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Abstract

A new computationally efficient dependence measure, and
an adaptive statistical test of independence, are proposed.
The dependence measure is the difference between ana-
lytic embeddings of the joint distribution and the product
of the marginals, evaluated at a finite set of locations
(features). These features are chosen so as to maximize a
lower bound on the test power, resulting in a test that
is data-efficient, and that runs in linear time (with re-
spect to the sample size n). The optimized features can
be interpreted as evidence to reject the null hypothesis,
indicating regions in the joint domain where the joint
distribution and the product of the marginals differ most.
Consistency of the independence test is established, for
an appropriate choice of features. In real-world bench-
marks, independence tests using the optimized features
perform comparably to the state-of-the-art quadratic-
time HSIC test, and outperform competing O(n) and
O(n log n) tests.

1 Introduction

We consider the design of adaptive, nonparametric sta-
tistical tests of dependence: that is, tests of whether
a joint distribution Pxy factorizes into the product of
marginals PxPy. While classical tests of dependence,
such as Pearson’s correlation and Kendall’s τ , are able to
detect monotonic relations between univariate variables,
more modern tests can address complex interactions, for
instance changes in variance of X with the value of Y .
Key to many recent tests is to examine covariance or
correlation between data features. These interactions
become significantly harder to detect, and the features

∗Zoltán Szabó’s ORCID ID: http://orcid.org/
0000-0001-6183-7603.

are more difficult to design when the data reside in high
dimensions.

A basic nonlinear dependence measure is the Hilbert-
Schmidt Independence Criterion (HSIC), which is the
Hilbert-Schmidt norm of the covariance operator between
feature mappings of the random variables [Gretton et al.,
2005, 2008]. Each random variable X and Y is mapped to
a respective reproducing kernel Hilbert space Hk and Hl.
For sufficiently rich mappings, the covariance operator
norm is zero if and only if the variables are indepen-
dent. A second basic nonlinear dependence measure is
the smoothed difference between the characteristic func-
tion of the joint distribution, and that of the product
of marginals. When a particular smoothing function is
used, the statistic corresponds to the covariance between
distances of X and Y variable pairs [Feuerverger, 1993,
Székely et al., 2007, Székely and Rizzo, 2009], yielding
a simple test statistic. It has been shown by Sejdinovic
et al. [2013] that the distance covariance (and its gener-
alization to semi-metrics) is an instance of HSIC for an
appropriate choice of kernels. A disadvantage of these
feature covariance statistics, however, is that they require
quadratic time to compute (besides in the special case of
the distance covariance with univariate real-valued vari-
ables, where Huo and Székely [2014] achieve an O(n log n)
cost). Moreover, the feature covariance statistics have
intractable null distributions, and either a permutation
approach or the solution of an expensive eigenvalue prob-
lem [e.g. Zhang et al., 2011] is required for consistent
estimation of the quantiles. Several approaches were
proposed by Zhang et al. [2016] to obtain faster tests
along the lines of HSIC. These include computing HSIC
on finite-dimensional feature mappings chosen as ran-
dom Fourier features (RFFs) [Rahimi and Recht, 2008], a
block-averaged statistic, and a Nyström approximation to
the statistic. Key to each of these approaches is a more
efficient computation of the statistic and its threshold un-
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der the null distribution: for RFFs, the null distribution
is a finite weighted sum of χ2 variables; for the block-
averaged statistic, the null distribution is asymptotically
normal; for Nyström, either a permutation approach is
employed, or the spectrum of the Nyström approximation
to the kernel matrix is used in approximating the null
distribution. Each of these methods costs significantly
less than the O(n2) cost of the full HSIC (the cost is
linear in n, but also depends quadratically on the number
of features retained). A potential disadvantage of the
Nyström and Fourier approaches is that the features are
not optimized to maximize test power, but are chosen
randomly. The block statistic performs worse than both,
due to the large variance of the statistic under the null
(which can be mitigated by observing more data).

In addition to feature covariances, correlation measures
have also been developed in infinite dimensional feature
spaces: in particular, Bach and Jordan [2002], Fukumizu
et al. [2008] proposed statistics on the correlation operator
in a reproducing kernel Hilbert space. While convergence
has been established for certain of these statistics, their
computational cost is high at O(n3), and test thresholds
have relied on permutation. A number of much faster
approaches to testing based on feature correlations have
been proposed, however. For instance, Dauxois and Nkiet
[1998] compute statistics of the correlation between finite
sets of basis functions, chosen for instance to be step func-
tions or low order B-splines. The cost of this approach is
O(n). This idea was extended by Lopez-Paz et al. [2013],
who computed the canonical correlation between finite
sets of basis functions chosen as random Fourier features;
in addition, they performed a copula transform on the
inputs, with a total cost of O(n log n). Finally, space
partitioning approaches have also been proposed, based
on statistics such as the KL divergence, however these
apply only to univariate variables [Heller et al., 2016], or
to multivariate variables of low dimension [Gretton and
Györfi, 2010] (that said, these tests have other advantages
of theoretical interest, notably distribution-independent
test thresholds).

The approach we take is most closely related to HSIC
on a finite set of features. Our simplest test statistic,
the Finite Set Independence Criterion (FSIC), is an av-
erage of covariances of analytic functions (i.e., features)
defined on each of X and Y . A normalized version of
the statistic (NFSIC) yields a distribution-independent
asymptotic test threshold. We show that our test is con-
sistent, despite a finite number of analytic features being
used, via a generalization of arguments in Chwialkowski
et al. [2015]. As in recent work on two-sample testing
by Jitkrittum et al. [2016], our test is adaptive in the
sense that we choose our features on a held-out valida-
tion set to optimize a lower bound on the test power.
The design of features for independence testing turns out

to be quite different to the case of two-sample testing,
however: the task is to find correlated feature pairs on
the respective marginal domains, rather than attempting
to find a single, high-dimensional feature representation
for the entire (x, y) (as we would need to do if we were
comparing distributions Pxy and Qxy, rather than testing
a specific property of Pxy). We demonstrate the perfor-
mance of our tests on several challenging artificial and
real-world datasets, including detection of dependence
between music and its year of appearance, and between
videos and captions. In these experiments, we outperform
competing linear and O(n log n) time tests.

2 Independence Criteria and Sta-
tistical Tests

We introduce two test statistics: first, the Finite Set
Independence Criterion (FSIC), which builds on the prin-
ciple that dependence can be measured in terms of the
covariance between data features. Next, we propose a nor-
malized version of this statistic (NFSIC), with a simpler
asymptotic distribution when Pxy = PxPy. We show how
to select features for the latter statistic to maximize a
lower bound on the power of its corresponding statistical
test.

2.1 The Finite Set Independence Crite-
rion

We begin by introducing the Hilbert-Schmidt Indepen-
dence Criterion (HSIC) as proposed in Gretton et al.
[2005], since our unnormalized statistic is built along sim-
ilar lines. Consider two random variables X ∈ X ⊂ Rdx
and Y ∈ Y ⊂ Rdy . Denote by Pxy the joint distribution
between X and Y ; Px and Py are the marginal distribu-
tions of X and Y . Let ⊗ denote the tensor product, such
that (a⊗ b) c = a 〈b, c〉. Assume that k : X × X → R
and l : Y ×Y → R are positive definite kernels associated
with reproducing kernel Hilbert spaces (RKHS) Hk and
Hl, respectively. Let ‖ · ‖HS be the norm on the space
of Hl → Hk Hilbert-Schmidt operators. Then, HSIC
between X and Y is defined as

HSIC(X,Y ) =
∥∥µxy − µx ⊗ µy∥∥2

HS

= E(x,y),(x′,y′) [k(x,x′)l(y,y′)]

+ ExEx′ [k(x,x′)]EyEy′ [l(y,y
′)]

− 2E(x,y) [Ex′ [k(x,x′)]Ey′ [l(y,y
′)]] , (1)

where Ex := Ex∼Px
, Ey := Ey∼Py

, E(x,y) := E(x,y)∼Pxy
,

and x′ is an independent copy of x. The mean
embedding of Pxy belongs to the space of Hilbert-
Schmidt operators from Hl to Hk, µxy :=

∫
X×Y k(x, ·)⊗

l(y, ·) dPxy(x,y) ∈ HS(Hl,Hk), and the marginal mean
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embeddings are µx :=
∫
X k(x, ·) dPx(x) ∈ Hk and

µy :=
∫
Y l(y, ·) dPy(y) ∈ Hl [Smola et al., 2007]. Gret-

ton et al. [2005, Theorem 4] show that if the kernels k
and l are universal [Steinwart and Christmann, 2008] on
compact domains X and Y, then HSIC(X,Y ) = 0 if and
only if X and Y are independent. Alternatively, Gretton
[2015] shows that it is sufficient for each of k and l to be
characteristic to their respective domains (meaning that
distribution embeddings are injective in each marginal
domain: see Sriperumbudur et al. [2010]). Given a joint
sample Zn = {(xi,yi)}ni=1 ∼ Pxy, an empirical estimator
of HSIC can be computed in O(n2) time by replacing the
population expectations in (1) with their corresponding
empirical expectations based on Zn.

We now propose our new linear-time dependence mea-
sure, the Finite Set Independence Criterion (FSIC). Let
X ⊂ Rdx and Y ⊂ Rdy be open sets. Define the empir-
ical measure ν := 1

J

∑J
i=1 δ(vi,wi) over J test locations

VJ := {(vi,wi)}Ji=1 ⊂ X × Y where δt denotes the Dirac
measure centered on t, and (vi,wi) are realizations from
an absolutely continuous distribution (wrt the Lebesgue
measure). Write Exy for E(x,y)∼Pxy

. The idea is to
see µxy(v,w) = Exy[k(x,v)l(y,w)], µx(v) = Ex[k(x,v)]
and µy(w) = Ey[l(y,w)] as smooth functions, and con-
sider an L2(X × Y, ν) distance between µxy and µxµy
instead of a Hilbert-Schmidt distance as in HSIC [Gret-
ton et al., 2005]. Let µxµy(x,y) := µx(x)µy(y). FSIC is
defined as

FSIC2(X,Y ) := ‖µxy − µxµy‖2L2(X×Y,ν)

=

∫
X

∫
Y

(µxy(x,y)− µx(x)µy(y))2 dν(x,y)

:=
1

J

J∑
i=1

u(vi,wi)
2 =

1

J
‖u‖22, where

u(v,w) := µxy(v,w)− µx(v)µy(w)

= Exy[k(x,v)l(y,w)]− Ex[k(x,v)]Ey[l(y,w)], (2)
= covxy[k(x,v), l(y,w)],

and u := (u(v1,w1), . . . , u(vJ ,wJ))>.
Our first result in Proposition 2 states that FSIC(X,Y )

almost surely defines a dependence measure for the ran-
dom variables X and Y , provided that the product kernel
on the joint space X × Y is characteristic and analytic
(see Definition 1).

