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S U M M A R Y
Full waveform inversion (FWI) aims to reconstruct high-resolution subsurface models from
the full wavefield, which includes diving waves, post-critical reflections and short-spread
reflections. Most successful applications of FWI are driven by the information carried by
diving waves and post-critical reflections to build the long-to-intermediate wavelengths of the
velocity structure. Alternative approaches, referred to as reflection waveform inversion (RWI),
have been recently revisited to retrieve these long-to-intermediate wavelengths from short-
spread reflections by using some prior knowledge of the reflectivity and a scale separation
between the velocity macromodel and the reflectivity. This study presents a unified formalism
of FWI, named as Joint FWI, whose aim is to efficiently combine the diving and reflected
waves for velocity model building. The two key ingredients of Joint FWI are, on the data
side, the explicit separation between the short-spread reflections and the wide-angle arrivals
and, on the model side, the scale separation between the velocity macromodel and the short-
scale impedance model. The velocity model and the impedance model are updated in an
alternate way by Joint FWI and waveform inversion of the reflection data (least-squares
migration), respectively. Starting from a crude velocity model, Joint FWI is applied to the
streamer seismic data computed in the synthetic Valhall model. While the conventional FWI
is stuck into a local minimum due to cycle skipping, Joint FWI succeeds in building a reliable
velocity macromodel. Compared with RWI, the use of diving waves in Joint FWI improves
the reconstruction of shallow velocities, which translates into an improved imaging at deeper
depths. The smooth velocity model built by Joint FWI can be subsequently used as a reliable
initial model for conventional FWI to increase the high-wavenumber content of the velocity
model.

Key words: Inverse theory; Controlled source seismology; Body waves; Seismic tomogra-
phy; Wave scattering and diffraction; Acoustic properties.

1 I N T RO D U C T I O N

With the emergence of long-offset wide-azimuth acquisitions and
broad-band sources, full waveform inversion (FWI) has been rec-
ognized as an efficient tool for velocity model building (Virieux &
Operto 2009, for a review). In these long-offset experiments, FWI is
mainly driven by the information carried by diving waves and post-
critical reflections to build the long-to-intermediate wavelengths
of the velocity structure. The connection between the acquisition
geometry and the spatial resolution of FWI has been clearly estab-
lished in the theoretical framework of the generalized diffraction
tomography (e.g. Devaney 1982; Miller et al. 1987). It has been
shown that the wavenumber component k, injected at a diffractor
point in the subsurface is related to the local wavelength λ and the

scattering angle θ by the relationship

k = 2

λ
cos

(
θ

2

)
n, (1)

where n is the normalization of the vector k (Fig. 1). This relation-
ship shows that the wide-scattering angles associated with diving
waves and post-critical reflections contribute low-to-intermediate
wavenumber updates to the subsurface. Conversely, the small scat-
tering angles associated with short-spread reflections contribute
high wavenumber updates to the subsurface. One key issue in
the classical formulation of FWI (for short, referred to as FWI
in the following) is that the penetration depths of diving waves are
often insufficient to reach the deepest targeted structures, even from
modern wide-azimuth surveys. At these depths, FWI behaves as a
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1536 W. Zhou et al.

Figure 1. Spatial resolution of diffraction tomography and its connection
with acquisition geometry. The wavenumber vectors associated with the rays
connecting the source and the receiver to the diffractor are denoted by kS

and kR, respectively. The scattering angle is denoted by θ . The wavenumber
vector k = kS + kR is the spectral component mapped at the diffractor point
by the source–receiver pair during FWI.

least-squares migration of the short-spread reflections rather than
as a tool for velocity model building, and would fail to update the
low-to-intermediate wavenumbers of deep targets.

Alternatively, migration-based velocity analysis has been devel-
oped in the image domain to build the velocity macromodel by using
the reflection data (Diaz et al. 2013; Liu et al. 2013; Allemand &
Lambaré 2014). These approaches focus on the flattening of the
common image gathers generated by migration (Symes & Caraz-
zone 1991; Sava & Biondi 2004). Extended-domain approaches
have also been proposed, which attempt to minimize the energy left
in the non-physical dimensions added to the model space (Sava &
Fomel 2006; Yang & Sava 2011; Almomin & Biondi 2012; Biondi
& Almomin 2012; Sun & Symes 2012; Lameloise et al. 2015). The
main issue of these approaches is their high computational cost that
is made, on the one hand, by the migration step performed during
each velocity update and, on the other hand, by the extended-domain
imaging condition. Although 2-D applications have shown promis-
ing results, the cost of these approaches seems to prevent a direct
extension to 3-D cases, in particular when the forward modelling is
performed with the two-way wave equation.

Inspired by the pioneering work of Chavent et al. (1994), Chavent
(1996) and Clément et al. (2001) on migration-based traveltime in-
version (MBTT), recent data-domain FWI strategies, referred to
as reflection waveform inversion (RWI) in this paper, have been
proposed as a new alternative to build the velocity macromodel
from the reflection data (e.g. Xu et al. 2012; Ma & Hale 2013;
Brossier et al. 2015). As most of the seismic reflection processing
workflows, RWI relies on the explicit scale separation between a
smooth velocity macromodel and a rough reflectivity. This scale
separation results from the gap between wavenumber contents of
the velocity macromodel built by reflection tomography or migra-
tion velocity analysis and the reflectivity built by migration (Claer-
bout 1985; Wu & Toksöz 1987; Jannane et al. 1989; Mora 1989).
Such a separation leads to a two-step imaging workflow in which
one repeatedly alternates the velocity model building assuming a
known reflectivity and the reflectivity update by migration using the
previous velocity update as the background model. More sophis-
ticated approaches can be viewed to mitigate the computational

burden of this workflow, for example, by building the reflectivity in
the pseudo-time domain (Plessix 2013) to avoid performing migra-
tion at each iteration of the velocity update (Brossier et al. 2015;
Wang et al. 2015). In RWI, the governing idea behind the velocity
model building task is to assume the reflectivity is known in prior,
by which the reflected waves are predicted and the residuals are
minimized for the velocity macromodel update. Under this assump-
tion, high-wavenumber contributions such as migration isochrones
are not present in the sensitivity kernels of RWI. Moreover, this
prior reflectivity is used by RWI as the secondary sources to high-
light in the sensitivity kernel the contribution of the transmission
paths followed by the reflected waves. Indeed, the wide-scattering
angles associated with these transmission regimes are amenable
to update the low-to-intermediate wavenumbers of the subsurface
located between the reflectors and the surface (eq. 1).

Brute-force approaches might be performed without explicit
scale separation in the FWI formalism. They consist of applying
the conventional FWI to build reflectivity during early iterations by
a migration-like processing before updating the low-to-intermediate
wavenumbers of the subsurface from the transmission paths of
the reflected waves (AlTheyab et al. 2013). These approaches could
be further developed for the velocity macromodel building or for the
reflectivity imaging by a wavenumber-driven filtering of the gradient
of the FWI misfit function (Alkhalifah 2014, 2015; Alkhalifah & Wu
2014; Wu & Alkhalifah 2014). Note that RWI can be implemented
either in the time domain or in the frequency domain as shown by
Wang et al. (2013b). Other data-domain approaches for velocity
model building rely on a wavefield decomposition into upgoing and
downgoing waves to separate the contribution of forward-scattering
and backward-scattering in the sensitivity kernel of waveform in-
version (Tang et al. 2013; Wang et al. 2013a).

One key limitation of RWI, that will be overcome in this study, is
the exclusive reliance on the use of reflected waves, discarding the
low-wavenumber information on the shallow targets that are carried
by the diving waves.

In this study, we propose a new FWI method, referred to as joint
full waveform inversion (JFWI), which integrates the ingredients
of the conventional FWI and RWI into a unified formalism. Like
RWI, JFWI still rests on the scale separation between the velocity
macromodel and the reflectivity. The added value of JFWI com-
pared with RWI, is the combination of the diving waves and the
reflected waves such that the low-wavenumber information carried
by these two wave modes, as described above, are simultaneously
used in the velocity model building task. In JFWI, we regenerate
the reflectivity by conventional FWI using only short-offset reflected
waves (i.e. non-linear least-squares migration) at each iteration of
the scale-separation workflow. A key feature of JFWI is to require
the explicit separation of the early arriving phases (diving waves and
post-critical reflections) and the pre-critical reflections in the data.
Our approach shares some similarities with Wang et al. (2015),
who also use refracted and reflected waves to update the low-to-
intermediate wavenumbers of the subsurface. The main differences
is that our workflow relies on the waveform-difference misfit func-
tion to update the velocity macromodel and the reflectivity, whereas
the approach of Wang et al. (2015) relies on the cross-correlation
based misfit function, the so-called wave-equation tomography (Luo
& Schuster 1991), to perform the velocity macromodel update.
Although our approach relies on the explicit separation between
reflected waved and refracted waves, it does not require assign-
ing a time window to isolate phases as it does in the workflow of
Wang et al. (2015). This phase identification might be quite cumber-
some for the reflection recordings in the complex environments. In
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Figure 2. Illustration of the initial models and the data residuals used in different FWI approaches. (a) True velocity model including a reflector at 1 km depth.
One source and receiver couple is indicated. (b) Homogeneous initial model (m) without reflector and erroneous background velocity for FWI. Only the direct
wave (green arrow) is generated. Residuals include the direct wave and the reflected wave residuals. (c) Homogeneous background (m0) and prior reflectivity
(δm) for RWI. Only the reflected wave (red arrow) is used. (d) Initial model with prior reflector for FWI. Both direct and reflected waves are modelled.
(e) Homogeneous background (m0) and prior reflectivity (δm) for JFWI. Compared with RWI (c), diving waves are used; compared with FWI (d), direct and
reflected wave residuals are explicitly separated (see text for details).

addition, we use a velocity-impedance parametrization to alternate
the update of the velocity macromodel and the reflectivity, unlike
Wang et al. (2015) who choose the velocity-density parametrization.

