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Abstract

The present paper addresses the important issue of monitoring the operating state of the Polymer Electrolyte Mem-
brane Fuel Cell systems. The monitoring system takes a model based approach. Its originality lies in adopting a fuel
cell fractional order impedance model which permits to provide a better insight into the fuel cell physical phenomena
without increasing the number of parameters. This article first validates experimentally the accuracy of the suggested
model, using a frequency identification method carried out by nonlinear optimization using single fuel cell experimental
impedance spectroscopy data. In a second phase, time series identification is achieved using a least square method
specifically designed for fractional order models. The latter method is first verified on registered data which represents
a basic tool for off-line monitoring. Subsequently it is refined as a recursive tool permitting an on-line monitoring; it is
validated on laboratory test bench.
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1. Introduction

Electric vehicle (EV) is an emerging and growing mar-
ket projects gradually emerge and fuel cell (FC) technol-
ogy may boost the EV industry providing ”zero emission”
long-range vehicles and fast recharging ability. Indeed, in5

comparison with batteries, power and energy are indepen-
dent:independent: the vehicle range is linked to the hy-
drogen reservoir which takes few minutes to fill while the
onboard available power is dependent on the FC size. Con-
sequently FC represents an attractive opportunity for the10

future development of EV since hydrogen allows a much
larger cruising range than battery and convenient recharge.
In this respect Polymer Electrolyte Membrane (PEM) FC
systems operate at low temperature and high power den-
sity and are ideal candidates for this application, which re-15

sults incaracterizedcharacterized by heavy environmental
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constraints with intermittent and highly fluctuating oper-
ation stop/start conditions They represent an attractive
opportunity for the future development of electrical ve-
hicles since hydrogen allows a much larger cruising range20

than battery and convenient recharge. Nevertheless, much
remains to be done to overcome some of PEMFC techno-
logical obstacles which usually appear for automotive ap-
plications [1]. Water management (to avoid Fflooding and
dehydrationrying) [2], [3], [4], [5], [6], [7], [8] is one of the25

most critical points to solve enhance. The principal means
by which this will be achieved are both design optimization
[3], [6], [9] and health monitoring diagnosis and prognos-
tics [10], [11], [12], [13], [7] in order for the control system
to maintain normal FC operation. This is where the fuel30

cells PEMFC state operating real-time monitoring inter-
venes in order to establish a system diagnosis . Diagnosis
methods [2], [12], [13], [14], can be applied in real time,
coupled with a FC control system (On Board diagnosis)
or during regular planned maintenance.35

Diagnosis proposed approaches may include signal pro-
cessing techniques, experiential learning methods and
model based procedures [xx on peut mme se citer!]. The
latter has the advantage of providing a tool easier to adapt
from one PEMFC design to another. But the main issues40
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are to provide a reliable model [15] and to develop specific
parameters identification tools. The aim of this paper is
to propose accurate but compact model and robust iden-
tification tools which can be used for real time system
diagnosis.45

The aim of this paper is to propose a more compact and
accurate model and robust identification tools which can
be used for real time system diagnosis

This method uses, as far as possible, the least number
of sensors, by limiting the PEMFC state monitoring to50

the use of available data of the system such as the current
and voltage. To this end, it is relevant to employ electric
model built using the physical equations governing the FC
process. Fontes [16], [17] proposed a FC large signal non-
linear model represented by an electrical circuit using volt-55

age controlled current sources, reflecting the causality of
phenomena. This model is commonly linearized to deduce
an electrical impedance model. For improving Membrane
Electrode Assembly (MEA) water management, N. Fou-
quet [11] diagnoses the FC operating state based on the60

sensitivity of certain parameters to the MEA drying or
flooding. He uses an equivalent electrical circuit model
based on the Randles model. He also changes the double
layer capacitor with Constant Phase Element (CPE). Al-
ternatively I. Sadli [18], [19], [20] models the FC behavior65

by an impedance, substituting an equivalent transmission
line with RC distributed cells for the classic Randles cir-
cuit. In this way he can take into account the critical AME
convection-diffusion phenomenon in the electrochemical
impedance. To interpret accurately it he needs to use a70

large number of individual RC cells. But partial differen-
tial equations correctly describe the convection-diffusion
phenomenon. These latter leads to fractional order de-
rives. That is the reason why Cao et al [21] proposes a
fractional order model of solid oxide FC. The current work75

is also based on a model such as this. The key idea is to re-
formulate it so as to obtain a compact model characterized
by a limited number of parameters. Experimental results
conducted on a laboratory test bench will suggest that the
proposed model reproduces reality very well. Furthermore80

a detailed parameter analysis will permit to reduce the
number of parameters to follow.