Definition 1 (Analytic kernels [Chwialkowski et al.,
2015]). Let X be an open set in Rd. A positive defi-
nite kernel k : X × X → R is said to be analytic on its
domain X × X if for all v ∈ X , f(x) := k(x,v) is an
analytic function on X .

Assumption A. The kernels k : X × X → R and l :
Y × Y → R are bounded by Bk and Bl respectively, and

the product kernel g((x,y), (x′,y′)) := k(x,x′)l(y,y′) is
characteristic [Sriperumbudur et al., 2010, Definition 6],
and analytic (Definition 1) on (X × Y)× (X × Y).

Proposition 2 (FSIC is a dependence measure). Assume
that
1. Assumption A holds.

2. The test locations VJ = {(vi,wi)}Ji=1 are drawn from
an absolutely continuous distribution.

Then, almost surely, FSIC(X,Y ) = 1√
J
‖u‖2 = 0 if and

only if X and Y are independent.

Proof. Since g is characteristic, the mean embedding map
Πg : P 7→ E(x,y)∼P [g((x,y), ·)] is injective [Sriperum-
budur et al., 2010, Section 3], where P is a probability
distribution on X × Y . Since g is analytic, by Lemma 10
(Appendix), µxy and µxµy are analytic functions. Thus,
Lemma11 (Appendix, setting Λ = Πg) guarantees that
FSIC(X,Y ) = 0 ⇐⇒ Pxy = PxPy ⇐⇒ X and Y are
independent almost surely.

FSIC uses µxy as a proxy for Pxy, and µxµy as a proxy
for PxPy. Proposition 2 suggests that, to detect the
dependence betweenX and Y , it is sufficient to evaluate at
a finite number of locations (defined by VJ ) the difference
of the population joint embedding µxy and the embedding
of the product of the marginal distributions µxµy. A brief
explanation to justify this property is as follows. If Pxy =
PxPy, then ρ(v,w) := µxy(v,w)−µxµy(v,w) is zero, and
FSIC(X,Y ) = 0 for any VJ . If Pxy 6= PxPy, then ρ will
not be a zero function, since the mean embedding map is
injective (require the product kernel to be characteristic).
Using the same argument as in Chwialkowski et al. [2015],
since k and l are analytic, ρ is also analytic, and the
set of roots R := {(v,w) | ρ(v,w) = 0} has Lebesgue
measure zero. Thus, it is sufficient to draw (v,w) from an
absolutely continuous distribution, as we are guaranteed
that (v,w) /∈ R giving FSIC(X,Y ) > 0.
For FSIC to be a dependence measure, the product

kernel is required to be characteristic and analytic. We
next show in Proposition 3 that Gaussian kernels k and l
yield such a product kernel.

Proposition 3 (A product of Gaussian
kernels is characteristic and analytic). Let
k(x,x′) = exp

(
−(x− x′)>A(x− x′)

)
and

l(y,y′) = exp
(
−(y − y′)>B(y − y′)

)
be Gaussian

kernels on Rdx × Rdx and Rdy × Rdy respectively,
for positive definite matrices A and B. Then,
g((x,y), (x′,y′)) = k(x,x′)l(y,y′) is characteristic and
analytic on (Rdx × Rdy )× (Rdx × Rdy ).
Proof (sketch). The main idea is to use the fact a Gaus-
sian kernel is analytic, and a product of Gaussian kernels
is a Gaussian kernel on the pair of variables. See the full
proof in Appendix D.
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Plug-in Estimator We now give an empirical estima-
tor of FSIC. Assume that we observe a joint sample Zn :=

{(xi,yi)}ni=1
i.i.d.∼ Pxy. Unbiased estimators of µxy(v,w)

and µxµy(v,w) are µ̂xy(v,w) := 1
n

∑n
i=1 k(xi,v)l(yi,w)

and µ̂xµy(v,w) := 1
n(n−1)

∑n
i=1

∑
j 6=i k(xi,v)l(yj ,w),

respectively. A straightforward empirical estimator of
FSIC2 is then given by

F̂SIC2(Zn) =
1

J

J∑
i=1

û(vi,wi)
2,

û(v,w) := µ̂xy(v,w)− µ̂xµy(v,w) (3)

=
2

n(n− 1)

∑
i<j

h(v,w)((xi,yi), (xj ,yj)), (4)

where h(v,w)((x,y), (x′,y′)) := 1
2 (k(x,v) −

k(x′,v))(l(y,w) − l(y′,w)). For conciseness, we
define û := (û1, . . . , ûJ)> ∈ RJ where ûi := û(vi,wi) so
that F̂SIC2(Zn) = 1

J û>û.
F̂SIC2 can be efficiently computed in O((dx + dy)Jn)

time [see (3)], assuming that the runtime complexity of
evaluating k(x,v) is O(dx) and that of l(y,w) is O(dy).
The unbiasedness of µ̂xµy is necessary for (4) to be a U-
statistic. This fact and the rewriting of F̂SIC2 in terms of
h(v,w)((x,y), (x′,y′)) will be exploited when the asymp-
totic distribution of û is derived (Proposition 4).
Since FSIC satisfies FSIC(X,Y ) = 0 ⇐⇒ X ⊥ Y , in

principle its empirical estimator can be used as a test
statistic for an independence test proposing a null hy-
pothesis H0 : “X and Y are independent” against an
alternative H1 : “X and Y are dependent”. The null
distribution (i.e., distribution of the test statistic assum-
ing that H0 is true) is challenging to obtain, however
and depends on the unknown Pxy. This prompts us to
consider a normalized version of FSIC whose asymptotic
null distribution of a convenient form. We first derive the
asymptotic distribution of û in Proposition 4, which we
use to derive the normalized test statistic in Theorem 5.
As a shorthand, we write z := (x,y), and t := (v,w).

Proposition 4 (Asymptotic distribution of û). Define
k̃(x,v) := k(x,v)−Ex′k(x′,v), and l̃(y,w) := l(y,w)−
Ey′ l(y

′,w). Then, under both H0 and H1, for any fixed
locations t and t′,

covz[û(t), û(t
′)]

n→∞−−−−→ covz[k̃(x,v)l̃(y,w), k̃(x,v′)l̃(y,w′)]

= Exy[
(
k̃(x,v)l̃(y,w)− u(t)

)(
k̃(x,v′)l̃(y,w′)− u(t′)

)
],

where u(v,w) is given in (2), and û(v,w) is defined
in (4). Second, if 0 < covz[û(ti), û(ti)] < ∞ for i =

1, . . . , J , then
√
n(û − u)

d→ N (0,Σ) as n → ∞, where
Σij = cov[û(ti), û(tj)] and u := (u(t1), . . . , u(tJ))>.

Proof. We first note that for a fixed t = (v,w), û(v,w) is
a one-sample second-order U-statistic [Serfling, 2009, Sec-
tion 5.1.3] with a U-statistic kernel ht where ht(a,b) =

ht(b,a). Thus, by Kowalski and Tu [2008, Section 5.1,
Theorem 1], it follows directly that cov[û(t), û(t′)] =
4covz[Eaht(z,a),Ebht′(z,b)]. Substituting ht with its
definition yields the first claim, where we note that
Exy[k̃(x,v)l̃(y,w)] = u(v,w).
For the second claim, since û is a multivariate one-

sample U-statistic, by Lehmann [1999, Theorem 6.1.6]
and Kowalski and Tu [2008, Section 5.1, Theorem 1], it
follows that

√
n(û − u)

d→ N (0,Σ) as n → ∞, where
Σij = cov[û(ti), û(tj)].

Recall from Proposition 2 that u = 0 holds almost
surely under H0. The asymptotic normality in the second
claim of Proposition 4 implies that nF̂SIC2 = n

J û>û con-
verges in distribution to a sum of J dependent weighted
χ2 random variables. The dependence comes from the
fact that the coordinates û1 . . . , ûJ of û all depend on
the sample Zn. This null distribution is not analytically
tractable, and requires a large number of simulations to
compute the rejection threshold Tα for a given significance
value α.

2.2 Normalized FSIC and Adaptive Test
For the purpose of an independence test, we will consider
a normalized variant of F̂SIC2, which we call N̂FSIC2,
whose tractable asymptotic null distribution is χ2(J), the
chi-squared distribution with J degrees of freedom. We
then show that the independence test defined by N̂FSIC2

is consistent. These results are given in Theorem 5.

Theorem 5 (Independence test using N̂FSIC2 is con-
sistent). Let Σ̂ be a consistent estimate of Σ based on
the joint sample Zn. The N̂FSIC2 statistic is defined as

λ̂n := nû>
(
Σ̂ + γnI

)−1

û where γn ≥ 0 is a regulariza-
tion parameter. Assume that

1. Assumption A holds.

2. Σ is invertible almost surely with respect to VJ =
{(vi,wi)}Ji=1 drawn from an absolutely continuous
distribution.

3. limn→∞ γn = 0.

Then, for any k, l and VJ satisfying the assumptions,

1. Under H0, λ̂n
d→ χ2(J) as n→∞.

2. Under H1, for any r ∈ R, limn→∞ P
(
λ̂n ≥ r

)
= 1

almost surely. That is, the independence test based on
N̂FSIC2 is consistent.

Proof (sketch) . Under H0, nû>(Σ̂ + γnI)−1û asymptot-
ically follows χ2(J) because

√
nû is asymptotically nor-

mally distributed (see Proposition 4). Claim 2 builds on
the result in Proposition 2 stating that u 6= 0 under H1;
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it follows using the convergence of û to u. The full proof
can be found in Appendix E.

Theorem 5 states that if H1 holds, the statistic can
be arbitrarily large as n increases, allowing H0 to be
rejected for any fixed threshold. Asymptotically the test
threshold Tα is given by the (1−α)-quantile of χ2(J) and
is independent of n. The assumption on the consistency
of Σ̂ is required to obtain the asymptotic chi-squared
distribution. The regularization parameter γn is to ensure
that (Σ̂ + γnI)−1 can be stably computed. In practice,
γn requires no tuning, and can be set to be a very small
constant.
The next proposition states that the computational

complexity of the N̂FSIC2 estimator is linear in both
the input dimension and sample size, and that it can
be expressed in terms of the K =[Kij ] = [k(vi,xj)] ∈
RJ×n,L = [Lij ] = [l(wi,yj)] ∈ RJ×n matrices.

Proposition 6 (An empirical estimator of N̂FSIC2). Let
1n := (1, . . . , 1)> ∈ Rn. Denote by ◦ the element-wise
matrix product. Then,

1. û = (K◦L)1n

n−1 − (K1n)◦(L1n)
n(n−1) .