This paper is organized as follows. First, we shall review the
intrinsic limitation of FWI and RWI as well as the benefit that can be
expected from JFWI with a simple synthetic model. Second, we shall
discuss about the choice of a suitable subsurface parametrization
to perform the velocity model and reflectivity updates, such that
the scale separation between these two models is satisfied. This
naturally directs us towards a subsurface parametrization in terms
of wavespeed (VP) and impedance (IP). Third, we shall review the
ingredients of the JFWI workflow that alternates the updates of VP

and IP before showing its application to the synthetic Valhall case.
The experimental setup of this case study is designed in a way such
that the diving waves only sample the shallow part of the subsurface.
We shall first show how the use of diving waves in JFWI improves
the reconstruction of the shallow velocities compared with RWI, and
how this shallow improvement translates into an improved imaging
at greater depths. Then, we shall show that the smooth velocity
model built by JFWI can be subsequently used as a reliable initial
model for conventional FWI, resulting a broad-band velocity model
that can be taken for the purpose of structural interpretation.

2 R E V I E W O F F W I A N D RW I

2.1 Full waveform inversion (FWI)

FWI is a data-fitting procedure during which the subsurface model
m is iteratively updated in order to match the synthetic data, d = d(m)
with the recorded data, dobs. The misfit function is conventionally
defined as the least-squares norm of the data residuals weighted by
a linear operator W, that is

CFW I (m) = 1

2
‖W (dobs − d(m))‖2

2 , (2)

with an implicit summation over sources, receivers and time. As
the wavefield does not linearly depend on the subsurface param-
eters, this optimization problem is highly non-linear. Many local
optimization approaches have been proposed to mitigate this non-
linearity and make the misfit function as convex as possible: they

might differ in the misfit definition and/or in the domain within
which the minimization is performed, but all of them aim to up-
date the model by a linear-search method (Shin & Cha 2008; van
Leeuwen & Mulder 2010; Luo & Sava 2011; van Leeuwen & Her-
rmann 2013). The local descent direction relies on the gradient of
the misfit function with respect to the model parameters, which can
be efficiently computed by the adjoint-state method (for a review,
see Plessix 2006). For one source–receiver pair, the gradient can be
written in a compact form as

∇CFW I = u0 � λ0, (3)

where the symbols u0 = u0(m) and λ0 = λ0(m) denote the incident
wavefield and the back-propagated adjoint wavefield, respectively.
For multiple sources and receivers, the gradient is a summation of
u0 � λ0 over all sources and receivers. The adjoint wavefield is com-
puted with a source term that gathers the data residuals associated
with all kinds of waves (diving waves, reflected waves, scattered
waves etc.). The gradient of the misfit function is computed by a
zero-lag cross-correlation between the incident and adjoint fields.
This correlation operation, denoted by a single star (�) in eq. (3),
embeds, for the sake of compactness, the partial derivative of the
forward modelling operator with respect to model parameters (the
so-called diffraction pattern) that is cumbersome to be expressed in
the time domain. Hiding this kind of complexity in the star symbol
will not obscure the governing idea underlying the following deriva-
tion of the misfit function gradients. All details about the incident
and adjoint fields as well as the gradient expressions are provided in
Appendix A in the framework of frequency-domain FWI allowing
for more compact notations. Note that all our implementations are
performed in the time domain.

We first illustrate the FWI gradient (eq. 3) in the case of a ho-
mogeneous subsurface model in which a flat reflector is embedded
(Fig. 2a). The background model is homogeneous with a wrong
velocity and does not contain the reflector, so that the source of the
adjoint equation contains the residuals of the direct wave and re-
flected wave (Fig. 2b). These residuals give rise to two components
in the adjoint field denoted by λd

0 and λr
0, respectively. Correla-

tions of the incident wavefield u with these two components of the
adjoint wavefield respectively build a wide first Fresnel zone and a
secondary Fresnel zone (the so-called migration isochrone, Fig. 3a),
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Figure 3. Illustration of gradients generated by different FWI approaches. Solid and dashed arrows denote the ray paths, respectively, followed by the incident
and adjoint fields that interfere constructively. (a) FWI gradient combines a low-wavenumber first Fresnel zone (represented by u0 � λd

0 ) between source and
receiver, and a high-wavenumber migration isochrone (represented by u0 � δλr). Note that the first Fresnel zone has a limited penetration in depth. (b) RWI
gradient shows two wide first Fresnel zones centred on the two-way paths followed by the reflected wave between the reflector (behaving as a secondary source)
and the source/receiver positions. (c) FWI gradient, with a prior reflectivity in the initial model, combines FWI (a) and RWI (b) gradients. Low-wavenumber and
high-wavenumber information enter into the gradient, hence breaking down the scale-separation prerequisite. (d) JFWI gradient combines the first Fresnel zone
generated by direct-wave residuals and RWI gradient. Compared with (c) the migration isochrone is not generated such that the scale separation is honoured.

over which the direct-wave residual and the reflection residual are,
respectively, back-projected (Woodward 1992). The width of these
iso-phase surfaces gives the spatial resolution with which a point
diffractor located in these surfaces is imaged by the current source–
receiver pair, according to eq. (1). A seismic acquisition generally
provides the samplings of the shallow subsurface with both diving
and reflected waves, allowing for a broad-band imaging of the shal-
low targets. In contrast, only short-spread reflections sample the
subsurface at greater depths, that is, beyond the penetration depths
of the diving waves, leading to a high-wavenumber imaging of deep
targets.

2.2 Reflection waveform inversion (RWI)

RWI focuses on the reflection data to build the subsurface model.
The method relies on the prior knowledge of the reflectivity to
predict the reflected waves. The misfit function is given by

CRW I (m0) = 1

2

∥∥∥W r
(

drefl
obs − drefl

pred(m0, δm)
)∥∥∥2

2
, (4)

where the symbols drefl
obs and drefl

pred denote the observed and predicted
reflected waves, respectively, weighted by the linear operator W r.
The low-wavenumber background m0 and the high-wavenumber re-
flectivity δm are separated in scales, and RWI seeks to reconstruct
the background m0 only. Following Brossier et al. (2015), the gra-
dient with respect to the background model is (for the counterpart
in the frequency domain, see Appendix A),

∇CRW I = u0 � δλr + δu � λr
0 + δu � δλr , (5)

where the symbols u0 = u0(m0) and δu = δu(m0, δm) denote the
incident wavefield computed in m0 and the wavefield scattered by
δm, respectively. Similarly, the adjoint wavefield can be decomposed
as a component λr

0 propagating in the background model and a
scattered component δλr. The scattered wavefield includes forward
and backward scatterings (transmissions versus reflections) of any
order. Note that the three correlation operations in eq. (5) embed two
different diffraction pattern operators computed in m0 and m0 + δm,
respectively. The detailed expressions are provided in Appendix A.

The RWI gradient corresponding to the one-reflector synthetic
model is shown in Fig. 3(b). The source of the adjoint-state equa-
tion contains only the residual of the reflected wave (Fig. 2c). The
first term u0 � δλr represents the correlation between the down-going
field u0 and the up-going scattered field δλr (ray path indicated by

yellow arrows). This correlation builds a wide first Fresnel zone
connecting the reflector and the source position. Similarly, the sec-
ond term δu � λr

0 gives rise to a mirror Fresnel zone generated by
the upgoing scattered field δu and the downgoing field λr

0 (ray path
indicated by cyan arrows). Known as ‘rabbit ears’, this pair of Fres-
nel zones allow for a long-wavelength reconstruction of the deep
targets where FWI encounters difficulties. The third term represents
higher-order migration isochrones. Due to the weak amplitude of
the scattered fields δu and δλr, these higher-order isochrones are
generally of small amplitudes and thus negligible. In Fig. 3(b), two
mirror high-order migration isochrones are shown near the reflector
position. They are built, on the one hand by the zero-lag correlation
between the incident and adjoint fields transmitted across the reflec-
tor and, on the other hand by the zero-lag correlation between the
incident and adjoint fields reflected from the reflector. The reader
is referred to Appendix B for a more detailed description of these
higher-order contributions.