The analysis of the FC impedance is an interesting so-
lution for identifying failures through their signatures de-
formation of impedance spectrum [11], [22], [? ]. One of85

the most used methods for electrochemical system char-
acterization and fuel cell diagnosis is the impedance spec-
troscopy [23], [11], [9], [22]

For instance, Kurz et al. [24] distinguish between flood-
ing and drying modes using the analysis of two specific fre-90

quencies, one low and one high. But, since based on a har-
monic perturbation, frequency domain analysis remains
time consuming especially in the case of FC where the min-
imum frequency value is in the range of 100 mHz. That
is the reason why it is crucial to develop alternative AC95

impedance technique identification. This article intends to
create a time domain rapid method able to monitor in real

time the FC model parameters as a primary tool for di-
agnosing purpose and control modifications. For this pur-
pose, the parameters are identified by least square method100

adapted to the explicit fractional order FC model. In or-
der to enable on-line investigations, the latter is adapted
in a recursive form. Both time-series identification tech-
niques represent basic tools for off-line and online diag-
nosis. They are experimented using a Pseudo Random105

Binary Sequence (PRBS) small current perturbation and
measuring the FC voltage response which can be techni-
cally possible on a fuel cell working in a car.

Identification results of the different methods are pre-
sented, analyzed and discussed. These methods estimate110

the parameters describing the impedance spectrum evolu-
tion reflecting the fuel cell internal state. They represent
basic tools for off-line and online diagnosis. Fractional or-
der model identification results using these methods will
judge the accuracy of the model to describe the fuel cell115

behavior. The structure of the present In this paper, is
as follows. After this brief introduction setting the back-
ground and the context of the work, Section II discusses
a fuel cell FC impedance model and section III reformu-
lates the non-linear model to obtain an explicit fractional120

order transfer function. An analysis of the parameters
sensitivity to flooding and drying will also be presented.
Section IIIV presents the experimental setup used in the
following section Part IV to identify the PEMFC model.
In section IV an identification method based on frequency125

measurements is presented to validate the model. The re-
sults obtained are compared with spectrum measurements
obtained experimentally, concluding in the sufficient pre-
cision and accuracy about the accuracy of the presented
model. Section VI presents a second identification method130

of the fractional order model using time-series data. This
method is derived from the classical least square and recur-
sive least square methods and reformulated to be applied
to the case of fractional order systems. Experimental re-
sults will be presented. Finally, the last section presents135

some conclusions and perspectives.

2. introduction

3. PEMFC fractional order model

3.1. PEMFC impedance model

Over the years, many FC models have been developed140

both to better understand the phenomena inside a FC sys-
tem and to predict them [25], [26]. Our goal is to deter-
mine a PEMFC model allowing to implement a real-time
FC monitoring with to the aim of PEMFC reversible fail-
ures diagnosis, such as water flooding or drying. In this145

context, a trade-off between accuracy and time execution
has to be found. In the scientific literature, many stud-
ies use classical electrical impedance models to represent
the FC system. For instance, Fontes [16], [17]studies in-
teractions between FC and power converters based on an150

electrical impedance model. Similarly Fouquet [11] and
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Phlippoteau [22] deal with the diagnosis of FC by using
two different electrical impedance models, on dedicated to
small magnitude signal and the other to large magnitude
signal [27]. In [28] and [29] Hinaje and al. use electri-155