2. A consistent estimator for Σ is Σ̂ = ΓΓ>

n where

Γ := (K− n−1K1n1>n ) ◦ (L− n−1L1n1>n )− ûb1>n ,

ûb = n−1 (K ◦ L) 1n − n−2 (K1n) ◦ (L1n) .

Assume that the complexity of the kernel evaluation is
linear in the input dimension. Then the test statistic

λ̂n = nû>
(
Σ̂ + γnI

)−1

û can be computed in O(J3 +

J2n+ (dx + dy)Jn) time.

Proof (sketch). Claim 1 for û is straightforward. The
expression for Σ̂ in claim 2 follows directly from the
asymptotic covariance expression in Proposition 4. The
consistency of Σ̂ can be obtained by noting that the
finite sample bound for P(‖Σ̂ − Σ‖F > t) decreases as
n increases. This is implicitly shown in Appendix F.2.2
and its following sections.

Although the dependency of the estimator on J is cubic,
we empirically observe that only a small value of J is
required (see Section 3). The number of test locations
J relates to the number of regions in X × Y of pxy and
pxpy that differ (see Figure 1). In particular, J need not
increase with n for test consistency.
Our final theoretical result gives a lower bound on

the test power of N̂FSIC2 i.e., the probability of correctly
rejectingH0. We will use this lower bound as the objective
function to determine VJ and the kernel parameters. Let
‖ · ‖F be the Frobenius norm.

Theorem 7 (A lower bound on the test power). Let
NFSIC2(X,Y ) := λn := nu>Σ−1u. Let K be a kernel
class for k, L be a kernel class for l, and V be a collection
with each element being a set of J locations. Assume that
1. There exist finite Bk and Bl such that

supk∈K supx,x′∈X |k(x,x′)| ≤ Bk and
supl∈L supy,y′∈Y |l(y,y′)| ≤ Bl.

2. c̃ := supk∈K supl∈L supVJ∈V ‖Σ
−1‖F <∞.

Then, for any k ∈ K, l ∈ L, VJ ∈ V, and λn ≥ r, the test
power satisfies P

(
λ̂n ≥ r

)
≥ L(λn) where

L(λn) = 1− 62e−ξ1γ
2
n(λn−r)2/n − 2e−b0.5nc(λn−r)2/[ξ2n2]

− 2e−[(λn−r)γn(n−1)/3−ξ3n−c3γ2
nn(n−1)]

2
/[ξ4n2(n−1)],

b·c is the floor function, ξ1 := 1
32c21J

2B∗
, ξ2 := 72c22JB

2,
B := BkBl, ξ3 := 8c1B

2J , c3 := 4B2Jc̃2, ξ4 :=
28B4J2c21, c1 := 4B2J

√
Jc̃, c2 := 4B

√
Jc̃, and B∗ is

a constant depending on only Bk and Bl. Moreover, for
sufficiently large fixed n, L(λn) is increasing in λn.

We provide the proof in Appendix F. To put
Theorem 7 into perspective, let θx and θy be the
parameters of the kernels k and l, respectively.
We denote by θ = {θx, θy, VJ} the collection of
all tuning parameters of the test. Assume that
K =

{
(x,v) 7→ exp

(
−‖x−v‖2

2σ2
x

)
| σ2

x ∈ [σ2
x,l, σ

2
x,u]
}

=:

Kg for some 0 < σ2
x,l < σ2

x,u < ∞ and L ={
(y,w) 7→ exp

(
−‖y−w‖2

2σ2
y

)
| σ2

y ∈ [σ2
y,l, σ

2
y,u]
}

=: Lg for
some 0 < σ2

y,l < σ2
y,u < ∞ are Gaussian kernel classes.

Then, in Theorem 7, B = Bk = Bl = 1, and B∗ = 2.
The assumption c̃ <∞ is a technical condition to guar-
antee that the test power lower bound is finite for all
θ defined by the feasible sets K,L, and V. Let Vε,r :={
VJ | ‖vi‖2, ‖wi‖2 ≤ r and ‖vi − vj‖22 + ‖wi −wj‖22 ≥
ε, for all i 6= j

}
. If we set K = Kg,L = Lg, and V = Vε,r

for some ε, r > 0, then c̃ < ∞ as Kg,Lg, and Vε,r are
compact. In practice, these conditions do not necessarily
create restrictions as they almost always hold implicitly.
We show in Appendix C that the objective function used
to choose VJ will discourage any two locations to be in
the same neighborhood.
Parameter Tuning The test power lower bound

L(λn) in Theorem 7 is a function of λn = nu>Σ−1u
which is the population counterpart of the test statistic
λ̂n. As in FSIC, it can be shown that λn = 0 if and
only if X are Y are independent (from Proposition 2).
If X and Y are dependent, then λn > 0. According to
Theorem 7, for a sufficiently large n, the test power lower
bound is increasing in λn. One can therefore think of
λn (a function of θ) as representing how easily the test
rejects H0 given a problem Pxy. The higher the λn, the
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(a) µ̂xy(v,w) (b) µ̂xµy(v,w)

(c) Σ̂(v,w) (d) Statistic λ̂n(v,w)

Figure 1: Illustration of N̂FSIC2.

greater the lower bound on the test power, and thus the
more likely it is that the test will reject H0 when it is
false.

In light of this reasoning, we propose setting θ to θ∗ =
arg maxθ λn. That this procedure is also valid under H0

can be seen as follows. Under H0, θ∗ = arg maxθ 0 will be
arbitrary. Since Theorem 7 guarantees that λ̂n

d→ χ2(J)
as n→∞ for any θ, the asymptotic null distribution does
not change by using θ∗. In practice, λn is a population
quantity which is unknown. We propose dividing the
sample Zn into two disjoint sets: training and test sets.
The training set is used to optimize for θ∗, and the test set
is used for the actual independence test with the optimized
θ∗. The splitting is to guarantee the independence of θ∗
and the test sample, which is an assumption of Theorem
5.

To better under N̂FSIC2, we visualize
µ̂xy(v,w), µ̂xµy(v,w) and Σ̂(v,w) as a function of one
test location (v,w) on a simple toy problem. In this
problem, Y = −X +Z where Z ∼ N (0, 0.32). As we con-
sider only one location (J = 1), Σ̂(v,w) is a scalar. The

statistic can be written as λ̂n = n
(µ̂xy(v,w)−µ̂xµy(v,w))

2

Σ̂(v,w)
.

These components are shown in Figure 1, where we use
Gaussian kernels for both X and Y , and the horizontal
and vertical axes correspond to v ∈ R and w ∈ R,
respectively.

Intuitively, û(v,w) = µ̂xy(v,w)− µ̂xµy(v,w) captures
the difference of the joint distribution and the product of
the marginals as a function of (v,w). Squaring û(v,w)
and dividing it by the variance shown in Figure 1c gives
the statistic (also the parameter tuning objective) shown
in Figure 1d. The latter figure suggests that the parameter
tuning objective function can be non-convex. However,
we note that the non-convexity arises since there are
multiple ways to detect the difference between the joint
distribution and the product of the marginals. In this case,
the lower left and upper right regions equally indicate the
largest difference.

3 Experiments

In this section, we empirically study the performance
of the proposed method on both toy (Section 3.1) and
real-life problems (Section 3.2). Our interest is in the
performance of linear-time tests on challenging problems
which require a large sample size to be able to accurately
reveal the dependence. All the code is available at https:
//github.com/wittawatj/fsic-test.

We compare the proposed NFSIC with optimization
(NFSIC-opt) to five multivariate nonparametric tests.
The N̂FSIC2 test without optimization (NFSIC-med) acts
as a baseline, allowing the effect of parameter optimization
to be clearly seen. For pedagogical reason, we consider
the original HSIC test of Gretton et al. [2005] denoted by
QHSIC, which is a quadratic-time test. Nyström HSIC
(NyHSIC) uses a Nyström approximation to the kernel
matrices of X and Y when computing the HSIC statistic.
FHSIC is another variant of HSIC in which a random
Fourier feature approximation [Rahimi and Recht, 2008]
to the kernel is used. NyHSIC and FHSIC are studied in
Zhang et al. [2016] and can be computed in O(n), with
quadratic dependency on the number of inducing points
in NyHSIC, and quadratic dependency in the number
of random features in FHSIC. Finally, the Randomized
Dependence Coefficient (RDC) proposed in Lopez-Paz
et al. [2013] is also considered. The RDC can be seen as
the primal form (with random Fourier features) of the
kernel canonical correlation analysis of Bach and Jordan
[2002] on copula-transformed data. We consider RDC
as a linear-time test even though preprocessing by an
empirical copula transform costs O((dx + dy)n log n).
We use Gaussian kernel classes Kg and Lg for both

X and Y in all the methods. Except NFSIC-opt, all
other tests use full sample to conduct the indepen-
dence test, where the Gaussian widths σx and σy are
set according to the widely used median heuristic i.e.,
σx = median ({‖xi − xj‖2 | 1 ≤ i < j ≤ n}), and σy is
set in the same way using {yi}ni=1. The J locations for
NFSIC-med are randomly drawn from the standard multi-
variate normal distribution in each trial. For a sample of
size n, NFSIC-opt uses half the sample for parameter tun-
ing, and the other disjoint half for the test. We permute
the sample 300 times in RDC1 and HSIC to simulate
from the null distribution and compute the test threshold.
The null distributions for FHSIC and NyHSIC are given
by a finite sum of weighted χ2(1) random variables given
in Eq. 8 of Zhang et al. [2016]. Unless stated otherwise,
we set the test threshold of the two NFSIC tests to be the
(1− α)-quantile of χ2(J). To provide a fair comparison,
we set J = 10, use 10 inducing points in NyHSIC, and 10

1We use a permutation test for RDC, following the authors’
implementation (https://github.com/lopezpaz/randomized_
dependence_coefficient, referred commit: b0ac6c0).
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Figure 2: (a): Runtime. (b): Probability of rejecting H0 as problem parameters vary. Fix n = 4000.

random Fourier features in FHSIC and RDC.
Optimization of NFSIC-opt The parameters of

NFSIC-opt are σx, σy, and J locations of size (dx +
dy)J . We treat all the parameters as a long vector in
R2+(dx+dy)J and use gradient ascent to optimize λ̂n/2.
We observe that initializing VJ by randomly picking J
points from the training sample yields good performance.
The regularization parameter γn in NFSIC is fixed to a
small value, and is not optimized. It is worth emphasizing
that the complexity of the optimization procedure is still
linear in n.
Since FSIC, NyHFSIC and RDC rely on a finite-

dimensional kernel approximation, these tests are consis-
tent only if both the number of features increases with n.
By constrast, the proposed NFSIC requires only n to go
to infinity to achieve consistency i.e., J can be fixed. We
refer the reader to Appendix C for a brief investigation
of the test power vs. increasing J . The test power does
not necessarily monotonically increase with J .