The limitation of RWI is the reliance of the exclusive use
of the reflected waves, discarding the low-wavenumber informa-
tion carried by the diving waves (i.e. u0 � λd

0 term, see analysis
of conventional FWI gradient). One may simply insert the div-
ing waves into the RWI misfit function, augmenting the reflec-
tion data residuals in eq. (4) with the diving wave residuals (i.e.
dobs − ddiv

pred(m0) − drefl
pred(m0, δm)). This is equivalent to perform-

ing FWI with a prior reflectivity in the initial model (Fig. 2d).
Although all low-wavenumber contributions are gathered in the
gradient (Fig. 3c), the dominant imprint of the high-wavenumber
information carried by the migration of the reflection residuals (i.e.
u0 � λr

0, Fig. 3c, red arrows) makes challenging the extraction of
the low-wavenumber information carried by the first Fresnel zones
associated with RWI (Fig. 3b). This highlights the necessity to
force a scale separation between the low-wavenumber and high-
wavenumber components in the FWI formalism, and this is the aim
of the following section where we propose an alternative FWI for-
mulation that combines the diving waves and the reflected waves
for the velocity macromodel building without generating the high-
wavenumber isochrones.

3 J O I N T F U L L WAV E F O R M I N V E R S I O N
( J F W I )

We shall first review the main idea behind JFWI that will allows us
to mitigate the high-wavenumber contributions during the velocity
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Figure 4. Two-reflector model and the corresponding JFWI gradients. (a) Two-reflector model to generate multiscattered fields. (b) JFWI gradient for the
VP–ρ parametrization. Higher-order isochrones are produced due to constructive interference of the multiscattered fields (Appendix B for a detailed review of
all of these isochrones). (c) Same as (b) except that the VP gradient was built for the VP–IP parametrization. The low-wavenumber components of the gradient
are kept unchanged, while the undesired high-wavenumber components were filtered out.

model building before discussing the implementation of the JFWI
gradient.

3.1 Formulation

The governing idea of JFWI is to explicitly separate the contribu-
tions of the diving and reflected waves (Fig. 2e), which means that
the misfit function is decomposed as the sum of two terms,

CJFWI (m0) = 1

2

∥∥∥W d
(
ddiv

obs − ddiv
pred(m0)

)∥∥∥2

2

+1

2

∥∥∥W r
(
drefl

obs − drefl
pred(m0, δm)

)∥∥∥2

2
, (6)

where the symbols ddiv
obs and ddiv

pred(m0) denote the observed and pre-
dicted diving waves, and W d and W r denote the weighting operator
that are applied to the diving and reflected waves, respectively. The
role of the two weighting operators is to balance the respective
contributions of diving and reflected residuals in the misfit func-
tion, considering that reflected wavefields have generally weaker
amplitudes than the diving waves. The operator W r can also embed
a time-dependent weighting of reflection residuals to enhance the
contribution of late reflected arrivals at the expense of early ones in
the misfit function. This inversion preconditioning can contribute
to balance the amplitudes of the shallow and deep perturbations in
the gradient of the misfit function, and hence improve the conver-
gence rate. Other weightings can also be added in the W d and W r

operators such as offset-dependent weighting, which can be useful
to design layer-stripping strategies. These issues will be illustrated
in the synthetic example presented in the sequel of this study.

Both the observed data and predicted data should be decomposed
into the diving part and the reflection part during the data pre-
processing stage. Many pre-processing tools, commonly used to
pre-process the reflection data before migration, can be applied here,
such as the dynamic time windowing or F-K filtering. While the
observed data are pre-processed once and for all before the inversion
starts, the decomposition of the predicted data, however, has to be
performed at each iteration of JFWI. This might be cumbersome
if the decomposition should be refined according to the velocity
model update. For the synthetic example shown in the following of
this study, we did not need to perform this refinement: we applied to
the modelled data, at each JFWI iteration, the same decomposition
rule based on the offset-dependent time window as is applied to the
recorded data. We could afford to keep the same windowing law at
each JFWI iteration because the initial model for JFWI is already

accurate enough to predict the first-arrival traveltimes within half
the dominant period. If the separation between the diving waves and
the reflected waves is awkward, a systematic separation procedure
would consist in performing two forward modellings, one in m0 and
one in m0 + δm. The first simulation provides the diving wavefield,
while the subtraction between the two simulated wavefields provides
the reflection wavefield.

The gradient of the misfit function with respect to the background
model m0 is given by (for the counterpart in the frequency domain
see Appendix A)

∇CJ FW I = u0 � λd
0 + u0 � δλr + δu � λr

0 + δu � δλr , (7)

where the symbols λd
0 and λr

0 denote the background components
of the adjoint field generated by the diving-wave residuals and the
reflection residuals, and δλr denotes the scattered component of the
adjoint wavefield generated by the reflection residuals, respectively.
The first term in eq. (7) builds the first Fresnel zone associated
with the diving waves, while the second and third terms are those
generated during RWI. The key point is that the gradient in eq.
(7) does not include the u0 � λr

0 term associated with the high-
wavenumber migration isochrone (Fig. 3d).

The last three terms in eq. (7) encapsulate all of the high-
order scattering propagation. Among them, higher-order migra-
tion isochrones can be generated and hence, inject undesired high-
wavenumber components into the gradient. A two-reflector model,
in which internal multiples are generated, is used to illustrate the
imprint of these high-order migration isochrones on the gradient
(Figs 4a and b). A detailed review of the different high-order contri-
butions is provided in Appendix B. Due to their inconsistent spatial
locations, most of these high-order migration isochrones interfere
with each other in a destructive way when the contributions from
multiple shot gathers are stacked, and thus the gradient tends to
be free from these high-wavenumber components. Moreover, in the
next section, we shall show how to further reduce their footprint by
choosing a proper subsurface parametrization for JFWI.

3.2 Mitigation of high-order isochrones by choosing
suitable subsurface parametrization

In most acoustic FWI approaches, the subsurface is parametrized
by the velocity (VP) and the density (ρ) (e.g. Wang et al. 2015).
The diffraction patterns associated with these parameters are shown
in Figs 5(a) and (b), respectively. They show two wavefields scat-
tered by a single VP and ρ point perturbation in a homogeneous
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Figure 5. Diffraction patterns of VP–ρ (a) and VP–IP (b) parametrizations.
Single diffractors are located in the centre of the homogeneous background.
A source at the vertex of the diffractor generates the scattered field, whose
amplitude variation with the scattering angle is representative of the diffrac-
tion pattern of the parameter. Note how the diffraction pattern of VP changes
depending on the other parameter involved in the parametrization (ρ versus
IP). See text for details.

background. These wavefields represent the partial derivatives of
the incident wavefield with respect to the model parameters that
undergo a perturbation. Zero-lag correlations of this kind of partial
derivative wavefields at the receiver positions with the data residu-
als form the FWI gradients. The amplitude variation of the partial
derivative wavefield with the scattering angle θ (i.e. the diffraction
pattern) controls the effective range of scattering angles who con-
fers the spatial resolution to the FWI gradient for one parameter
class [see Operto et al. (2013) for a recent tutorial on multipa-
rameter FWI]. The wavefield scattered by the VP diffractor shows
an isotropic radiation pattern, conferring a broad-band wavenum-
ber content to the VP gradient. On the other hand, the wavefield
scattered by the ρ diffractor has significant amplitudes at small-to-
intermediate θ , conferring a narrower (high) wavenumber content
to the ρ gradient. This VP–ρ parametrization is a natural choice
for FWI to reconstruct a broad-band VP model, keeping in mind
that cross-talks or leakage between VP and ρ are necessarily present
in the high-wavenumber part of the VP and ρ gradients. A careful
accounting for the Hessian should help remove this leakage in the
FWI subsurface models.

In contrast, the VP–IP parametrization leads to a natural scale
separation between the two parameter classes. The corresponding
diffraction patterns are shown in Figs 5(c) and (d). The wavefield
scattered by the VP diffractor has significant amplitudes for large
θ , leading to a VP gradient with a low-wavenumber content. Con-
versely, the wavefield scattered by the IP diffractor has significant
amplitudes for small θ , leading to an IP gradient with a high-
wavenumber content. Compared with the VP–ρ parametrization,
the VP–IP parametrization is more suitable to satisfy the scale-

separation condition underlying JFWI, although it will prevent the
reconstruction of the high wavenumbers in the VP model.

According to this diffraction-pattern analysis, we choose the VP–
IP parametrization to perform JFWI, where the low-wavenumber
part of the subsurface m0 is parametrized by VP and the high-
wavenumber part δm is parametrized by IP (eq. 6). The effect of
the subsurface parametrization on the JFWI gradient is illustrated
in Fig. 4(c) by the effective attenuation of the high-order isochrones
when the VP–IP parametrization is used. [Another advantage of the
VP–IP parametrization over the VP– ρ parametrization is described
in Snieder et al. 1989, their figs 2 and 3.]

3.3 Implementation of ∇CJFWI

In order to perform a computationally efficient implementation of
JFWI, we rewrite eq. (7) in a more compact form by regrouping
scattered and background wavefields, which is

∇CJFWI = u0 � λr
0 + δu � λr

0 + u0 � δλr + δu � δλr + u0 � λd
0

− u0 � λr
0 (8)

= ur � λr︸ ︷︷ ︸
G1

+ u0 � (λd
0 − λr

0)︸ ︷︷ ︸
G2

, (9)

where we have (re-)introduced the total reflection field ur = ur
0 +

δur and the total reflection adjoint wavefield λr = λr
0 + δλr . Note

that eq. (8) is a true identity even though we have concealed the
partial derivatives of the modelling operator inside the symbol �.
Strict demonstration is provided by the developments starting from
eq. (A10) to eq. (A14) in Appendix A.