cal analogy to describe mass and charge transport in FC
and build a model well adapted to describe FC interact-
ing with its electric load. Finally, Sadli [19], [19], [20]
refines the PEMFC impedance model as a as a constants
distributed transmission line so as to take into account160

gases diffusion inside the FC. The limitation of the meth-
ods described above is that they cannot reproduce some
behaviors of the FC impedance spectrum, in particular
with respect to the 45◦slope that appears around certain
frequencies as noted in [20], [22]and [30]. As mentioned165

before [19], to simulate reality much better, it is possi-
ble to add a large number of RC circuits, thus increasing
the model order and therefore the number of parameters
to identify as well as the model calculation time. Alter-
natively, recent works have suggested PEMFC modelling170

based on Fractional Order Models (FOM). This approach
enables to reproduce more precisely the 45◦slope while be-
ing more compact than the previous models [30], [31], [21].
Following the analysis, the latter method is favored in this
study. The PEMFC is modelled by a FOM. Then a finite175

fractional order transfer function is obtained approximat-
ing the diffusion impedance by Taylor series. This tech-
nique permits us to implement an innovative identification
method easy to execute in real time and thus well-suited
to the final on-line diagnosis goal. Figure 1 gives a ba-180

sic schematic of a PEMFC. It is fabricated by stacking
bipolar plates, Gas Diffusion Layer (GDL), Active Layer
(AL) and a polymer proton exchange membrane. On both
sides, gases flows and diffuses through GDL and AL. the
two electrochemical reactions take place at the inter-phase185

between AL and membrane.

Figure 1: Fuel cell

From a user’s perspective, a FC is modelled by the volt-
age at its terminals which is the sum of its theoretical volt-
age and the diffusion, activation and ohmic voltage drops.

This voltage is given by:

Vcell = Uth − ηact − |ηdiff | −RmI (1)

First, the theoretical potential of the FC is a function of
H2/O2 Gibbs free energy which depends on the temper-
ature and the partial pressures of oxygen in the cathode
side and hydrogen in the anode side. It is given by the
following relation:

Uth = U0 +
RT

nF
log(PH2

(PO2
)0.5) (2)

Second, the kinetics of the redox reaction causes activation
phenomena occurring in the active layers (AL). These phe-
nomena result in losses represented by the Tafel law:

ηact = − RT

αnF
log(

I

I0
) (3)

The linearization of equation (3) around a steady state
operating current leads to describe activation phenomena
losses using a resistance given by:

Rt =
∂ |nact|
∂Iact

(4)

Third, ohmic phenomena are mainly due to the proton
conduction in the membrane, depending on the rate of
hydration and temperature. The FC ohmic resistance is
represented by a resistor

Rm =
l

Sσ(T, λm)
(5)

Where S is the membrane area and σ its protonic conduc-
tivity. This latter strongly depends on temperature T and
membrane hydration rate λm as illustrated by the follow-
ing relations [32]

σ = (0, 005139λm − 0.00326)e1268(
1

303−
1
T ) (6)

The membrane hydration rate is given by [25] as the ratio
between the number of water molecules and the number
of sulphonic sites of the polymer:

λm =
nH2O

nSO−
3

(7)

Where nH2O is the number of water molecules in the mem-
brane and nSO−

3
is the number of sulphonic sites of the

polymer. The gases flow through the channels of the bipo-
lar plates by convection as depicted in fig.1. Once at the
GDL, they diffuse to the AL and reach the reactive sites.
This article assumes that the diffusion is uniform in the
both layers, GDL and AL, and the consumption rate of
gas is uniform over the entire active surface. The propa-
gation direction is defined from the GDL to the membrane.
Assuming that the species diffuses in a biphasic medium
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of liquid water and vapor and defining a diffusion coeffi-
cient to identify experimentally, most studies describe the
diffusion using Fick’s second law:

∂Ci(x, t)

∂t
= Di

∂2Ci(x, t)

∂x2
(8)

Solving this diffusion equation in the Laplace domain190

defines an impedance of concentration-diffusion known as
”Warburg impedance” [17] given by:

ZW = Rd
tanh(

√
τs)

(
√
τs)

(9)

Based on equations 2, 3, 4, 8, eaquation 1 can be rep-
resented by Fig.2. Indeed, in this model, the activation
phenomena losses and the membrane resistivity are de-195

scribed by two resistances Rt and Rm respectively, while
the diffusion phenomena losses 8 are modeled by Warburg
impedance ZW . Finally the accumulation of protons and
electrons at both cathode and anode membrane/AL inter-
faces is modelled by the so-called double layer capacitor.200

Figure 2: PEMFC equivalent electrical circuit model (Randles)

In order to obtain an explicit I-V transfer function, the
latter model will be refined.