3.1 Toy Problems

We consider three toy problems: Same Gaussian (SG),
Sinusoid (Sin), and Gaussian Sign (GSign).
1. Same Gaussian (SG). The two variables are inde-

pendently drawn from the standard multivariate normal
distribution i.e., X ∼ N (0, Idx) and Y ∼ N (0, Idy ) where
Id is the d× d identity matrix. This problem represents
a case in which H0 holds.
2. Sinusoid (Sin). Let pxy be the probability density

of Pxy. In the Sinusoid problem, the dependency of
X and Y is characterized by (X,Y ) ∼ pxy(x, y) ∝ 1 +
sin(ωx) sin(ωy), where the domains of X ,Y = (−π, π)
and ω is the frequency of the sinusoid. As the frequency
ω increases, the drawn sample becomes more similar to
a sample drawn from Uniform((−π, π)2). That is, the
higher ω, the harder to detect the dependency between
X and Y . This problem was studied in Sejdinovic et al.
[2013]. Plots of the density for a few values of ω are
shown in Figures 6 and 7 in the appendix. The main
characteristic of interest in this problem is the local change
in the density function.
3. Gaussian Sign (GSign). In this problem, Y =

|Z|
∏dx
i=1 sgn(Xi), where X ∼ N (0, Idx), sgn(·) is the sign

function, and Z ∼ N (0, 1) serves as a source of noise. The
full interaction of X = (X1, . . . , Xdx) is what makes the
problem challenging. That is, Y is dependent on X, yet
it is independent of any proper subset of {X1, . . . , Xd}.
Thus, simultaneous consideration of all the coordinates
of X is required to successfully detect the dependency.

We fix n = 4000 and vary the problem parameters.
Each problem is repeated for 300 trials, and the sample is
redrawn each time. The significance level α is set to 0.05.
The results are shown in Figure 2. It can be seen that
in the SG problem (Figure 2b) where H0 holds, all the
tests achieve roughly correct type-I errors at α = 0.05.
In the Sin problem, NFSIC-opt achieves the highest test
power for all considered ω = 1, . . . , 6, highlighting its
strength in detecting local changes in the joint density.
The performance of NFSIC-med is significantly lower than
that of NFSIC-opt. This phenomenon clearly emphasizes
the importance of the optimization to place the locations
at the relevant regions in X × Y . RDC has a remarkably
high performance in both Sin and GSign (Figure 2c, 2d)
despite no parameter tuning. Interestingly, both NFSIC-
opt and RDC outperform the quadratic-time QHSIC
in these two problems. The ability to simultaneously
consider interacting features of NFSIC-opt is indicated
by its superior test power in GSign, especially at the
challenging settings of dx = 5, 6. An average trial runtime
for each test in the SG problem is shown in Figure 2a. We
observe that the runtime does not increase with dimension,
as the complexity of all the tests is linear in the dimension
of the input. All the tests are implemented in Python
using a common SciPy Stack.

To investigate the sample efficiency of all the tests,
we fix dx = dy = 250 in SG, ω = 4 in Sin, dx = 4 in
GSign, and increase n. Figure 3 shows the results. The
quadratic dependency on n in QHSIC makes it infeasible
both in terms of memory and runtime to consider n larger
than 6000 (Figure 3a). In constrast, although not the
most time-efficient, NFSIC-opt has the highest sample-
efficiency for GSign, and for Sin in the low-sample regime,
significantly outperforming QHSIC. Despite the small
additional overhead from the optimization, we are yet
able to conduct an accurate test with n = 105, dx = dy =
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Figure 3: (a) Runtime. (b): Probability of rejecting H0 as n increases in the toy problems.

250 in less than 100 seconds. We observe in Figure 3b
that the two NFSIC variants have correct type-I errors
across all sample sizes, indicating that the asymptotic null
distribution approximately holds by the time n reaches
1000. We recall from Theorem 5 that the NFSIC test
with random test locations will asymptotically reject H0

if it is false. A demonstration of this property is given in
Figure 3c, where the test power of NFSIC-med eventually
reaches 1 with n higher than 105.

3.2 Real Problems

We now examine the performance of our proposed test
on real problems.
Million Song Data (MSD) We consider a subset of

the Million Song Data2 [Bertin-Mahieux et al., 2011], in
which each song (X) out of 515,345 is represented by 90
features, of which 12 features are timbre average (over
all segments) of the song, and 78 features are timbre
covariance. Most of the songs are western commercial
tracks from 1922 to 2011. The goal is to detect the
dependency between each song and its year of release
(Y ). We set α = 0.01, and repeat for 300 trials where
the full sample is randomly subsampled to n points in
each trial. Other settings are the same as in the toy
problems. To make sure that the type-I error is correct,
we use the permutation approach in the NFSIC tests to
compute the threshold. Figure 4b shows the test powers
as n increases from 500 to 2000. To simulate the case
where H0 holds in the problem, we permute the sample
to break the dependency of X and Y . The results are
shown in Figure 5 in the appendix.

Evidently, NFSIC-opt has the highest test power among
all the linear-time tests for all the sample sizes. Its test
power is second to only QHSIC. We recall that NFSIC-opt
uses half of the sample for parameter tuning. Thus, at
n = 500, the actual sample for testing is 250, which is
relatively small. The fact that there is a vast power gain
from 0.4 (NFSIC-med) to 0.8 (NFSIC-opt) at n = 500
suggests that the optimization procedure can perform
well even at a lower sample sizes.

2Million Song Data subset: https://archive.ics.uci.edu/ml/
datasets/YearPredictionMSD.
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(b) Videos & Captions problem.

Figure 4: Probability of rejecting H0 as n increases in
the two real problems. α = 0.01.

Videos and Captions Our last problem is based on
the VideoStory46K3 dataset [Habibian et al., 2014]. The
dataset contains 45,826 Youtube videos (X) of an average
length of roughly one minute, and their corresponding
text captions (Y ) uploaded by the users. Each video is
represented as a dx = 2000 dimensional Fisher vector en-
coding of motion boundary histograms (MBH) descriptors
of Wang and Schmid [2013]. Each caption is represented
as a bag of words with each feature being the frequency
of one word. After filtering only words which occur in at
least six video captions, we obtain dy = 1878 words. We
examine the test powers as n increases from 2000 to 8000.
The results are given in Figure 4. The problem is suffi-
ciently challenging that all linear-time tests achieve a low
power at n = 2000. QHSIC performs exceptionally well
on this problem, achieving a maximum power throughout.
NFSIC-opt has the highest sample efficiency among the
linear-time tests, showing that the optimization procedure
is also practical in a high dimensional setting.
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An Adaptive Test of Independence with Analytic Kernel Embeddings
Supplementary Material

A Type-I Errors

In this section, we show that all the tests have correct type-I errors (i.e., the probability of reject H0 when it is true)
in real problems. We permute the joint sample so that the dependency is broken to simulate cases in which H0

holds. The results are shown in Figure 5.
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(a) MSD problem (permuted).
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(a) Videos & Captions problem with shuf-
fled sample.

Figure 5: Probability of rejecting H0 as n increases in the Million Song problem. α = 0.01.

B Redundant Test Locations

Here, we provide a simple illustration to show that two locations t1 = (v1,w1) and t2 = (v2,w2) which are too
close to each other will reduce the optimization objective. We consider the Sinusoid problem described in Section
3.1 with ω = 1, and use J = 2 test locations. In Figure 6, t1 is fixed at the red star, while t2 is varied along the
horizontal line. The objective value λ̂n as a function of (t1, t2) is shown in the bottom figure. It can be seen that λ̂n
decreases sharply when t2 is in the neighborhood of t1. This property implies that two locations which are too close
will not maximize the objective function (i.e., the second feature contains no additional information when it matches
the first). For J > 2, the objective sharply decreases if any two locations are in the same neighborhood.
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Figure 6: Plot of optimization objective values as location t2 moves along the green line. The objective sharply
drops when the two locations are in the same neighborhood.

C Test Power vs. J

It might seem intuitive that as the number of locations J increases, the test power should also increase. Here, we
empirically show that this statement is not always true. Consider the Sinusoid toy example described in Section 3.1
with ω = 2 (also see the left figure of Figure 7). By construction, X and Y are dependent in this problem. We run

11



NFSIC test with a sample size of n = 800, varying J from 1 to 600. For each value of J , the test is repeated for 500
times. In each trial, the sample is redrawn and the J test locations are drawn from Uniform((−π, π)2). There is no
optimization of the test locations. We use Gaussian kernels for both X and Y , and use the median heuristic to set
the Gaussian widths to 1.8. Figure 7 shows the test power as J increases.
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Figure 7: The Sinusoid problem and the plot of test power vs. the number of test locations.

We observe that the test power does not monotonically increase as J increases. When J = 1, the difference of pxy
and pxpy cannot be adequately captured, resulting in a low power. The power increases rapidly to roughly 0.8 at
J = 10, and stays at the maximum until about J = 100. Then, the power starts to drop sharply when J is higher
than 400 in this problem.

Unlike random Fourier features, the number of test locations in NFSIC is not the number of Monte Carlo particles
used to approximate an expectation. There is a tradeoff: if the test locations are in key regions (i.e., regions in
which there is a big difference between pxy and pxpy), then they increase power; yet the statistic gains in variance
(thus reducing test power) as J increases. As can be seen in Figure 7, there are eight key regions (in blue) that can
reveal the difference of pxy and pxpy. Using an unnecessarily high J not only makes the covariance matrix Σ̂ harder
to estimate accurately, it also increases the computation as the complexity on J is O(J3).

We note that NFSIC is not intended to be used with a large J . In practice, it should be set to be large enough so
as to capture the key regions as stated. As a practical guide, with optimization of the test locations, a good starting
point is J = 5 or 10.

D Proof of Proposition 3
Recall Proposition 3,

Proposition (A product of Gaussian kernels is characteristic and analytic). Let k(x,x′) = exp
(
−(x− x′)>A(x− x′)

)
and l(y,y′) = exp

(
−(y − y′)>B(y − y′)

)
be Gaussian kernels on Rdx × Rdx and Rdy × Rdy respectively, for

positive definite matrices A and B. Then, g((x,y), (x′,y′)) = k(x,x′)l(y,y′) is characteristic and analytic on
(Rdx × Rdy )× (Rdx × Rdy ).