This alternative expression of the gradient leads to a workflow
that sequentially computes two quantities G1 and G2 (Algorithm 1).
The quantity represented by G1 is computed in m0 + δm (Fig. 3c)
by conventional FWI of the reflection data (hence, the first Fresnel
zone associated with the diving waves represented by u0 � λr

0 are
not embedded in this expression), while the quantity represented
by G2 is computed in m0 by conventional FWI of the diving waves
and reflection data (Fig. 3a), in which the sign of the reflection data
residuals is reversed. This reversal, indicated by the minus sign in
front of λr

0 in eq. (9), cancels by subtraction the first-order migra-
tion isochrone involved in G1, making the total gradient G1 + G2

dominated by low-wavenumber components. Moreover, computing
G1 or G2 requires the same tasks as those performed during FWI
to evaluate the FWI gradient in the time domain [the boundary-
saving strategy is used to alleviate the memory load (Clapp 2008)].
These tasks can be summarized as follows: simulate the modelled
wavefield and save the values on the model boundaries, compute
the data residuals at receiver positions, compute the adjoint field
by taking the residuals as the source function, and re-simulate the
modelled wavefield in reverse time by using the boundary values
as the Dirichlet condition, cross-correlate on the fly the two fields.
Therefore, for one evaluation of the FWI gradient, we need to do
three modellings and save two fields at maximum. As a combina-
tion of G1 and G2, Algorithm 1 requires to perform six modellings
and to store two fields for the cross-correlation. Consequently, the
workflow to evaluate the JFWI gradient has a time complexity two
times higher than the one of conventional FWI but the memory
requirement is the same (see Table 1). In addition, the cost of JFWI
is the same as the cost of RWI.

If more subtle data separations are used, that is, involving the
decomposition of the modelled wavefield on the fly by subtraction
of the full field and the background field, the implementation of G1
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Algorithm 1. Efficient evaluation of ∇CJFWI.

Table 1. Cost comparison.

Cost Conv. FWI RWI JFWI

Modellings 3 6 6
Storage 2 2 2

in eq. (9) is impossible. This is because G1 is only related to the
predicted reflection data, which would not be readily available at
the time of the adjoint simulation when the data separation is per-
formed on the fly with the aforementioned subtraction procedure.
In this case, we would recommend computing an approximation of
∇CJFWI with the following workflow: (1) Compute the conventional
FWI gradient in the model m0 + δm using both the diving and re-
flected wave residuals (Fig. 3c). (2) Build the first-order migration
isochrones by conventional FWI performed in model m0 using the
reflection residuals as the source of the adjoint equation. At this
stage, the predicted reflection data become available since the sub-
traction of the modelled full field and the background field can be
readily performed. (3) Subtraction of the two quantities gives a low-
wavenumber quantity, which is a good approximation of ∇CJFWI. A
relative error of 2 per cent is found in the synthetic Valhall case study
presented later. This implementation requires the same resources as
the one discussed above (Table 1, third column).

4 M U LT I PA R A M E T E R F W I F O R
V E L O C I T Y M O D E L B U I L D I N G A N D
I M P E DA N C E I M A G I N G

So far we have derived the principles of JFWI for low-wavenumber
velocity building, and choose the VP–IP parametrization for high-
wavenumber isochrones mitigation. In the following, we shall
design a complementary imaging tool that provides a high-

wavenumber model of the subsurface, and combine it with JFWI to
have an integrated inversion workflow.

4.1 IP imaging by waveform inversion of short-offset
reflection data (IpWI)

We perform the high-wavenumber imaging by waveform inversion
using only the short-offset reflection data (referred to as IpWI in the
following). According to the previous diffraction-pattern analysis,
the subsurface is parametrized by VP–IP and only the IP parame-
ter is updated using the VP model as the background model. The
corresponding misfit function is given by

C(IP ) = 1

2

∥∥∥W r
(

drefl
obs − drefl

pred(VP , IP )
)∥∥∥2

2
. (10)

The corresponding gradient (Fig. 6) contains the first-order
isochrones similar to the ones which would have been imaged by a

Figure 6. Impedance gradient resulting from the migration of one residual
seismogram in a homogeneous background. The true model contains two
reflectors. The gradient only contains first-order isochrones. Ray paths of
the incident and adjoint fields for the source–receiver pair are illustrated.
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migration processing

∇C = u0 � λr
0 = u0 � B†−1(

drefl
obs − drefl

pred

)
, (11)

where the forward modelling operator is denoted by the symbol B.
The only notable difference from a least-squares migration is

that the observed reflection data is used as the source function to
compute the backpropagated field in the migration process, whereas
the source function of the adjoint-state equation in this IpWI is the
reflection data residual.

4.2 Cycle workflow of VP–IP imaging

Recall that the VP–IP parametrization naturally leads to the scale
separation between the two parameter classes. The low wavenum-
bers of VP are reconstructed by JFWI, which requires a prior high-
wavenumber IP model built by IpWI. Conversely, the impedance
imaging requires a background VP that can be provided by JFWI.
Therefore, it is natural to combine JFWI and IpWI to reconstruct
these two parameters (a similar strategy can be found in Ma & Hale
2013). A critical issue is that, once the VP model has been modi-
fied by JFWI to some extent, a new IP reflectivity model should be
generated accordingly in order to match the reflection data before
continuing the VP update, and the initial smooth impedance model
should be used as the starting model for this new IpWI implemen-
tation (i.e. removing the imaged reflectivity; Brossier et al. 2015).
This directs us towards a cycle workflow in which the VP model
and the IP model are repeatedly updated in an alternate way by
several non-linear iterations of JFWI and IpWI (Algorithm 2), and
during each JFWI and IpWI step the two parameters are consid-
ered independently from each other. As the velocity model is not
expected to be accurate during the cycle workflow, we build the
impedance model from very short-offset reflections to enhance the
focusing of the reflectivity image, even if mispositioned in depth,
in order to avoid any biases associated to the residual moveout in
the depth-migrated domain.

5 S Y N T H E T I C E X A M P L E : VA L H A L L
C A S E S T U DY

5.1 Experimental setup

We apply our cycle workflow on a synthetic case representative
of the Valhall oil field. The true IP and VP models are shown in
Figs 7(a) and (c), respectively. The seafloor is at 62.5 m depth,
above the sediment layers that overlay several low-velocity gas
zones depicted in red. From 2.5 km to 3.3 km depths, the high-
velocity oil reservoir is separated from the low-velocity gas zones
by a cap rock of anticline structure. The sand is laid below the
reservoir with smooth VP, IP variations, supported by the bedrock
at 5 km depth. The model, which is 8.8 km in width and 5.2 km in
depth, is discretized by 418 × 704 gridpoints with a grid interval
of 12.5 m.

We use a Gaussian filter to smooth the true velocity model (ex-
cluding the water layer), and then extract one vertical profile to
build the 1-D initial model for JFWI and IpWI (Figs 7b and d).
This initial velocity model captures the large-scale variation of the
true model and discards all features of the gas zones. Therefore, the
main task of JFWI is to reconstruct the gas zones. Based on a former
analysis (Prieux et al. 2011, their fig. 2b), more than 14 km of offset
would be needed to record diving waves that propagate at reservoir
depths. In this study, the maximum offset is set to 6 km and the
diving waves reach a maximum penetration-depth of 1.5 km, which
is shallower that most of the gas layers. Therefore, only the reflected
waves can contribute to the reconstruction of the deep targets. The
initial impedance model is shown in Fig. 7(b), which was built by
taking a two-layer density model (setting 1000 kg m−3 for the water
and 2000 kg cm−3 below).

The forward problem is solved by a classical O(�t2, �x4)
staggered-grid finite-difference method. The absorbing boundary
condition implemented with perfectly matched layers (PMLs, e.g.
Bérenger 1994; Komatitsch & Martin 2007) is applied along each
edge of the model. Therefore, no surface-related multiples are gen-
erated in the data. We exclude this kind of multiples for a purpose

Algorithm 2. Cycle workflow of VP–IP imaging.
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Figure 7. Synthetic Valhall case study. (a) True IP model. (b) Initial IP model. (c) True VP model. (d) Initial VP model. (e) First shot gather. Diving and
reflected waves are recorded (separated by the time-offset boundary delineated by the red dashed line), as well as several multiscattered waves indicated by the
yellow ellipse and arrows. (f) Conventional FWI gradient, (g) RWI gradient and (h) JFWI gradient for VP.

to avoid potential cycle skipping among primary reflections and
secondary reflections. More realistic case involving the surface-
related multiples will be discussed in Section 5.3. The source func-
tion is a Ricker wavelet with a peak frequency of 6.25 Hz. We con-
sider a streamer acquisition of 80 shots, with the first shot gather
being shown in Fig. 7(e). The reflection phases with zero-offset
two-way traveltimes ranging from 0.4 s to 2.8 s are reflections from
the gas layers. The reflections from the cap rock and the reservoir
have zero-offset two-way traveltimes ranging from 2.8 s to 3.4 s,
followed by the multiscattered phases (indicated by the yellow ar-
rows) especially the one arriving at 3.8 s (by the yellow ellipse).
These multiscattered waves are generated from the highly reflective
cap rock and from the edges of the gas layers. As the direct/diving
waves do not significantly overlap the reflected waves in time, we
simply apply a linear time-offset window to the data set for the
purpose of data separation, defined by the following formula:

tsep (s) = offset (km) / 1.5 (km s−1) + 0.33 (s), (12)

where tsep is the time instant of the window boundary as a function
of offset (indicated by the red dashed line in Fig. 7e), the slope of
the linear boundary is given by the water wave speed (1.5 km s−1)
and the intercept is equal to 0.33 s according to the dominant period
of the Ricker wavelet. Furthermore, we estimate that the direct/
diving waves have amplitudes ten times higher than those of the
reflected waves. This prompts us to leave the amplitudes of the
direct/diving waves unchanged in the misfit function (i.e. W d equals
to the identity matrix), while the reflection residuals are multiplied
by a factor of ten in the misfit function.

