the surface
in parallel.

9 Acknowledgement

These results were obtained during an eighteen months
internship in LIRIS Laboratory, Lyon2 University of
France. Therefore we would like to express our gratitude

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

16 Rachid Namane et al.

to all members of the LIRIS-M2DisCo team for their
valuable feedback and guidance that helped us signifi-
cantly throughout this work. The work was funded by
Algerian Ministry of Higher Education and Research.

References

1. Nielson M.G., On Marching Cubes, IEEE Trans. Visual-
ization and Computer Graphics, vol. 9, pp 283-297 (2003).

2. Sreevalsan-Nair J., Linsen L., Hamann B., Using Ray
Intersection for Dual Isosurfacing, Int. Conf. Computer
Graphics Theory and Applications, (2006).

3. Lopes A., Brodlie K., Improving the Robustness and Ac-
curacy of the Marching Cubes Algorithm for Isosurfacing,
IEEE Trans. Visualization and Computer Graphics, vol. 9,
pp 19-29 (2003).

4. Carr H., Max N., Subdivision Analysis of the Trilinear In-
terpolant, IEEE Trans. Visualization and Computer Graph-
ics, vol. 16, pp 533-547 (2010).

5. Lorensen W.E., Cline H.E., Marching Cubes: A high res-
olution 3D surface construction algorithm, In: Computer
Graphics, Vol. 21, pp 163-169 (1987).

6. Cline H.E., Lorensen W.E., Ludke S., Crawford C.R.,
Teeter B.C., Two algorithms for three-dimensional recon-
struction of tomograms, Medical Physics, Vol. 15, pp 320-
327 (1988).

7. Chernyaev E.V., Marching Cubes 33: construction of topo-
logically correct isosurfaces. Technical Report CERN CN
9517 (1995).

8. Custodio L., Etiene T., Pesco S., Silva C., Practical con-
siderations on Marching Cubes 33 topological correctness,
Computer & Graphics, Vol. 37, pp 840-850 (2013).

9. Newman T. S., Yi H., A survey of the marching cubes
algorithm, Computers And Graphics, Vol. 30, pp 854-879
(2006).

10. Bresenham J. E., Algorithm for computer control of a
digital plotter, IBM Systems Journal, Vol. 4, pp 25-30
(1965).

11. Liu X-W., Cheng K., Three-dimentional extension of Bre-
senhams algorithm and its application in straight-line in-
terpolation, Proc. Instn Mech Engrs, Vol. 216, pp 459-463
(2002).

12. Boumghar F.O., Miguet S., Nicod J.M., Complexity of
discrete surfaces in the dividing-cubes algorithm. DGCI
1996, LNCS Springer Verlag, pp 269-280 (1996).

13. Kebaili A., Boumghar F., Optimal blocs subdivision in
the “Dividing-cubes” algorithm. Application to the 3D
medical imagery, In Proc. MGV vol. 9, pp 281-288 (2000).

14. Bong-Soo S., Topology Preserving Tetrahedral Decompo-
sition Applied To Trilinear Interval Volume Tetrahedriza-
tion, in KSII Transactions on Internet Information Sys-
tems, vol. 3, pp 667-681 (2009).

15. Theisel H., Exact Isosurfaces for Marching Cubes, Com-
puter Graphics forum, vol. 21, pp 19-31 (2002).

16. Newman T.S., YiA H., A survey of the marching cubes
algorithm, Computers Graphics, vol. 30, pp 854-879 (2006)

17. Hamann Co.B., Joy K. I., Iso-splatting: A Point-based
Alternative to Isosurface Visualization, In Proc. Computer
Graphics and Applications, pp 325-334 (2003).

18. Livnat Y. , Tricoche X., Interactive point-based isosur-
face extraction, In: Proc. of visualization 04, Austin, pp
457-464 (2004).

19. Zhang H., Kaufman A., Interactive point-based isosur-
face exploration and high-quality rendering, IEEE Trans
Vis Comput Graph., vol. 12, pp 1267-1274 (2006).

20. Guanfeng J., Han-Wei S., Jinzhu g., Interactive Ex-
ploration of Remote Isosurfaces with Point-Based Non-
Photorealistic Rendering, In Proc. IEEE Pacific Visualiza-
tion Symposium, pp 25-32 (2008).

21. Kong T.Y., Rosenfeld A., Digital topology: introduction
and survey, In Journal of Computer Vision, Graphics, and
Image Processing, Vol. 48, pp 357-393 (1989).

22. Jonas A., Kiryati N., Digital representation schemes for
3D curves, In Pattern Recognition, Vol. 30, pp 1803-1816
(1997).

23. Andres E., Discrete linear objects in dimension n: the
standard model, In Graphical Models, vol. 65, pp 92-111
(2003).

24. DGtal: Discrete Geometry Tools and Algorithms,
http://liris.cnrs.fr/dgtal/.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1

Author Biographies

Rachid NAMANE obtained, in 2001, an engineer-
ing degree in computer engineering from the Institute
of Electrical and Electronics Engineering of Boumerdes
University. He then obtained a Magister degree in com-
puter engineering from Polytechnic Military School of
Algiers in 2003. Since 2004, he is an assistant profes-
sor at the Institute of Electrical and Electronics Engi-
neering of Boumerdes University, and an associate re-
searcher in the Laboratory of Robotics, Parallelism and
and Embedded systems - Parallelism and Medical Imag-
ing Research Team - at the University of Sciences and
Technology of Algiers where he is preparing his PhD
degree in computer engineering.

Serge MIGUET graduated from the ENSIMAG (Greno-
ble, France) in 1988. He obtained a PhD from the INPG
in 1990. He was an Assistant Professor at the ENS
de Lyon, and a member of the LIP laboratory from
1991 to 1996. He received his Habilitation Diriger des
Recherches from the Universit Claude Bernard Lyon 1
in 1995. Since 1996, he is a full Professor in Computer
Science at the Universit Lumire Lyon 2, and a member
of the LIRIS laboratory, UMR CNRS 5205. His main
research activities are devoted to models and tools for
image processing, image analysis, shape recognition.

Fatima OULEBSIR-BOUMGHAR is Professor in
Electronic and Computer Sciences at the Algiers Uni-
versity of Sciences and Technology (USTHB) since 1980.
She was the Head of the Laboratory of Robotics, Par-
allelism and Embedded systems (LRPE) and she man-
aged the ParIMed research team. She was responsible
for Control Process and Interactive Rendering (CPRI)
PhD program. She obtained her Engineer Degree from
E.S.E. (Supelec, Paris, 1980) and her PhD in Signal and
Image parallel processing from USTHB in 1998, with
the collaboration with LIP-ENS (Lyon). Her main re-
search activities are devoted to Medical Imaging, Shape
and Surface Modeling, Point-based Graphics, Compu-
tational Brain Imaging and Parallelism.

Author Biographies (50 - 100 words)