Proof. Let z := (x>,y>)> and z′ := (x′>,y′>)> be vectors in Rdx+dy . We prove by reducing the product kernel to

one Gaussian kernel with g(z, z′) = exp
(
−(z− z′)>C(z− z′)

)
where C :=

(
A 0
0 B

)
. Write g(z, z′) = Ψ(z− z′)

where Ψ(t) := exp
(
−t>Ct

)
. Since C is positive definite, we see that the finite measure ζ corresponding to Ψ as

defined in Lemma 12 has support everywhere in Rdx+dy . Thus, Sriperumbudur et al. [2010, Theorem 9] implies that
g is characteristic.
To see that g is analytic, we observe that for each z′ ∈ Rdx+dy , z 7→ −(z − z′)>C(z − z′) is a multivariate

polynomial in z, which is known to be analytic. Using the fact that t 7→ exp(t) is analytic on R, and that a
composition of analytic functions is analytic, we see that z 7→ exp

(
−(z− z′)>C(z− z′)

)
is analytic on Rdx+dy for

each z′.

E Proof of Theorem 5
Recall Theorem 5,
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Theorem 5 (Independence test using N̂FSIC2 is consistent). Let Σ̂ be a consistent estimate of Σ based on the

joint sample Zn. The N̂FSIC2 statistic is defined as λ̂n := nû>
(
Σ̂ + γnI

)−1

û where γn ≥ 0 is a regularization
parameter. Assume that

1. Assumption A holds.

2. Σ is invertible almost surely with respect to VJ = {(vi,wi)}Ji=1 drawn from an absolutely continuous distribution.

3. limn→∞ γn = 0.

Then, for any k, l and VJ satisfying the assumptions,

1. Under H0, λ̂n
d→ χ2(J) as n→∞.

2. Under H1, for any r ∈ R, limn→∞ P
(
λ̂n ≥ r

)
= 1 almost surely. That is, the independence test based on

N̂FSIC2 is consistent.

Proof. Assume thatH0 holds. The consistency of Σ̂ and the continuous mapping theorem imply that
(
Σ̂ + γnI

)−1 p→
Σ−1 which is a constant. Let a be a random vector in RJ following N (0,Σ). By Vaart [2000, Theorem 2.7 (v)], it

follows that
[
√
nû,

(
Σ̂ + γnI

)−1
]

d→
[
a,Σ−1

]
where u = 0 almost surely by Proposition 2, and

√
nû

d→ N (0,Σ)

by Proposition 4. Since f(x,S) := x>Sx is continuous, f
(
√
nû,

(
Σ̂ + γnI

)−1
)

d→ f(a,Σ−1). Equivalently,

nû>
(
Σ̂ + γnI

)−1

û
d→ a>Σ−1a ∼ χ2(J) by Anderson [2003, Theorem 3.3.3]. This proves the first claim.

The proof of the second claim has a very similar structure to the proof of Proposition 2 of Chwialkowski et al.
[2015]. Assume that H1 holds. Then, u 6= 0 almost surely by Proposition 2. Since k and l are bounded, it follows that
|ht(z, z

′)| ≤ 2BkBl for any z, z′ (see (8)), and we have that û
a.s.→ u by Serfling [2009, Section 5.4, Theorem A]. Thus,

û>
(
Σ̂ + γnI

)−1

û− r
n

d→ u>Σ−1u by the continuous mapping theorem, and the consistency of Σ̂. Consequently,

lim
n→∞

P
(
λ̂n ≥ r

)
= 1− lim

n→∞
P
(

û>
(
Σ̂ + γnI

)−1

û− r

n
< 0

)
(a)
= 1− P

(
u>Σ−1u < 0

) (b)
= 1,

where at (a) we use the Portmanteau theorem [Vaart, 2000, Lemma 2.2 (i)] guaranteeing that xn
d→ x if and only if

P(xn < t)→ P(x < t) for all continuity points of t 7→ P(x < t). Step (b) is justified by noting that the covariance
matrix Σ is positive definite so that u>Σ−1u > 0, and t 7→ P(u>Σ−1u < t) (a step function) is continuous at 0.

F Proof of Theorem 7
Recall Theorem 7,

Theorem 7 (A lower bound on the test power). Let NFSIC2(X,Y ) := λn := nu>Σ−1u. Let K be a kernel class
for k, L be a kernel class for l, and V be a collection with each element being a set of J locations. Assume that
1. There exist finite Bk and Bl such that supk∈K supx,x′∈X |k(x,x′)| ≤ Bk and supl∈L supy,y′∈Y |l(y,y′)| ≤ Bl.

2. c̃ := supk∈K supl∈L supVJ∈V ‖Σ
−1‖F <∞.

Then, for any k ∈ K, l ∈ L, VJ ∈ V, and λn ≥ r, the test power satisfies P
(
λ̂n ≥ r

)
≥ L(λn) where

L(λn) = 1− 62e−ξ1γ
2
n(λn−r)2/n − 2e−b0.5nc(λn−r)2/[ξ2n2]

− 2e−[(λn−r)γn(n−1)/3−ξ3n−c3γ2
nn(n−1)]

2
/[ξ4n2(n−1)],

13



b·c is the floor function, ξ1 := 1
32c21J

2B∗
, ξ2 := 72c22JB

2, B := BkBl, ξ3 := 8c1B
2J , c3 := 4B2Jc̃2, ξ4 := 28B4J2c21,

c1 := 4B2J
√
Jc̃, c2 := 4B

√
Jc̃, and B∗ is a constant depending on only Bk and Bl. Moreover, for sufficiently large

fixed n, L(λn) is increasing in λn.

Overview of the proof We first derive a probabilistic bound for |λ̂n − λn|/n. The bound is in turn upper
bounded by an expression involving ‖û− u‖2 and ‖Σ̂−Σ‖F . The difference ‖û− u‖2 can be bounded by applying
the bound for U-statistics given in Serfling [2009, Theorem A, p. 201]. For ‖Σ̂−Σ‖F , we decompose it into a sum
of smaller components, and bound each term with a product variant of the Hoeffding’s inequality (Lemma 9). L(λn)
is obtained by combining all the bounds with the union bound.

F.1 Notations

Let 〈A,B〉F := tr(A>B) denote the Frobenius inner product, and ‖A‖F :=
√

tr(A>A) be the Frobenius norm.
Write z := (x,y) to denote a pair of points from X × Y. We write t := (v,w) to denote a pair of test locations
from X × Y. For brevity, an expectation over (x,y) (i.e., E(x,y)∼Pxy

) will be written as Ez or Exy. Define
k̃(x,v) := k(x,v)− Ex′k(x′,v), and l̃(y,w) := l(y,w)− Ey′ l(y

′,w). Let B2(r) := {x | ‖x‖2 ≤ r} be a closed ball
with radius r centered at the origin. Similarly, define BF (r) := {A | ‖A‖F ≤ r} to be a closed ball with radius r of
J × J matrices under the Frobenius norm. Denote the max operation by (x1, . . . , xm)+ = max(x1, . . . , xm).
For a product of marginal mean embeddings µx(v)µy(w), we write µ̂xµy(v,w) :=
1

n(n−1)

∑n
i=1

∑
j 6=i k(xi,v)l(yj ,w) to denote the unbiased plug-in estimator, and write µ̂x(v)µ̂y(w) :=

1
n

∑n
i=1 k(xi,v) 1

n

∑n
j=1 l(yj ,w) which is a biased estimator. Define ûb(v,w) := µ̂xy(v,w) − µ̂x(v)µ̂y(w)

so that ûb :=
(
ûb(t1), . . . , ûb(tJ)

)> where the superscript b stands for “biased”. To avoid confusing with a positive
definite kernel, we will refer to a U-statistic kernel as a core.

F.2 Proof

We will first derive a bound for P(|λ̂n − λn| ≥ t), which will then be reparametrized to get a bound for the target
quantity P(λ̂n ≥ r). We closely follow the proof in Jitkrittum et al. [2016, Section C.1] up to (12), then we diverge.
We start by considering |λ̂n − λn|/n.

|λ̂n − λn|/n =
∣∣∣û>(Σ̂ + γnI)−1û− u>Σ−1u

∣∣∣
=

∣∣∣∣û> (Σ̂ + γnI
)−1

û− u> (Σ + γnI)
−1

u + u> (Σ + γnI)
−1

u− u>Σ−1u

∣∣∣∣
≤
∣∣∣∣û> (Σ̂ + γnI

)−1

û− u> (Σ + γnI)
−1

u

∣∣∣∣+
∣∣∣u> (Σ + γnI)

−1
u− u>Σ−1u

∣∣∣
:= (F)1 + (F)2 .

We next bound (F1) and (F2) separately.

(F)1 =

∣∣∣∣û> (Σ̂ + γnI
)−1

û− u> (Σ + γnI)
−1

u

∣∣∣∣
=

∣∣∣∣û> (Σ̂ + γnI
)−1

û− û> (Σ + γnI)
−1

û + û> (Σ + γnI)
−1

û− u> (Σ + γnI)
−1

u

∣∣∣∣
≤
∣∣∣∣û> (Σ̂ + γnI

)−1

û− û> (Σ + γnI)
−1

û

∣∣∣∣+
∣∣∣û> (Σ + γnI)

−1
û− u> (Σ + γnI)

−1
u
∣∣∣

=

∣∣∣∣〈ûû>,
(
Σ̂ + γnI

)−1

− (Σ + γnI)
−1

〉
F

∣∣∣∣+
∣∣∣〈ûû> − uu>, (Σ + γnI)

−1
〉
F

∣∣∣
≤ ‖ûû>‖F ‖(Σ̂ + γnI)−1 − (Σ + γnI)−1‖F + ‖ûû> − uu>‖F ‖(Σ + γnI)−1‖F
= ‖ûû>‖F ‖(Σ̂ + γnI)−1[(Σ + γnI)− (Σ̂ + γnI)](Σ + γnI)−1‖F + ‖ûû> − ûu> + ûu> − uu>‖F ‖(Σ + γnI)−1‖F
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(a)

≤ ‖ûû>‖F ‖(Σ̂ + γnI)−1‖F ‖Σ− Σ̂‖F ‖Σ−1‖F + ‖ûû> − ûu> + ûu> − uu>‖F ‖Σ−1‖F
(b)

≤
√
J

γn
‖û‖22‖Σ− Σ̂‖F ‖Σ−1‖F +

(
‖û(û− u)>‖F + ‖(û− u)u>‖F

)
‖Σ−1‖F

≤
√
J

γn
‖û‖22‖Σ− Σ̂‖F ‖Σ−1‖F + (‖û‖2 + ‖u‖2) ‖û− u‖2‖Σ−1‖F , (5)

where at (a) we used ‖(Σ + γnI)−1‖F ≤ ‖Σ−1‖F , at (b) we used ‖(Σ̂ + γnI)−1‖F ≤
√
J‖(Σ̂ + γnI)−1‖2 ≤

√
J/γn.