4. PEMFC explicit fractional order impedance
model

With the aim of on-line monitoring, a compact and sim-205

ple mathematical model has to be exhibited. In particular,
the Warburg impedance requires a specific attention. As
it is a function of a hyperbolic tangent of a non-integer or-
der, it can be approximated using Taylor series to deduce
an explicit transfer function model. Indeed, Iftikhar [30]210

and Sailler [31] proposed to approximate [33] the Warburg
impedance by:

ZW = R
tanh (

√
sτ)√

sτ
= R

sinh (
√
sτ)

cosh (
√
sτ)
· 1√

sτ
∼=

R√
1 + sτ

(10)

The square root will be approximated in this new rela-
tion by Taylor series to obtain distinct and explicit orders
and deduce an explicit fractional order transfer function215

model. Considering the first three terms of the expansion,
the root square in 10 can be written as :

√
1 + x ∼=

√
x+

√
1
x

2
− 1

8

(
1

x

) 3
2

+O(x3) (11)

Figure 3 shows the error between the precise expression
of Warburg impedance 9 and its final approximation 10. It
shows that it is very accurate except at very low frequency.220

Figure 3: error of Warburg impedance approximation

From figure 2, the transfer function of the PEMFC
impedance can be given by:

H(s) =
1

1
Rt+Zw

+ sCdc
+Rmem (12)

Consequently, based on 10 and 11, the suggested FC
transfer function exhibits explicit orders:

H(s) =
b0 + b1s+ b2s

3
2 + b3s

2 + b4s
5
2 + b5s

3

1 + a1s+ a2s2 + a3s
5
2 + a4s3

(13)

H(s) is characterized by only ten coefficients ai and bj225

which are obviously function of the physical parameters.

ai = fi(R,Rt, Rmem, CDC , τ); i = 0, ..., 4.
bj = gj(R,Rt, Rmem, CDC , τ); j = 0, ..., 5.

(14)

In sum, this first part permitted to develop a PEMFC
model closely based on the system structure and its phys-
ical phenomena. Hence, it can assist in understanding the
FC evolutions. More specifically, as shown in tab.1, the230

models parameters change regarding water flooded or dry
operating conditions. For these very important PEMFC
defaults, the most relevant parameters are a3, b2 and b4.
Indeed, these three parameters increase significantly in the
water flooded case, and decrease in the dry circumstances.235

They can be considered appropriate indicators of the criti-
cal track defects. That is why the study objective is to de-
velop identification methods able to estimate the model’s
parameters and diagnose the operating state of the FC, re-
ferring to the parameters evolution. However for this pur-240

pose and greater certainty, experimental data are needed.
That is why a test bench was developed and used.
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Figure 4: Explicit fractional order parameters evolution in dry and
water flooded operating conditions

5. Experimental setup

Experimental measurements of the impedance spectrum
are performed on a 100 cm2 active area single FC (ZSW,245

Germany) working with an open anode. It is fed with
pure hydrogen at the anode inlet while humidified ambi-
ent air is supplied at the cathode side. The test bench
is managed by a supervision algorithm implemented in a
dSpace control board. Among other things, it allows con-250

trol of it permits to control the FC humidity rate by both
monitoring FC cooling temperature (TFC) and humidifier
(TAH). The chemical energy transformed by the cell into
electrical energy is absorbed by an active load (ZS1806
made by Hoecherland Hackl). Figure 4 and 5 shows a pic-255

ture and a block diagram of the test bench developed at
the GeePs. Finally the electronic load can be monitored
by Fuel Cell Impedance Analyzer FC350 designed by the
Gamry Company. It allows to impose a static steady cur-
rent and superimpose a sinusoidal current signal from 10260

mHz to 300 kHz. It also enables electric (VFC, IFC) data
acquisition and processes these signals to calculate the FC
impedance. This latter technique is called the Electro-
chemical Impedance Spectroscopy (EIS). EIS is performed
over a frequency range of 0.1 Hz to 1 kHz around several265

operating points: from 5 A to 40 A with 5 A increments.
Indeed, the FC impedance spectrum changes with the con-
sidered operating point.