Having been observed in several tests, JFWI tends to match the
recorded multiscattered phases (indicated by the yellow arrows and
ellipse in Fig. 7e) with the modelled primary reflections if the full
reflection wavefield is processed in one go, which implies that JFWI

also suffers from non-linearity as FWI does. Therefore, we apply a
progressively increasing time window procedure (Kolb et al. 1986)
to the data to enhance the robustness of JFWI. This is implemented
by muting the full-offset reflection data after 3.5 s during first few
cycles to remove the contribution of the multiscattered waves in
the misfit function, then gradually restore their amplitude to their
original level during later cycles.

The velocity gradients that are computed in the initial smooth
model by FWI, RWI and JFWI are shown in Figs 7(f)–(h), respec-
tively. As expected, the FWI gradient shows the limited penetration
depth (∼0.8 km) of the first Fresnel zones associated with the diving
waves and a high-wavenumber content at greater depths generated
by the stack of the migration isochrones (Fig. 7f). The RWI gradi-
ent shows how the migration isochrones were avoided by assuming
a known reflectivity in the waveform inversion formalism, while
low-wavenumber components were injected at all depths along the
transmission wave paths of the reflected waves that are predicted by
using the prior reflectivity (Fig. 7h). The JFWI gradient yet high-
lights how a deficit of low-wavenumber coverage in the shallow part
of the RWI gradient (Fig. 7g, see at 0.5 km and 7 km in distance)
can be filled through the diving wave contribution (Fig. 7h). The
optimization method relies on the L-BFGS quasi-Newton approach
(Nocedal 1980). We perform 10 non-linear iterations of IpWI and
20 non-linear iterations of JFWI during each cycle of the workflow.
We use only offsets smaller than 200 m to perform IpWI in order to
increase the linearity of the problem (see Section 4).

5.2 Results and discussions

Fig. 8 displays a selection of IP perturbations (namely IP updates)
and VP models obtained at different cycles of the workflow (Al-
gorithm 2). The initial IP perturbation is zero and the initial VP is
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Figure 8. Selection of IP perturbations and VP models from the cycle IpWI+JFWI workflow. Long wavelengths are built in VP while short wavelengths are
imaged in the IP perturbation model.

smooth (Cycle 0). After the first cycle, the IP perturbation, com-
puted using the initial VP model as the background model, is not
well focused especially for the sand-bedrock interface. The image
of the gas-zone reflectors in the first IP perturbation are misposi-
tioned at excessive depths due to the overestimated velocities in
the initial model. Large-scale VP variations of the gas zones start to
show up at about 1.8 km depth in the first model built by JFWI. This
velocity update contributes to move the gas-zone reflectors at their
correct position during IpWI in the following cycles. We perform
22 cycles of the IpWI+JFWI workflow. The final VP and IP models
are shown in Figs 9(b) and (e), respectively. The reflectors have
been moved at their correct positions, as JFWI has injected long-to-
intermediate wavelengths into the velocity model. In particular, the
zone of influence of the low-velocity gas-zone between 2.5 km and
5 km in distance has been well delineated. The long-wavelengths
of VP between the reservoir and bedrock are rarely imaged due to
two facts: most of the incident energy is reflected backwards by the
hard cap rock and the smooth variations in the sand zone provides
few reflection information.

We also apply FWI and RWI on this data set to highlight the add-
value provided by JFWI. Results are shown in Figs 9(a), (c) and

(d). FWI is implemented with the VP–ρ parametrization and only
the VP model is reconstructed. RWI is performed with the VP–IP

parametrization. The same cycle workflow as was used for JFWI is
used again to perform RWI, except that the contribution of diving
waves is discarded by RWI.

The final VP model obtained by FWI is roughly the superim-
position of short-wavelength velocity perturbations on the smooth
initial velocity model. The inversion clearly fails to update the long-
to-intermediate wavelengths of the velocity model because of the
inaccuracy of the initial model and the lack of long offsets. The
short-wavelength components of the reconstructed VP are poorly
focused due to the inaccurate long-wavelength components.

In contrast, both RWI and JFWI have reconstructed the long
wavelengths of the gas zones to some extent. However, the final
VP model built by JFWI is significantly more accurate than the one
built by RWI, especially in the shallow part where diving waves
penetrate. An inspection of the vertical profiles extracted from the
true model, RWI model and JFWI model supports this statement
(Fig. 10, to be discussed later). The final IP models obtained by
IpWI, from either JFWI or RWI VP models, are purely superimpo-
sitions of the short-wavelength components imaged by IpWI on the
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Figure 9. Final subsurface models of different waveform inversion approaches. (a and b) Impedance models obtained by RWI (a) and JFWI (b). (c–e) VP

model obtained by FWI (c), RWI (d) and JFWI (e). See text for explanations.

Figure 10. (a and b) Logs of IP perturbations (a) and VP models (b) at x = 3.75 km for IpWI+RWI and IpWI+JFWI. Accounting for diving waves in JFWI
improves the velocity reconstruction in the shallow part, which translates into an improved imaging of the deep velocity and the impedance structures.

smooth initial IP model, according to the diffraction pattern of the
IP parameter (Fig. 5d). In summary, the scale-separation condition
has been fulfilled through this proposed cycle inversion.

Figs 10(a) and (b) show the logs of the IP perturbations ob-
tained by IpWI and the VP models inferred from RWI and JFWI at
x = 3.75 km, respectively. Above z = 1 km, the IP perturbations
computed from the RWI and JFWI VP models are almost equiva-
lent. However, the RWI VP model is clearly less accurate than the
JFWI VP model, particularly in the shallow part where the diving
waves penetrate. From 1.5 km to 2.5 km depth, due to the accumu-
lation of inaccuracies from the near surface, the velocities of the
RWI model are overestimated and prevent the correct positioning

in depth of the IP perturbations. This highlights that, indeed, an ac-
curate near-surface reconstruction is also critical to properly image
deeper zones.

5.2.1 Quality control by common image gathers

We further assess the quality of the velocity models inferred from
RWI and JFWI by generating common image gathers (CIGs) in
the offset-depth domain (Fig. 11). These CIGs are computed in the
initial VP, RWI VP and JFWI VP models by reverse-time migration
using the same modelling engine as was used during JFWI and
IpWI.
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Figure 11. Common image gathers at positions x ={1.88 2.50 3.13 3.75 4.38 5.00 5.63 6.25 6.88} km from the initial VP (a), RWI VP (b) and JFWI VP (c)
models. Improvements to the event flatness provided by JFWI compared with RFWI are pointed by horizontal yellow arrows in the shallow part, red arrows at
the cap rock level and vertical green arrows at 5 km depth.

Compared with the initial VP model, both the RWI and JFWI VP

models can significantly improve the flatness of the events in the
CIGs. The improvement provided by JFWI compared with RWI is
more subtle as the CIGs generated by RWI are already quite flat.
Nonetheless, we still show that shallow events are flatter in the
CIGs inferred from the JFWI VP model relative to those inferred
from the RWI VP model (Fig. 11, horizontal yellow arrows). This
manifests the diving wave contribution used in JFWI as well as
the difficulty of the reflection-based imaging methods to update
the shallow part of the subsurface. This point was illustrated with
a real-data case study from Valhall by Prieux et al. (2011), who
showed that FWI of diving waves and reflected waves improved the
flatness of the CIGs in the first kilometres in depth of the subsurface
compared with the CIGs inferred from a reflection traveltime to-
mography velocity model. Some improvements achieved by JFWI
compared with RWI are also shown at the cap rock level (Fig. 11,
red arrows), which highlight how the more accurate shallow ve-
locity reconstruction impacts on the focusing of the deep reflector
images. The horizontal reflector at 5 km depth is also better imaged
in the JFWI model than in the RWI model (Fig. 11, vertical green
arrow).

5.2.2 Fitting amplitudes

Due to the geometrical spreading effects that are incompletely re-
moved during the FWI process, the amplitude of the impedance per-
turbations decreases with depth. Without an accurate reconstruction
of the impedance contrasts, the amplitude of the modelled reflected
waves can be significantly smaller than the observed amplitude. In
order to improve the amplitude fit, we precondition the gradient to
strengthen the deep perturbations at the expense of shallow ones
and perform 40 IpWI iterations with the preconditioned L-BFGS
optimization scheme, starting from the final VP model of JFWI
(Fig. 9e). We still use offsets smaller than 200 m.