For (F)2, we have

(F)2 =
∣∣∣u> (Σ + γnI)

−1
u− u>Σ−1u

∣∣∣
=
∣∣〈uu>, (Σ + γnI)−1 −Σ−1

〉
F

∣∣
≤ ‖uu>‖F ‖(Σ + γnI)−1 −Σ−1‖F
= ‖u‖22‖(Σ + γnI)−1 [Σ− (Σ + γnI)] Σ−1‖F
≤ γn‖u‖22‖(Σ + γnI)−1‖F ‖Σ−1‖F
(a)

≤ γn‖u‖22‖Σ−1‖2F , (6)

where at (a) we used ‖(Σ + γnI)−1‖F ≤ ‖Σ−1‖F .
Combining (5) and (6), we have∣∣∣û>(Σ̂ + γnI)−1û− u>Σ−1u

∣∣∣
≤
√
J

γn
‖û‖2‖Σ− Σ̂‖F ‖Σ−1‖F + (‖û‖2 + ‖u‖2) ‖û− u‖2‖Σ−1‖F + γn‖u‖22‖Σ−1‖2F . (7)

Bounding ‖û‖22 and ‖u‖22 Here, we show that by the boundedness of the kernels k and l, it follows that ‖û‖22 is
bounded. Recall that supx,x′∈X |k(x,x′)| ≤ Bk, supy,y′ |l(y,y′)| ≤ Bl, our notation t = (v,w) for the test locations,
and zi := (xi,yi). We first show that the U-statistic core h is bounded.

|ht((x,y), (x′,y′))| =
∣∣∣∣12(k(x,v)− k(x′,v))(l(y,w)− l(y′,w))

∣∣∣∣
≤ 1

2
(|k(x,v)|+ |k(x′,v)|) (|l(y,w)|+ |l(y′,w)|)

≤ 2BkBl := 2B, (8)

where we define B := BkBl. It follows that

‖û‖22 =

J∑
m=1

 2

n(n− 1)

∑
i<j

htm(zi, zj)

2

≤
J∑

m=1

[2BkBl]
2

= 4B2J, (9)

‖u‖22 =

J∑
m=1

[EzEz′htm(z, z′)]
2 ≤ 4B2J. (10)

Using the upper bounds on ‖û‖22, ‖u‖22 ,(7) and the definition of c̃, we have∣∣∣û>(Σ̂ + γnI)−1û− u>Σ−1u
∣∣∣

≤
√
J

γn
4B2Jc̃‖Σ− Σ̂‖F + 4B

√
Jc̃‖û− u‖2 + 4B2Jc̃2γn

=:
c1
γn
‖Σ− Σ̂‖F + c2‖û− u‖2 + c3γn, (11)
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where we define c1 := 4B2J
√
Jc̃, c2 := 4B

√
Jc̃, and c3 := 4B2Jc̃2. This upper bound implies that

|λ̂n − λn| ≤
c1
γn
n‖Σ− Σ̂‖F + c2n‖û− u‖2 + c3nγn. (12)

We will separately upper bound ‖Σ− Σ̂‖F and ‖û− u‖2, and combine them with a union bound.

F.2.1 Bounding ‖û− u‖2
Let t∗ = arg maxt∈{t1,...,tJ} |û(t)− u(t)|. Recall that u = (u(t1), . . . , u(tJ))> = (u1, . . . , uJ)>.

‖û− u‖2 = sup
b∈B2(1)

〈b, û− u〉2 ≤ sup
b∈B2(1)

J∑
j=1

|bj ||û(tj)− u(tj)|

≤ |û(t∗)− u(t∗)| sup
b∈B2(1)

J∑
j=1

|bj |

(a)

≤
√
J |û(t∗)− u(t∗)| sup

b∈B2(1)

‖b‖2

=
√
J |û(t∗)− u(t∗)|, (13)

where at (a) we used ‖a‖1 ≤
√
J‖a‖2 for any a ∈ RJ . From (13), it can be seen that bounding ‖û−u‖2 amounts to

bounding the difference of a U-statistic û(t∗) (see (4)) to its expectation u(t∗). Combining (13) and (12), we have

|λ̂n − λn| ≤
c1
γn
n‖Σ− Σ̂‖F + c2n

√
J |û(t∗)− u(t∗)|+ c3nγn. (14)

F.2.2 Bounding ‖Σ̂−Σ‖F

The plan is to write Σ̂ = Ŝ− ûbûb>,Σ = S− uu>, so that ‖Σ̂−Σ‖F ≤ ‖Ŝ− S‖F + ‖ûbûb> − uu>‖F and bound
separately ‖Ŝ− S‖F and ‖ûbûb> − uu>‖F .

Recall that Σij = η(ti, tj), η(t, t′) = Exy[
(
k̃(x,v)l̃(y,w)− u(v,w)

)(
k̃(x,v′)l̃(y,w′)− u(v′,w′)

)
] where k̃(x,v) =

k(x,v)−Ex′k(x′,v), and l̃(y,w) = l(y,w)−Ey′ l(y
′,w). Its empirical estimator (see Proposition 6) is Σ̂ij = η̂(ti, tj)

where

η̂(t, t′) =
1

n

n∑
i=1

[
(
k(xi,v)l(yi,w)− ûb(v,w)

)(
k(xi,v

′)l(yi,w
′)− ûb(v′,w′)

)
]

=
1

n

n∑
i=1

k(xi,v)l(yi,w)k(xi,v
′)l(yi,w

′)− ûb(v,w)ûb(v′,w′),

k(x,v) := k(x,v) − 1
n

∑n
i=1 k(xi,v), and l(y,w) := l(y,w) − 1

n

∑n
i=1 l(yi,w). We

note that 1
n

∑n
i=1 k(xi,v)l(yi,w) = ûb(v,w). We define Ŝ ∈ RJ×J such that Ŝij :=

1
n

∑n
m=1 k(xm,vi)l(ym,wi)k(xm,vj)l(yi,wj), and define similarly its population counterpart S such that

Sij := Exy[k̃(x,v)l̃(y,w)k̃(x,v′)l̃(y,w′)]. We have

Σ̂ = Ŝ− ûbûb>,

Σ = S− uu>,

‖Σ̂−Σ‖F = ‖Ŝ− S− (ûbûb> − uu>)‖F (15)

≤ ‖Ŝ− S‖F + ‖ûbûb> − uu>‖F . (16)

With (16), (14) becomes

|λ̂n − λn| ≤
c1n

γn
‖Ŝ− S‖F +

c1n

γn
‖ûbûb> − uu>‖F + c2n

√
J |û(t∗)− u(t∗)|+ c3nγn. (17)

We will further separately bound ‖Ŝ− S‖F and ‖ûbûb> − uu>‖F .
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F.2.3 Bounding ‖ûbûb> − uu>‖F

‖ûbûb> − uu>‖F = ‖ûbûb> − ûbu> + ûbu> − uu>‖F
≤ ‖ûb(ûb − u)>‖F + ‖(ûb − u)u>‖F
= ‖ûb‖2‖ûb − u‖2 + ‖ûb − u‖2‖u‖2
≤ 4B

√
J‖ûb − u‖2,

where we used (10) and the fact that ‖ûb‖2 ≤ 2B
√
J which can be shown similarly to (9) as

‖ûb‖22 =

J∑
m=1

[µ̂xy(vm,wm)− µ̂x(vm)µ̂y(wm)]
2

=

J∑
m=1

 1

n2

n∑
i=1

n∑
j=1

htm(zi, zj)

2

≤
J∑

m=1

[2BkBl]
2

= 4B2J.

Let (ṽ, w̃) := t̃ = arg maxt∈{t1,...,tJ} |ûb(t)− u(t)|. We bound ‖ûb − u‖2 by

‖ûb − u‖2
(a)

≤
√
J |ûb(t̃)− u(t̃)|

=
√
J
∣∣µ̂xy(t̃)− µ̂x(ṽ)µ̂y(w̃)− u(t̃)

∣∣
=
√
J
∣∣µ̂xy(t̃)− µ̂xµy(t̃) + µ̂xµy(t̃)− µ̂x(ṽ)µ̂y(w̃)− u(t̃)

∣∣
≤
√
J
∣∣µ̂xy(t̃)− µ̂xµy(t̃)− u(t̃)

∣∣+
√
J
∣∣µ̂xµy(t̃)− µ̂x(ṽ)µ̂y(w̃)

∣∣
=
√
J
∣∣û(t̃)− u(t̃)

∣∣+
√
J
∣∣µ̂xµy(t̃)− µ̂x(ṽ)µ̂y(w̃)

∣∣ , (18)

where at (a) we used the same reasoning as in (13). The bias
∣∣µ̂xµy(t̃)− µ̂x(ṽ)µ̂y(w̃)

∣∣ in the second term can be
bounded as∣∣µ̂xµy(t̃)− µ̂x(ṽ)µ̂y(w̃)

∣∣
=

∣∣∣∣∣∣ 1

n(n− 1)

n∑
i=1

∑
j 6=i

k(xi, ṽ)l(yj , w̃)− 1

n2

n∑
i=1

n∑
j=1

k(xi, ṽ)l(yj , w̃)

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1

n(n− 1)

n∑
i=1

n∑
j=1

k(xi, ṽ)l(yj , w̃)− 1

n(n− 1)

n∑
i=1

k(xi, ṽ)l(yi, w̃)− 1

n2

n∑
i=1

n∑
j=1

k(xi, ṽ)l(yj , w̃)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
(

1− n

n− 1

)
1

n2

n∑
i=1

n∑
j=1

k(xi, ṽ)l(yj , w̃) +
1

n(n− 1)

n∑
i=1

k(xi, ṽ)l(yi, w̃)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
(

1− n

n− 1

)
1

n2

n∑
i=1

n∑
j=1

k(xi, ṽ)l(yj , w̃)

∣∣∣∣∣∣+

∣∣∣∣∣ 1

n(n− 1)

n∑
i=1

k(xi, ṽ)l(yi, w̃)

∣∣∣∣∣
≤ B

n− 1
+

B

n− 1
=

2B

n− 1
.

Combining this upper bound with (18), we have

‖ûbûb> − uu>‖F ≤ 4BJ
∣∣û(t̃)− u(t̃)

∣∣+
8B2J

n− 1
. (19)

With (19), (17) becomes

|λ̂n − λn| ≤
c1n

γn
‖Ŝ− S‖F +

4BJc1n

γn

∣∣û(t̃)− u(t̃)
∣∣+

c1n

γn

8B2J

n− 1
+ c2n

√
J |û(t∗)− u(t∗)|+ c3nγn. (20)
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F.2.4 Bounding ‖Ŝ− S‖F

Recall that VJ = {t1, . . . , tJ}, Ŝij = Ŝ(ti, tj) = 1
n

∑n
m=1 k(xm,vi)l(ym,wi)k(xm,vj)l(ym,wj), and Sij =

S(ti, tj) = Exy[k̃(x,vi)l̃(y,wi)k̃(x,vj)l̃(y,wj)]. Let (t(1), t(2)) = arg max(s,t)∈VJ×VJ
|Ŝ(s, t)− S(s, t)|.