Figure 5: Test bench picture at GeePs

For instance, figure 7 shows the Nyquist diagram of
the PEMFC impedance spectrum for an EIS conducted270

Figure 6: Block diagram of the test bench

around a polarization current of 15A. On this plot, the
FC impedance moves from the right side to the left side
as far as the frequency increases. At high frequency, a
45◦slope can be noticed as a typical pattern of diffusion
mechanisms275

Figure 7: : PEMFC experimental impedance spectroscopy I0 = 15A

6. Fractional order model validation

Before developing specific methods, our first attempt
is to assess if the suggested compact model is representing
the FC accurately. To do so it is necessary to obtain its ten
parameters from data. In this section, the PEMFC FOM is280

identified using a frequential identification method based
on genetic algorithms: This method identify the model
from the PEMFC impedance spectrum obtained using EIS
measurements. A first identification by genetic algorithm
is initiated to determine a suitable starting point for the285

optimization algorithm. Which avoid the nonlinear opti-
mization from starting the optimization randomly. The
frequential methods aims here to validate the proposed
fractional order model.

6.1. Frequential identification method290

This section discusses the parametric identification us-
ing a multidimensional unconstrained nonlinear minimiza-
tion. This approach is based on the minimization of
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a quadratic criterion which represents the difference be-
tween each real and imaginary part of the experimental295

impedance and the identified impedance.

J = 0.5(
∑

(<Zexp −<Zident
)
2

+
∑

(=Zexp −=Zident
)
2
)

1
2

(15)

This method is sensitive to its initial conditions. For this
purpose, Phlippoteau [22] proposes to initialize the iden-
tification algorithm using known parameters values given
in the literature or deduced from the impedance spectrum300

geometry in the Nyquist plane. To go even farther in this
approach, the suggested identification method relies on a
two-step process: using a genetic based algorithm first
and second operating the nonlinear optimization initial-
ized with the first result. In this way nonlinear optimiza-305

tion algorithm, which will refine the genetics algorithm
results while the genetic algorithm is used to prevent the
optimization algorithm to stop in a local minimum point.
Finally, the identification algorithm procedure is presented
by figure 8.310

Figure 8: : Genetic algorithm and nonlinear optimization flowchart

6.2. Identification results

This method has been tested using impedance spec-
troscopy data made on a single FC using the test bench
described previously. Figure 9 presents the identifica-
tion results using only the genetic algorithms. Figure 10315

presents the identification result using only the nonlinear
optimization initialized with zero. Finally, figures 11 and

12 present the identification results using the optimiza-
tion method described in this paper (genetic algorithm
followed by nonlinear optimization technique) All the fig-320

ures compare the identified impedance model’s spectrum
(red) to the experimental one (blue). The identification re-
sults using the suggested method are much more accurate
than those based either on genetic algorithm or nonlinear
optimization routine. Last but not least, the fractional325

order model presents the advantage to be compact: it de-
scribes accurately the FC behavior using a small number
of parameters. Moreover it represents exactly the 45◦slop
which appears at high frequencies on the impedance di-
agram plotted in Nyquist plan and succeeds in following330

the real FC at low frequency.