The number of iterations is taken four times as before such that
tiny differences in the data amplitude can influence the model up-
date. The refined impedance perturbations computed in the RWI
and JFWI velocity models are shown in Fig. 12. Compared with the
previous IP models (Figs 9a and b), the image of the deep reflec-
tors, such as the cap rock–reservoir interface, has been significantly
enhanced. Note also how the geometry of the reservoir is much
more accurately delineated in the IP model computed by using the
JFWI velocity model compared with the one using the RWI velocity
model.
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Figure 12. IP models after 40 iterations of IpWI performed with preconditioned L-BFGS optimization, using RWI (a) and JFWI (b) VP models as background
models (Figs 9d and e, respectively).

Figure 13. Logs of enhanced reflectivity (IP update) at x = 3.75 km. Com-
pared with previous IP logs (Fig. 10a), deeper reflectivity can be matched
by preconditioned L-BFGS optimization starting from the RWI or JFWI VP

models. Still, JFWI performs better than RWI in terms of depth positioning.

For the sake of completeness, we plot the vertical profile of the
new IP perturbation models at x = 3.75 km in Fig. 13. The amplitude
of the impedance perturbations is now much better estimated in the
deep part of the model.

The first shot gather computed in the true models and in the final
RWI and JFWI models are compared in Figs 14 and 15. Phases
and amplitudes in the JFWI-calculated data agree quite well with
those of the observed data, except for the multiscattered waves
(e.g. time = 4.4–5.2 s at offset = 6 km). Nevertheless, the ab-
sence of the multiscattered waves in the calculated data helps us
avoid somehow the cycle-skipping issues: the phase ended in time
= 4.6 s at offset = 6 km seems not to be cycle-skipped. As the
sand zone is hard to be recovered (due to few reflection information
from the seismogram), the moveout of the latest reflection coming
from the sand–bedrock interface is less properly matched especially
at offset = 4 km. More convex misfit functions (Luo & Schuster
1991; Brossier et al. 2009, 2010, 2015; Luo & Sava 2011; Ma
& Hale 2013; Warner & Guasch 2014) would be helpful to relax
the cycle-skipping issue raised by waveform-difference misfit func-

tions, and allow large traveltime shifts for the inversion procedure
to match the full-offset reflection phases. On the other hand, the
data calculated in the RWI final models match the observed data
at short offsets, but fail at long offsets (e.g. time = 3.6 s, 5.4 s
at offset = 6 km). This means that the diving-wave information is
also critical for the matching of the reflection data (phases, move-
outs), and should not be discarded in the high-resolution imaging
techniques.

5.2.3 Broad-band imaging of VP

The impedance model in Fig. 12 could be used for geophysical
interpretation. Alternatively, a broad-band VP model is also very
helpful to understand the structure of the subsurface and the rock
properties, but conventional approaches like FWI may fail in build-
ing such a VP model from a crude initial model due to the lack of
low frequencies (Fig. 9a). Joint FWI can be used as a robust tool for
initial model building since it can build the long wavelengths that
are required to perform reliable FWI (Fig. 9e).

Fig. 16(a) shows the result of FWI starting from the JFWI VP

model (Fig. 9e) under the VP–ρ parametrization. The two-layer
density model that was used as the initial model for JFWI is used
here as the background model, and is kept fixed during this FWI im-
plementation. The final FWI velocity model matches quite closely
to the true velocity model, except in the deep part due to the lack
of illumination. This result confirms the relevance of JFWI as a
robust tool to build an initial velocity model for FWI, leading to a
two-step velocity model building workflow of successive JFWI and
FWI. However, this VP model is prone to contain imprints from VP–
ρ cross-talks: the short-scale heterogeneities that are missed in the
background density model might be interpreted as the short-scale
velocity perturbations by FWI, leading to an erroneous velocity es-
timation. This might explain some amplitude mismatches between
the true and the FWI velocities in the log profile (Fig. 16b), for
example at 2–2.5 km depths.

The data fit of the first shot gather computed in the true VP

model and in the final JFWI followed by FWI VP model is shown
in Fig. 17. The multiscattered waves are generated (e.g. time =
4.4–5.2 s at offset = 6 km), due to the injection of the intermediate
wavenumbers into the final VP model, which allows us to model
these higher-order scattering effects from the top of the cap rock
and the vertical edges of the gas layers. Except at zero offset, the
match of the phase and amplitude is further improved comparing
with Fig. 15, especially for the multiscattered waves and the late
reflection at long offsets. In summary, this experiment manifests
that JFWI has a great potentiality to be used as a robust tool for
initial velocity model building for conventional FWI.
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Figure 14. Comparison of the first shot gather computed in the true VP model (second and fourth panels) and in the final RWI (first panel) and JFWI (third
panel) models. See text for details.

Figure 15. (a) Direct comparison between seismograms computed in the true VP model (black lines) and the final RWI model (blue lines) for the first shot
gather (Fig. 14). (b) Same as (a) for seismograms computed in the JFWI model (red lines). See text for details.

The match at zero offset has been degraded (within the two-way
traveltimes ranging from 1.8 s to 3.4 s) due to the offset weighting
that has been applied to enhance the reflection data at long offsets.
Moreover, this degradation might be caused by the fact that we have
kept the smooth density model to its initial values, suggesting that
the model space is not large enough to account for the amplitude
effects at short offsets. In other words, these amplitudes cannot
be matched by a velocity-only inversion procedure. Therefore, a
multiparameter FWI for VP and ρ should be considered to improve
the data fit.

5.3 JFWI in the presence of multiples

In this section, we discuss the robustness of JFWI in the presence of
surface multiples. The interest is that if JFWI allows the multiples
to be present in the data, the pre-processing workflow could be
simplified.

We still consider the synthetic Valhall model (Figs 7a and c) and
generate a data set with surface-related multiples (Fig. 18a). This
data set is processed by JFWI and IpWI by considering a free-surface
boundary condition on the surface during the seismic modelling.
Compared with the data set computed without free-surface multi-
ples (Fig. 7a), the diving waves have weaker amplitudes in the 1–
2 km offset range (using the same clip), and more complex reflection
wavefields are recorded. This prompts us to reduce the scaling fac-
tor applied to the reflected waves through the operator W r from 10
to 5, such that the contributions from the diving and reflected waves
are re-balanced in the JFWI misfit function. Moreover, as free sur-
face effects generate more multiscattering, we progressively feed
the inversion with late-arriving reflections at a slower rate than
in the former case performed without surface multiples. Here,
we mute the reflection data after 3.3 s over the full offset range
during first few cycles, then gradually restore their amplitude
to their original level during later cycles (also weighted by 5).
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Figure 16. (a) Broad-band reconstruction of the velocity model by con-
ventional FWI using JFWI VP model as the starting model. The VP-ρ
parametrization is used for inversion keeping the density model fixed).
(b) Comparison between velocity profiles (x = 3.75 km) extracted from
the true model (solid black line), the initial VP model (dashed line), the
JFWI VP model (red line) and the broad-band VP model shown in (a) (green
line). Leakage of ρ reflectivity is expected (e.g. at 2–2.5 km depths).

We apply the same time-offset window (eq. 12) to separate the
data.

Fig. 18(b) shows the JFWI result after 14 cycles. Although the
final JFWI VP model shows the long wavelengths of the true VP

model as in Fig. 9(e), we have witnessed some degradations of the
quality from this velocity result:

(i) The thin reflector at the water bottom between x = 3 km and
4 km is an artefact coming from the very early reflections in the
diving-wave time window. Because we have applied a simple lin-
ear time-offset window, the migration isochrones generated from
the reflections left in the diving-wave time window are not totally
cancelled during the summation of G1 and G2. When multiples are
present, these reflections may be enhanced, making the migration
isochrones apparent in the gradient. This highlights that a suc-
cessful application of JFWI heavily relies on the accuracy of data
separation.

(ii) Above 2 km depth, the resolution seems to be higher in
Fig. 18(b) than in Fig. 9(e), even though we have applied the same

Figure 17. Data fit of the first shot gather computed in the true VP model
(black) and in the final JFWI+FWI VP model (red), which is comparable
with the one obtained with the JFWI VP model (Fig. 15). Here, the fit at long
offsets of multiscattered waves has been nicely improved at the expense of
the fit at short offsets. See text for interpretation.

Gaussian smoothing regularization to the gradient (vertical and hor-
izontal correlation lengths equal to twice of the dominant wave-
length). This improved resolution might result from the improved
subsurface coverage provided by the surface-related multiples. This
statement deserves however further investigations.

(iii) In contrast, the low-velocity zone at 2.3 km depth is recon-
structed less accurately in Fig. 18(b) than in Fig. 9(e). We consider
that imaging at this depth, covered by only reflection kernels, is a
difficult task especially when multiples are present.