‖Ŝ− S‖F = sup
B∈BF (1)

〈
B, Ŝ− S

〉
F

≤ sup
B∈BF (1)

J∑
i=1

J∑
j=1

|Bij ||Ŝij − Sij |

≤
∣∣∣Ŝ(t(1), t(2))− S(t(1), t(2))

∣∣∣ sup
B∈BF (1)

J∑
i=1

J∑
j=1

|Bij |

(a)

≤ J
∣∣∣Ŝ(t(1), t(2))− S(t(1), t(2))

∣∣∣ sup
B∈BF (1)

‖B‖F

= J
∣∣∣Ŝ(t(1), t(2))− S(t(1), t(2))

∣∣∣ , (21)

where at (a) we used
∑J
i=1

∑J
j=1 |Aij | ≤ J‖A‖F for any matrix A ∈ RJ×J . We arrive at

|λ̂n − λn| ≤
c1Jn

γn

∣∣∣Ŝ(t(1), t(2))− S(t(1), t(2))
∣∣∣+

4BJc1n

γn

∣∣û(t̃)− u(t̃)
∣∣

+
c1n

γn

8B2J

n− 1
+ c2n

√
J |û(t∗)− u(t∗)|+ c3nγn. (22)

F.2.5 Bounding
∣∣∣Ŝ(t, t′)− S(t, t′)

∣∣∣
Having an upper bound for

∣∣∣Ŝ(t, t′)− S(t, t′)
∣∣∣ will allow us to bound (22). To keep the notations uncluttered, we

will define the following shorthands.

Expression Shorthand

k(x,v) a

k(x,v′) a′

k(xi,v) ai

k(xi,v
′) a′i

Ex∼Px
k(x,v) ã

Ex∼Px
k(x,v′) ã′

1
n

∑n
i=1 k(xi,v) a

1
n

∑n
i=1 k(xi,v

′) a′

Expression Shorthand

l(y,w) b

l(y,w′) b′

l(yi,w) bi

l(yi,w
′) b′i

Ey∼Py l(y,w) b̃

Ey∼Py l(y,w
′) b̃′

1
n

∑n
i=1 l(yi,w) b

1
n

∑n
i=1 l(yi,w

′) b
′

We will also use · to denote a empirical expectation over x, or y, or (x,y). The argument under · will
determine the variable over which we take the expectation. For instance, aa′ = 1

n

∑n
i=1 k(xi,v)k(xi,v

′) and
aba′ = 1

n

∑n
i=1 k(xi,v)l(yi,w)k(xi,v

′), and so on. We define in the same way for the population expectation using
·̃ i.e., ãa′ = Ex [k(x,v)k(x,v′)] and ãba′ = Exy [k(x,v)l(y,w)k(x,v′)].

With these shorthands, we can rewrite Ŝ(t, t′) and S(t, t′) as

Ŝ(t, t′) =
1

n

n∑
i=1

(ai − a)(bi − b)(a′i − a′)(b′i − b
′
),
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S(t, t′) = Exy

[
(a− ã)(b− b̃)(a′ − ã′)(b′ − b̃′)

]
.

By expanding S(t, t′), we have

S(t, t′) = Exy

[
+ aba′b′ − aba′b̃′ − abã′b′ + abã′b̃′

− ab̃a′b′ + ab̃a′b̃′ + ab̃ã′b′ − ab̃ã′b̃′

− ãba′b′ + ãba′b̃′ + ãbã′b′ − ãbã′b̃′

+ ãb̃a′b′ − ãb̃a′b̃′ − ãb̃ã′b̃′ + ãb̃ã′b̃′
]

= +ãba′b′ − ãba′b̃′ − ãbb′ã′ + ãbã′b̃′

− ãa′b′b̃+ ãa′b̃b̃′ + ãb′ã′b̃− ãb̃ã′b̃′

− ã′bb′ã+ ã′bãb̃′ + ãã′b̃b′ − ãb̃ã′b̃′

+ ã′b′ãb̃− ãb̃ã′b̃′ − ãb̃ã′b̃′ + ãb̃ã′b̃′

= +ãba′b′ − ãba′b̃′ − ãbb′ã′ + ãbã′b̃′

− ãa′b′b̃+ ãa′b̃b̃′ + ãb′ã′b̃+ ã′b′ãb̃

− ã′bb′ã+ ã′bãb̃′ + ãã′b̃b′ − 3ãb̃ã′b̃′.

The expansion of Ŝ(t, t′) can be done in the same way. By the triangle inequality, we have∣∣∣Ŝ(t, t′)− S(t, t′)
∣∣∣ ≤ ∣∣∣aba′b′ − ãba′b′∣∣∣+

∣∣∣aba′ b′ − ãba′b̃′∣∣∣+
∣∣∣abb′a′ − ãbb′ã′∣∣∣+

∣∣∣aba′b′ − ãbã′b̃′∣∣∣∣∣∣aa′b′ b− ãa′b′b̃∣∣∣+
∣∣∣aa′ b b′ − ãa′b̃b̃′∣∣∣+

∣∣∣ab′a′b− ãb′ã′b̃∣∣∣+
∣∣∣a′b′ab− ã′b′ãb̃∣∣∣∣∣∣a′bb′a− ã′bb′ã∣∣∣+

∣∣∣a′bab′ − ã′bãb̃′∣∣∣+
∣∣∣a a′bb′ − ãã′b̃b′∣∣∣+ 3

∣∣∣aba′b′ − ãb̃ã′b̃′∣∣∣ .
The first term

∣∣∣aba′b′ − ãba′b′∣∣∣ can be bounded by applying the Hoeffding’s inequality. Other terms can be bounded
by applying Lemma 9. Recall that we write (x1, . . . , xm)+ for max(x1, . . . , xm).

Bounding
∣∣∣aba′b′ − ãba′b′∣∣∣ (1st term). Since −B2 ≤ aba′b′ ≤ B2, by the Hoeffding’s inequality (Lemma 14), we

have

P
(∣∣∣aba′b′ − ãba′b′∣∣∣ ≤ t) ≥ 1− 2 exp

(
− nt2

2B4

)
.

Bounding
∣∣∣aba′ b′ − ãba′b̃′∣∣∣ (2nd term). Let f1(x,y) = aba′ = k(x,v)l(y,w)k(x,v′) and f2(y) = b′ = l(y,w′).

We note that |f1(x,y)| ≤ (BBk, Bl)+ and |f2(y)| ≤ (BBk, Bl)+. Thus, by Lemma 9 with E = 2, we have

P
(∣∣∣aba′ b′ − ãba′b̃′∣∣∣ ≤ t) ≥ 1− 4 exp

(
− nt2

8(BBk, Bl)4
+

)
.

Bounding
∣∣∣aba′b′ − ãbã′b̃′∣∣∣ (4th term). Let f1(x,y) = ab = k(x,v)l(y,w), f2(x) = a′ = k(x,v′) and f3(y) =

b′ = l(y,w′). We can see that |f1(x,y)|, |f2(x)|, |f3(y)| ≤ (B,Bk, Bl)+. Thus, by Lemma 9 with E = 3, we have

P
(∣∣∣aba′b′ − ãbã′b̃′∣∣∣ ≤ t) ≥ 1− 6 exp

(
− nt2

18(B,Bk, Bl)6
+

)
.
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Bounding
∣∣∣aba′b′ − ãb̃ã′b̃′∣∣∣ (last term). Let f1(x) = a = k(x,v), f2(y) = b = l(y,w), f3(x) = a′ = k(x,v′) and

f4(y) = b′ = l(y,w′). It can be seen that |f1(x)|, |f2(y)|, |f3(x)|, |f4(y)| ≤ (Bk, Bl)+. Thus, by Lemma 9 with
E = 4, we have

P
(

3
∣∣∣aba′b′ − ãb̃ã′b̃′∣∣∣ ≤ t) ≥ 1− 8 exp

(
− nt2

32 · 32(Bk, Bl)8
+

)
.

Bounds for other terms can be derived in a similar way to yield

(3rd term) P
(∣∣∣abb′a′ − ãbb′ã′∣∣∣ ≤ t) ≥ 1− 4 exp

(
− nt2

8(BBl, Bk)4
+

)
,

(5th term) P
(∣∣∣aa′b′ b− ãa′b′b̃∣∣∣ ≤ t) ≥ 1− 4 exp

(
− nt2

8(BBk, Bl)4
+

)
,

(6th term) P
(∣∣∣aa′ b b′ − ãa′b̃b̃′∣∣∣ ≤ t) ≥ 1− 6 exp

(
− nt2

18(B2
k, Bl)

6
+

)
,

(7th term) P
(∣∣∣ab′a′b− ãb′ã′b̃∣∣∣ ≤ t) ≥ 1− 6 exp

(
− nt2

18(B,Bk, Bl)6
+

)
,

(8th term) P
(∣∣∣a′b′ab− ã′b′ãb̃∣∣∣ ≤ t) ≥ 1− 6 exp

(
− nt2

18(B,Bk, Bl)6
+

)
,

(9th term) P
(∣∣∣a′bb′a− ã′bb′ã∣∣∣ ≤ t) ≥ 1− 4 exp

(
− nt2

8(BBl, Bk)4
+

)
,

(10th term) P
(∣∣∣a′bab′ − ã′bãb̃′∣∣∣ ≤ t) ≥ 1− 6 exp

(
− nt2

18(B,Bk, Bl)6
+

)
,

(11th term) P
(∣∣∣a a′bb′ − ãã′b̃b′∣∣∣ ≤ t) ≥ 1− 6 exp

(
− nt2

18(Bk, B2
l )6

+

)
.