Figure 9: : Genetic algorithm results, for an impedance spectroscopy
measured at 10A

Figure 10: : Nonlinear Optimization results initialized with zero, for
an impedance spectroscopy measured at 10A

Figure 11 and 12 show the impedance spectrum shape
change with the operating point. (10A and 35A) Evi-
dently. Indeed, at middle and low frequencies, the volume
of second half circle increases. This is due to the activation335

and diffusion phenomena.
In a nutshell, section V shows that the FOM seems to be

well adapted to describe the FC behavior. Furthermore,
it is characterized by a low number of parameters. This
proposal offers a good compromise between accuracy and340

compactness. To address the FC diagnosis purpose, the
issue is to find a viable solution able to extract in short
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Figure 11: : Frequential identification results using impedance spec-
troscopy data measured at 10A

Figure 12: : Identification results using impedance spectroscopy data
measured at 35A

time the aforementioned parameters. It is contemplated
in the next section.

7. Time series parameters identification345

A diagnosis method can be built by monitoring the evo-
lution of the model parameters. Indeed, the parameters
values change with the operating conditions. Using ex-
perimental data, the model parameters can be identified
and compared to their reference values, in nominal, dry350

and flooding cases. For online diagnosis in embedded ap-
plications, electrochemical impedance spectroscopy (EIS)
is not well adapted to characterize the fuel cell. For on-
line FC state monitoring, EIS is not well adapted. In-
deed, it results in a slow process scanning harmonic sig-355

nals on a wide frequency range and moreover relates on a
steady state assumption which is clearly unrealistic. Nev-
ertheless,Alternatively temporal data series can be used
to identify the model parameters. The vehicle load and.
As a matter of fact, in many driving profiles, the de-360

manded power may present a sufficiently high spectral
content which can be enough allows continuously updating
extract FC fractional model parameters convenient using
current/voltage data for this identification. Conversely, in
steady state mode, a small amplitude PRBS current of365

small amplitude can be superimposed to excite the system
and extract dynamic voltage response. This method will
be tested in this section.

In this section, the FOM will be reformulated to be
adapted to classical identification methods as the least370

square method. The present section is broken down in
two parts. For offline diagnosis purpose, the model param-
eters will be first identified using a least square method.
Later,Then, for online diagnosis application, a recursive
least square method adapted to FOM will is derived to375

identify the parameters.

7.1. Fractional order least square method for FOM offline
diagnosis purposes

For offline diagnosis, least square method can be used
to find the parameters values. Offline diagnosis can be380

done post-use, in maintenance or retarded, after saving
enough data needed to identify the parameters. Here,
a least square method adapted to FOM is used to iden-
tify the model parameters [34], [35], [36], [37], [38]: This
method uses time-series current and voltage. A PRBS385

is applied at a polarization PEMFC current point. The
PEMFC voltage response is then measured and used to
identify the model’s parameters.

A fractional order model can be described by the equa-
tion [37] :390

L∑
l=0

alD
na1 y(t) =

M∑
m=0

bmD
nbmu(t) (16)

With a0 = 1
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nal , nbm : are real positive numbers, integers or no-
integers (fractions) and supposed known. al, bm : are the
coefficients of the derivative operators supposed unknown.

The discretization of a Fractional Order Derivative395

(FOD) is done using Grunwald’s [37], [36] approximation

[Dx(t)]n =
1

hn

K∑
k=0

(−1)
k

(
n
k

)
x[K − k] (17)

The discretized model obtained with Grunwald formula
can be written as in Eq 18, where the output sample y[K]
is a function of the previous inputs and outputs.

y[K] = −

L∑
l=0

al

h
nal

[
K∑

k=1

(−1)kCk
nal

y[K−k]
]

L∑
l=0

al

h
nal

+

M∑
m=0

bm
hnbm

K∑
k=0

(−1)kCk
nbm

u[K−k]

L∑
l=0

al

h
nal

(18)

This relation presents a non-linearity with respect to400

parameters. To deduce a linear form, a variable change is
used to define a new parameters set (a′0, ..., a

′
L, b
′
0, ..., b

′
M )

where [36]:

a′l =
al
h
nal

L∑
i=0

ai
hnai

; b′m =
bm
h
nbm

L∑
i=0

ai
hnai

(19)

The new model expression is then:

y[K] = −
L∑
l=0

a′lYl[K] +

M∑
m=0

b′mUm[K] (20)