As was in Section 5.2.3, we launch the conventional FWI start-
ing from the JFWI VP macromodel (Fig. 18b) using the VP–ρ

parametrization. The two-layer density model that was used as the
initial model for JFWI is also used here as the background model,
and is kept fixed during this FWI implementation. The result is
shown in Fig. 18(c). The gas zone is properly reconstructed, with
some noise due to the multiples. The image of the cap rock, how-
ever, is not as accurate as the one built from multiple-free data.
We believe that this degradation results from the surface multiples
and the multiscattered waves generated by the hard interfaces and
the edge of the gas layers. Remembering the former application
without multiples, these multiscattered waves had already made
the velocity model building quite non-linear, which prompted us to
design a time-windowing approach to mitigate this non-linearity.
Here, as expected, the presence of multiples has significantly in-
creased the non-linearity, which forces us to apply a more prudent
time-windowing approach. With such an effort, the degradation of
the resolution is limited.

Regardless the difficulties raised by these two wave modes, we
still obtain a reasonable velocity model by FWI using the JFWI
model as the starting model. The log extracted at x = 3.75 km is
shown in Fig. 18(d). Without considering possible cross-talk effects
between parameters, the final VP values (green curve) fit quite well
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Figure 18. Synthetic Valhall case study with free surface multiples. (a) First shot gather. (b) Long-wavelength VP model by JFWI. (c) Broad-band reconstruction
of the VP model (conventional FWI implementation starting from (b), VP–ρ parametrization and density fixed). (d) Logs of VP models at x = 3.75 km for (b)
and (c). JFWI suffers from the high-order scattering effects from the surface-related multiples and the multiscattered waves, therefore the VP results are worse
than the previous results (Figs 9e and 16a). However, from the log we see that the gas layers are still well imaged. See text for details.

the true VP values (black curve) above 3.2 km depth, and is much
comparable with the one inferred from multiple-free data (Fig. 16).

6 C O N C LU S I O N S A N D P E R S P E C T I V E S

Most applications of the conventional FWI are driven by diving
waves and post-critical reflections. However, imaging the long-to-
intermediate wavelengths in deep regions remains challenging if the
transmitted waves do not penetrate these regions due to insufficient
offsets. In contrast, RWI succeeds to some extent in imaging the
long-to-intermediate wavelengths of the deep regions focusing on
the two transmission wave paths followed by the reflected waves
from the surface to the reflector positions. This kind of approaches
relies on a scale separation between a smooth velocity model and a
known reflectivity, that allows one to suppress the contribution of
the unwanted (high-wavenumber) migration isochrones during the
velocity model building. The limitation of RWI is that diving waves
and post-critical reflections are not used, although they carry the
essential long-wavelength information of the shallow subsurface.
We have presented in this paper an extension of RWI, namely Joint
FWI, the aim of which is to account for the contribution of the diving
waves and post-critical reflections during the velocity model build-
ing. The relevance of the method is demonstrated with the synthetic
Valhall case study, which has shown that how the improvement of
the near surface imaging provided by the diving waves translates
into an improved imaging of the deep targets performed by RWI. Al-
though modern wide-azimuth long-offset seismic acquisition may
still not allow to record the diving waves with a sufficient penetra-
tion depth to sample the deepest targeted structures, diving waves
and post-critical reflections can have an increasing contribution in
the seismic wavefield. In this study, we have proposed a seismic
workflow which makes an optimal use of the information carried by
all kinds of waves to build a reliable velocity macromodel. Our ap-
proach requires however the explicit separation of the diving waves
(or post-critical reflections) and the pre-critical reflections.

The conventional VP–ρ parametrization of the subsurface favours
a broad-band reconstruction of the VP parameter, but the mitigation

of the cross-talks between VP and ρ is challenging from reflected
waves. In contrast, the VP–IP parametrization leads to a more natural
uncoupling between the two parameter classes, which is consistent
with the scale separation between the velocity model and the re-
flectivity underlying RWI and JFWI. It becomes therefore natural
to combine within an iterative workflow the velocity model build-
ing performed by JFWI and the impedance imaging performed by
conventional FWI of reflected waves (IpWI). As the impedance
model needs to be updated according to the velocity updates, JFWI
and IpWI are performed in an alternate way leading to the cycle
workflow.

For more efficient implementations of the cycle workflow, one
possibility is to reduce the iteration number of the IP inversion.
Although the amplitudes of the imaged reflectivity will be incom-
pletely estimated, the kinematics of the data can be retrieved to
reconstruct a reliable VP background model. As soon as the kine-
matic attributes of the data are matched, amplitudes can be further
used to build more accurate reflectivity images.

Having respectively built the low-part and the high-part of the
VP and IP spectra, it is natural to wonder whether imaging a broad
spectrum of the subsurface is possible. Starting from the velocity
macromodel built by JFWI, a broad-band velocity model can be ten-
tatively imaged by conventional FWI using the VP–ρ parametriza-
tion. The quality of the reconstructed velocity model shows that the
low-to-intermediate wavenumber components of the JFWI model
are accurate enough to successfully image the subsurface from re-
flected waves by FWI. In this experiment, only the VP parameter
is updated keeping the density fixed to its original value. There-
fore, this VP model is prone to contain imprints from VP–ρ cross-
talks. These cross-talks probably manifest by the overestimation
and/or underestimation of the reconstructed velocities. To tackle
this kind of cross-talks, multiparameter inversions which involves
the Hessian operator should be considered. Depending on the com-
putational facilities, L-BFGS (Nocedal 1980) or Truncated Newton
(Métivier et al. 2013) methods could be considered to introduce the
Hessian operator.

On the other hand, imaging low-wavenumber part of the IP

spectrum could be more difficult, as neither VP–ρ nor VP–IP
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parametrization can provide low-wavenumber sensitivity to the IP

parameter (cross-talks arise in the transmission regimes for the ρ–IP

parametrization). In this case, we have to rely on empirical para-
metric relations such as the Gardner relation. From this kind of
relation, we could rebuild the initial IP in each cycle to translate
low wavenumbers from VP to IP, or set a trust region to bound the
searching area of the IP inversion.

We also look forward to the applications of JFWI to real data sets
such as the real Valhall one. The cycle-skipping issue would appear
and could hinder the local search method to reach the global mini-
mum. Therefore, more robust misfit definitions would be required.
Besides, how the cycle inversion scheme is affected by the elastic
information of the data should be studied. For example, we fore-
see that the misinterpretation of elastic wavefields as acoustic ones
would generate reflection residuals due to inaccurate amplitudes.
The inversion of these residuals by JFWI would generate some ar-
tificial velocity perturbations even if the initial VP model is correct.
Accounting for density to absorb the elastic effects is an option,
although this inevitably questions the use of the VP–IP parametriza-
tion during JFWI (Borisov et al. 2014; Plessix et al. 2014; Plessix
& Solano 2015). Another possible strategy is to correct the acoustic
wavefields for the elastic effects by using artificial source terms
(Chapman et al. 2014; Hobro et al. 2014). A last-but-not-least pos-
sibility could be to rely on the kinematic-associated misfit functions
such as the ones based on cross-correlation (van Leeuwen & Mulder
2010), deconvolution (Luo & Sava 2011; Warner & Guasch 2014),
instantaneous phase (Fichtner et al. 2008; Bozdag et al. 2011), or
dynamic warping (Hale 2013). Extensions to 3-D geometry could
be performed, but the repetition of the IP inversion inside the cycle
workflow would be a computational obstacle. One possible solution
is to build the reflectivity in the pseudo-time domain instead of the
depth domain, by which reflection phases are always matched in
short offsets (Plessix 2013; Wang et al. 2015).
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A P P E N D I X A : D E R I VAT I O N O F
G R A D I E N T S T H RO U G H L A G R A N G I A N
F O R M U L AT I O N

Although we perform full waveform inversion in the time domain,
we shall derive the gradient formulations in the frequency do-
main for the sake of compactness. The Lagrangian quantities of
FWI, RWI, FWI with reflectivity (denoted by FWI+reflectivity in
Fig. 2(d), here FWI2 for short), and JFWI can be expressed with
common notations [see Plessix 2006 for a review of adjoint-state
method]:

L = Misfit function + �〈a|First constraint〉
+�〈b|Second constraint〉, (A1)

where a and b denote the adjoint-state variables and �〈 · | · 〉
denotes the real part of the inner product. The specific expressions
of other notations are listed in Table A1. The physical meaning
of u0 and δu are the background and scattered components of the
modelled wavefield, respectively. Starting from the smooth initial
model, the scattered field is not generated during the first iteration
of FWI, therefore δu = 0 and only the first constraint is required.
The operator B denotes the modelling operator, s the source term
and R the real-valued sampling operator that extracts the calculated
data from the modelled field.

The expression of the first constraint is derived from the forward
problem equation [i.e. B(m)u = s] in m or m0 to constrain u0. Sim-
ilarly, the expression of the second constraint is from the equation
B(m + �m)(u + δu) = s = B(m)u to constrain δu. The source term
−�Bu0 with �B = B(m0 + δm) − B(m0) emits the scattered field
when the background field u0 hits local diffractors. Since the mod-
elling operator B(m0 + δm) depends on δm, high-order scattering
effects are accounted for in δu.