By the union bound, we have

P
(∣∣∣Ŝ(t, t′)− S(t, t′)∣∣∣ ≤ 12t

)
≥ 1−

[
2 exp

(
− nt2

2B4

)
+ 4 exp

(
− nt2

8(BBk, Bl)4+

)
+ 4 exp

(
− nt2

8(BBl, Bk)4+

)
+ 6 exp

(
− nt2

18(B,Bk, Bl)6+

)
4 exp

(
− nt2

8(BBk, Bl)4+

)
+ 6 exp

(
− nt2

18(B2
k, Bl)6+

)
+ 6 exp

(
− nt2

18(B,Bk, Bl)6+

)
+ 6 exp

(
− nt2

18(B,Bk, Bl)6+

)
4 exp

(
− nt2

8(BBl, Bk)4+

)
+ 6 exp

(
− nt2

18(B,Bk, Bl)6+

)
+ 6 exp

(
− nt2

18(Bk, B2
l )

6
+

)
+ 8 exp

(
− nt2

32 · 32(Bk, Bl)8+

)]
= 1−

[
2 exp

(
− nt2

2B4

)
+ 8 exp

(
− nt2

8(BBk, Bl)4+

)
+ 8 exp

(
− nt2

8(BBl, Bk)4+

)
+ 24 exp

(
− nt2

18(B,Bk, Bl)6+

)
+ 6 exp

(
− nt2

18(B2
k, Bl)6+

)
+ 6 exp

(
− nt2

18(Bk, B2
l )

6
+

)
+ 8 exp

(
− nt2

32 · 32(Bk, Bl)8+

)]
≥ 1−

[
2 exp

(
−122nt2

B∗

)
+ 8 exp

(
−122nt2

B∗

)
+ 8 exp

(
−122nt2

B∗

)
+ 24 exp

(
−122nt2

B∗

)
+ 6 exp

(
−122nt2

B∗

)
+ 6 exp

(
−122nt2

B∗

)
+ 8 exp

(
−122nt2

B∗

)]
= 1− 62 exp

(
−122nt2

B∗

)
,

where

B∗ :=
1

122
max(2B4, 8(BBk, Bl)

4
+, 8(BBl, Bk)4

+, 18(B,Bk, Bl)
6
+, 18(B2

k, Bl)
6
+, 18(Bk, B

2
l )6

+, 32 · 32(Bk, Bl)
8
+).
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By reparameterization, it follows that

P
(
c1Jn

γn

∣∣∣Ŝ(t, t′)− S(t, t′)
∣∣∣ ≤ t) ≥ 1− 62 exp

(
− γ2

nt
2

c21J
2nB∗

)
. (23)

F.2.6 Union Bound for
∣∣∣λ̂n − λn∣∣∣ and Final Lower Bound

Recall from (22) that

|λ̂n − λn| ≤
c1Jn

γn

∣∣∣Ŝ(t(1), t(2))− S(t(1), t(2))
∣∣∣+

4BJc1n

γn

∣∣û(t̃)− u(t̃)
∣∣

+
c1n

γn

8B2J

n− 1
+ c2n

√
J |û(t∗)− u(t∗)|+ c3nγn.

We will bound terms in (22) separately and combine all the bounds with the union bound. As shown in (8), the
U-statistic core h is bounded between −2B and 2B. Thus, by Lemma 13 (with m = 2), we have

P
(
c2n
√
J |û(t∗)− u(t∗)| ≤ t

)
≥ 1− 2 exp

(
− b0.5nct

2

8c22n
2JB2

)
. (24)

Bounding c1n
γn

8B2J
n−1 + c3nγn + 4BJc1n

γn

∣∣û(t̃)− u(t̃)
∣∣. By Lemma 13 (with m = 2), it follows that

P
(
c1n

γn

8B2J

n− 1
+ c3nγn +

4BJc1n

γn

∣∣û(t̃)− u(t̃)
∣∣ ≤ t)

≥ 1− 2 exp

−b0.5ncγ2
n

[
t− c1n

γn
8B2J
n−1 − c3nγn

]2
27B4J2c21n

2


= 1− 2 exp

(
−
b0.5nc

[
tγn(n− 1)− 8c1B

2nJ − c3n(n− 1)γ2
n

]2
27B4J2c21n

2(n− 1)2

)
(a)

≥ 1− 2 exp

(
−
[
tγn(n− 1)− 8c1B

2nJ − c3n(n− 1)γ2
n

]2
28B4J2c21n

2(n− 1)

)
, (25)

where at (a) we used b0.5nc ≥ (n− 1)/2. Combining (23), (24), and (25) with the union bound (set T = 3t), we can
bound (22) with

P
(∣∣∣λ̂n − λn∣∣∣ ≤ T) ≥ 1− 62 exp

(
− γ2

nT
2

32c21J
2nB∗

)
− 2 exp

(
− b0.5ncT

2

72c22n
2JB2

)
− 2 exp

(
−
[
Tγn(n− 1)/3− 8c1B

2nJ − c3γ2
nn(n− 1)

]2
28B4J2c21n

2(n− 1)

)
.

Since
∣∣∣λ̂n − λn∣∣∣ ≤ T implies λ̂n ≥ λn − T , a reparametrization with r = λn − T gives

P
(
λ̂n ≥ r

)
≥ 1− 62 exp

(
−γ

2
n(λn − r)2

32c21J
2nB∗

)
− 2 exp

(
−b0.5nc(λn − r)

2

72c22n
2JB2

)
− 2 exp

(
−
[
(λn − r)γn(n− 1)/3− 8c1B

2nJ − c3γ2
nn(n− 1)

]2
28B4J2c21n

2(n− 1)

)
:= L(λn).

Grouping constants into ξ1, . . . ξ5 gives the result.
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The lower bound L(λn) takes the form

1− 62 exp
(
−C1(λn − Tα)2

)
− 2 exp

(
−C2(λn − Tα)2

)
− 2 exp

(
− [(λn − Tα)C3 − C4]2

C5

)
,

where C1, . . . , C5 are positive constants. For fixed large enough n such that λn > Tα, and fixed significance level α,
increasing λn will increase L(λn). Specifically, since n is fixed, increasing u>Σ−1u in λn = nu>Σ−1u will increase
L(λn).

G Helper Lemmas
This section contains lemmas used to prove the main results in this work.

Lemma 8 (Product to sum). Assume that |ai| ≤ B, |bi| ≤ B for i = 1, . . . , E. Then
∣∣∣∏E

i=1 ai −
∏E
i=1 bi

∣∣∣ ≤
BE−1

∑E
j=1 |aj − bj |.

Proof. ∣∣∣∣∣∣
E∏
i=1

ai −
E∏
j=1

bj

∣∣∣∣∣∣ ≤
∣∣∣∣∣
E∏
i=1

ai −
E−1∏
i=1

aibE

∣∣∣∣∣+

∣∣∣∣∣
E−1∏
i=1

aibE −
E−2∏
i=1

aibE−1bE

∣∣∣∣∣+ . . .+

∣∣∣∣∣∣a1

E∏
j=2

bj −
E∏
j=1

bj

∣∣∣∣∣∣
≤ |aE − bE |

∣∣∣∣∣
E−1∏
i=1

ai

∣∣∣∣∣+ |aE−1 − bE−1|

∣∣∣∣∣
(
E−2∏
i=1

ai

)
bE

∣∣∣∣∣+ . . .+ |a1 − b1|

∣∣∣∣∣∣
E∏
j=2

bj

∣∣∣∣∣∣
≤ |aE − bE |BE−1 + |aE−1 − bE−1|BE−1 + . . .+ |a1 − b1|BE−1

= BE−1
E∑
j=1

|aj − bj |

applying triangle inequality, and the boundedness of ai and bi-s.

Lemma 9 (Product variant of the Hoeffding’s inequality). For i = 1, . . . , E, let {x(i)
j }

ni
j=1 ⊂ Xi be an i.i.d. sample

from a distribution Pi, and fi : Xi 7→ R be a measurable function. Note that it is possible that P1 = P2 = · · · = PE
and {x(1)

j }
n1
j=1 = · · · = {x(E)

j }
nE
j=1. Assume that |fi(x)| ≤ B <∞ for all x ∈ Xi and i = 1, . . . , E. Write P̂i to denote

an empirical distribution based on the sample {x(i)
j }

ni
j=1. Then,

P

(∣∣∣∣∣
[
E∏
i=1

Ex(i)∼P̂i
fi(x

(i))

]
−

[
E∏
i=1

Ex(i)∼Pi
fi(x

(i))

]∣∣∣∣∣ ≤ T
)
≥ 1− 2

E∑
i=1

exp

(
− niT

2

2E2B2E

)
.

Proof. By Lemma8, we have∣∣∣∣∣
[
E∏
i=1

Ex(i)∼P̂i
fi(x

(i))

]
−

[
E∏
i=1

Ex(i)∼Pi
fi(x

(i))

]∣∣∣∣∣ ≤ BE−1
E∑
i=1

∣∣∣Ex(i)∼P̂i
fi(x

(i))− Ex(i)∼Pi
fi(x

(i))
∣∣∣ .

By applying the Hoeffding’s inequality to each term in the sum, we have
P
(∣∣∣Ex(i)∼P̂i

fi(x
(i))− Ex(i)∼Pi

fi(x
(i))
∣∣∣ ≤ t) ≥ 1− 2 exp

(
− 2nit

2

4B2

)
. The result is obtained with a union bound.

H External Lemmas
In this section, we provide known results referred to in this work.

Lemma 10 (Chwialkowski et al. [2015, Lemma 1]). If k is a bounded, analytic kernel (in the sense given in
Definition 1) on Rd × Rd, then all functions in the RKHS defined by k are analytic.
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Lemma 11 (Chwialkowski et al. [2015, Lemma 3]). Let Λ be an injective mapping from the space of probability
measures into a space of analytic functions on Rd. Define

d2
VJ

(P,Q) =

J∑
j=1

|[ΛP ](vj)− [ΛQ](vj)|2 ,

where VJ = {vi}Ji=1 are vector-valued i.i.d. random variables from a distribution which is absolutely continuous with
respect to the Lebesgue measure. Then, dVJ

(P,Q) is almost surely (w.r.t. VJ) a metric.

Lemma 12 (Bochner’s theorem). A continuous function Ψ : Rd → R is positive definite if and only if it is the
Fourier transform of a finite nonnegative Borel measure ζ on Rd, that is, Ψ(x) =

∫
Rd e

−ix>ω dζ(ω), x ∈ Rd.

Lemma 13 (A bound for U-statistics [Serfling, 2009, Theorem A, p. 201]). Let h(x1, . . . ,xm) be a U-
statistic kernel for an m-order U-statistic such that h(x1, . . . ,xm) ∈ [a, b] where a ≤ b < ∞. Let Un =(
n
m

)−1∑
i1<···<im h(xi1 , . . . ,xim) be a U-statistic computed with a sample of size n, where the summation is over the(

n
m

)
combinations of m distinct elements {i1, . . . , im} from {1, . . . , n}. Then, for t > 0 and n ≥ m,

P(Un − Eh(x1, . . . ,xm) ≥ t) ≤ exp
(
−2bn/mct2/(b− a)2

)
,

P(|Un − Eh(x1, . . . ,xm)| ≥ t) ≤ 2 exp
(
−2bn/mct2/(b− a)2

)
,

where bxc denotes the greatest integer which is smaller than or equal to x. Hoeffind’s inequality is a special case
when m = 1.

Lemma 14 (Hoeffding’s inequality). Let X1, . . . , Xn be i.i.d. random variables such that a ≤ Xi ≤ b almost surely.
Define X := 1

n

∑n
i=1Xi. Then,

P
(∣∣X − E[X]

∣∣ ≤ α) ≥ 1− 2 exp

(
− 2nα2

(b− a)2

)
.
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