Setting the derivatives of eq. (A1) with respect to the state vari-
ables to zero gives the adjoint-state equations, listed in Table A2,
where �d∗ denotes the conjugate of the data residual, T the trans-
pose operation and † the adjoint operation. In the first column, �d∗

represents the data residuals at the receiver positions, reversed in
time, augmented with zeroes in the subsurface model by the pro-
longation operator R T, and used as virtual sources to produce the
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Table A1. Specific expressions of the Lagrangian terms for each formulation.

Misfit function State variable(s) First constraint Second constraint

FWI 0.5‖W(dobs − Ru)‖2 u0 B(m)u0 − s –

RWI 0.5‖W r (drefl
obs − Rδu)‖2 u0 and δu B(m0)u0 − s B(m0 + δm)δu + �Bu0

FWI2 0.5‖W d (ddiv
obs − Ru0) u0 and δu B(m0)u0 − s B(m0 + δm)δu + �Bu0

+W r (drefl
obs − Rδu)‖2

JFWI 0.5‖W d (ddiv
obs − Ru0)‖2 u0 and δu B(m0)u0 − s B(m0 + δm)δu + �Bu0

+0.5‖W r (drefl
obs − Rδu)‖2

Table A2. Adjoint-state equations for each formulation.

∂δuL = 0 gives ∂u0L = 0 gives

FWI – B(m)†a = −R TW TW�d∗

RWI B(m0 + δm)†b = B(m0)†a = −�B†b

−R TW rTW r�d refl∗

FWI2 B(m0 + δm)†b = B(m0)†a =
−R TW rT(W d�d div∗ + W r�d refl∗) −�B†b − R TW dT(W d�d div∗ + W r�d refl∗)

JFWI B(m0 + δm)†b = B(m0)†a =
−R TW rTW r�d refl∗ −�B†b − R TW dTW d�d div∗

Table A3. Expressions of a and b for each
formulation.

b a

FWI – W 2(λd
0 + λr

0)

RWI W r2(λr
0 + δλr ) W r2δλr

FWI2 W rd (λd
0 + δλd ) W d2λd

0 + W rdδλd

+W r2(λr
0 + δλr ) +W dr λr

0 + W r2δλr

JFWI W r2(λr
0 + δλr ) W d2λd

0 + W r2δλr

adjoint field b. In the second column, the other adjoint quantity
a is emitted by the residual source at receiver positions or by the
secondary sources located at diffractor positions δm. The adjoint
propagator B† indicates that the computation of the adjoint quanti-
ties can be implemented by modifying the forward modelling code
without much effort, and the cost to compute one adjoint quantity
is the same as the cost of one forward modelling computation.

Analysis of these equations allows us to give a more physical
interpretation of the adjoint fields a and b, listed in Table A3, where
λd

0 denotes the background adjoint field from the diving wave resid-
uals, δλd the scattered adjoint field from the diving wave residuals,
λr

0 the background adjoint field from the reflected wave residuals,
and δλr the scattered adjoint field from the reflected wave residu-
als. W 2 is the short-hand for W TW, and similarly W d2 for W dTW d,
W r2 for W rTW r, W dr for W dTW r and W rd for W rTW d. Instead of
computing the adjoint quantities a and b, we actually compute the
adjoint fields λ’s because their source terms are easier to be built:
the evaluation of the operator �B is not required and only the data
residuals are computed.

In the adjoint-state method, the gradient is found by taking the
derivative of eq. (A1) with respect to m or m0. Inserting the respec-
tive expressions of a, b, we find that

∇CFW I = (
λd

0 + λr
0

)†
W 2 ∂ B(m)

∂m
u0, (A2)

∇CRW I = δλr† W r2 ∂ B(m0 + δm)

∂m0
u0 + λ

r†
0 W r2 ∂ B(m0 + δm)

∂m0
δu

(A3)

+ δλr† W r2 ∂ B(m0 + δm)

∂m0
δu (A4)

+ λ
r†
0 W r2 ∂�B

∂m0
u0, (A5)

∇CFW I 2 =
[
λ

d†
0 W d2 + λ

r†
0 W rd

] ∂ B(m0)

∂m0
u0 (A6)

+ [
δλd† W dr + δλr† W r2

] ∂ B(m0 + δm)

∂m0
u0 (A7)

+ [
(λd

0 + δλd )† W dr + (λr
0 + δλr )† W r2

] ∂ B(m0 + δm)

∂m0
δu (A8)

+
[
λ

d†
0 W dr + λ

r†
0 W r2

] ∂�B

∂m0
u0, (A9)

∇CJ FW I = λ
d†
0 W d2 ∂ B(m0)

∂m0
u0 + δλr† W r2 ∂ B(m0 + δm)

∂m0
u0

(A10)

+ λ
r†
0 W r2 ∂ B(m0 + δm)

∂m0
δu + δλr† W r2 ∂ B(m0 + δm)

∂m0
δu (A11)

+ λ
r†
0 W r2 ∂�B

∂m0
u0. (A12)

Apart from the fact that they are formulated in the frequency do-
main, these gradients expressions are the exact forms of the compact
ones provided in eqs (3), (5) and (7), respectively. For FWI2, the
gradient expression is not given but illustrated in Fig. 3(d).

The terms associated with ∂�B/∂m0 have non-zero values only
at reflector positions (where δm differs from 0). Regularization of
the inverse problem helps suppress these unwanted contributions
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because they have high-wavenumber contents. Therefore, the last
terms of RWI, FWI2 and JFWI gradients (A5), (A9) and (A12) can
be neglected. Nonetheless, the workflow proposed to evaluate the
JFWI gradient (Algorithm 1) provides the exact expressions. In the
frequency domain, G1 and G2 are given by:

G1 = (
λr

0 + δλr
)†

W r2 ∂ B(m0 + δm)

∂m0
(u0 + δu), (A13)

G2 = λ
d†
0 W d2 ∂ B(m0)

∂m0
u0 − λ

r†
0 W r2 ∂ B(m0)

∂m0
u0. (A14)

One can verify that adding G2 to G1 results in the same expression
as (A10) to (A12).

Another approximation can be made on eqs (A6)–(A9). Terms
representing interferences of δλd and u0, λd

0 and δu as well as δλd

and δu can be discarded simply because these interferences happen
to high-order scattered fields, giving negligible contribution to the
gradient (e.g. around 2 per cent of the total energy in the Valhall
case).

A P P E N D I X B : H I G H - O R D E R
S C AT T E R I N G E F F E C T

Formulations of the high-order migration isochrones can be the-
oretically deduced from expressions (A10) to (A12). Taking the
two-reflector case (Fig. 4a) as an example, the scattered compo-
nent of the adjoint field can be decomposed as infinite series in an
increasing order:⎧⎨
⎩

δλr1 = δλr1
1 + δλr1

2 + δλr1
1,2 + . . . ,

δλr2 = δλr2
1 + δλr2

2 + δλr2
1,2 + . . . ,

where r1 and r2 respectively indicate the early and late reflection
phases that provide the adjoint sources. Numbers in the subscript
indicate the reflectors at which the scattering takes place. 1: scatter-
ing at the shallow reflector; 2: scattering at the deep reflector; 1, 2:
successive scatterings at the shallow and deep reflectors. Similarly,

the scattered component of the incident field can be decomposed
using the expression δu = δu1 + δu2 + δu1, 2 + . . . . Inserting these
decompositions into expressions (A10) to (A12), omitting small-
amplitude terms and switching to the time domain, the gradient
turns out to be

∇CJ FW I = u0 � λd
0 (A) (B1)

+u0 � δλr1
1 (B) + δu1 � λr1

0 (C) + δu1 � δλr1
1 (D) (B2)

+u0 � δλr2
2 (E) + u0 � δλr2

1,2(E) + δu2 � λr2
0 (F) + δu1,2 � λr2

0 (F)

(B3)

+u0 � δλr2
1 (G) + δu1 � λr2

0 (H) + δu1 � δλr2
1 (I, J) (B4)

+δu2 � δλr2
2 (K) + δu1,2 � δλr2

2 (K) + δu2 � δλr2
1,2(K) (B5)

+δu1,2 � δλr2
1,2(K). (B6)

Each term represents one or two Fresnel zones labelled by the
capital letters in parentheses. They are shown in Fig. B1. Zone A is
the classical first-Fresnel zone wave path generated by direct/diving
waves (Fig. B1a). Zones B and C are the RWI wave paths associ-
ated with the first reflection, whereas Zone D is a high wavenumber
isochrone located near the shallow reflector (Fig. B1b). The size
of Zone D decreases as higher frequencies are used. The late re-
flection phase gives rise to other zones E to K (Fig. B1c). Zones
E and F are the RWI wave paths associated with the second re-
flector. Zones I, J, G and H are higher-order migration isochrones.
In migration imaging, these isochrones are conventionally consid-
ered as migration artefacts, suppressed by destructive interference
from different source–receiver couples. Like Zone D, Zone K is
located near the deep reflector position and shrinks with higher
frequencies.

Figure B1. Decomposed JFWI gradient in the two-reflector case, components associated to (a) direct/diving wave, (b) early reflection phase denoted by r1,
and (c) late reflection phase denoted by r2. Fresnel zones A–K are represented by correlation terms in eqs (B1)–(B6). Solid and dashed arrows denote the ray
paths followed by the modelled and adjoint fields, respectively. Blue paths are useful for low-wavenumber imaging unlike the red ones.
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