With,405

Yl[K] =

K∑
k=1

(−1)
k
Cknal

y[K − k], Um[K] =

K∑
k=0

(−1)
k
Cknbm

u[K − k]

(21)

0 ≤ l ≤ L, 0 ≤ m ≤M (22)

Equation 21 is developed as :

ŷ[K, θ̂r] = −â′0Y0[K]−
L∑
l=1

â′lYl[K]+

M∑
m=0

b̂′mUm[K] (23)

Using the constraint
∑L
l=0 a

′
l = 1 permits to eliminate

a′0

ŷ[K, θ̂r] = −

(
1−

L∑
l=1

â′l

)
Y0[K]−

L∑
l=1

â′lYl[K]+

M∑
m=0

b̂′mUm[K]

(24)

The model output is hence linearly expressed with re-
spect to the vector of new parameters:410

ŷ[K, θ̂r] = −Y0[K]−
L∑
l=1

â′l(Yl[K]−Y0[K]) +

M∑
m=0

b̂′mUm[K]

(25)
For N measurement points between Kh and (K +N)h

linear matrix equation is given by:

Ŷ (θ̂r) = −Y0 + ϕθ̂r (26)

Where φ is composed by −Yi[K] + Y0[K] to −Y1[K +
N ] + Y0[K +N ], i = 1...L and Uj [K] to Uj [K +N ]

The vector of parameters is given by:415

θ̂ropt = (ϕTϕ)−1ϕT (Y + Y0) (27)

Finally initial parameters are computed by reversing the
previous variable change using the following relations [37],
[36] :

A =


(a′1 − 1)h−na1 · · · a′1h

−naL

a′2h
−na1 · · · a′2h

−naL

...
...

...
a′Lh

−na1 · · · (a′L − 1)h−naL

⇒ A∗


a1
a2
...
aL

 =


−a′1h−na0

−a′2h−na0

...
−a′Lh−na0


(28)

bm = b′m

L∑
l=0

alh
nbm−nal (29)

This algorithm was implemented to identify the PEMFC
FOM parameters. The identified model simulation results420

are presented in the next section.

8. Offline identification results

The identification data had been obtained on a signal
cell using using the PEMFC response to a PRBS current
excitation of 1 A around a 7A polarization current. The425

identification results using the previous method experi-
mental results are presented in figure ??. The identified
model reproduces correctly the FC voltage response.

To test the parameters values, identification data had
been simulated using the model identified previously. The430

PEMFC response to a PRBS current excitation of 1 A
around a 7A polarization current had been simulated .
From the parameter evolution given by 4 in the dried and
flooded cas, three models had been simulated to generate
identification data in these cases. The data had been used435

later to identify the parameters in the three cases (nomi-
nal, dry, flooded).

Tab 1 present the comparison between the identified pa-
rameters and the model’s parameters (used to simulate
the identification signal), in the dry, flooded and nominal440

cases. As an example, the parameters a3 are identified
correctly.
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Figure 13: : Identification results using least square method for FOM
and experimental data measured at 7A

With regards to the identification results, it can be con-
cluded that the time-series identification results are a first
step to off-line diagnosis and reinforce the idea that the445

recursive least square method adapted to fractional order
models can be applied for on line diagnosis using the pre-
vious model.

With this method, the parameters can be identified off
line (post-operating) using the experimental data saved450

during the operating period. The identified parameters
can be used to establish an offline diagnosis by compar-
ing their identified values to their references values (in a
nominal, dried and drown operating cases)

9. on line identification for diagnosis purpose :pur-455

pose: MCR

An on line diagnosis method can be build based on re-
cursive identification methods, which identifies the model
parameters online. Recursive least square (RLS) method
can be used [39] to identify the model parameters using460

the model reformulation given previously by the equations
16 to 24.

The equation 24 has the following linear form:

y((k + 1)h) = θtφ(k) (30)

θ is the vector of parameters to be identified and φ(k)
the measurement matrix , such that:465

φ(k) = [−Y1(k), . . . ,−Y5(k), U0(k), . . . , U6(k)] (31)

Table 1: Comparison between the identified parameters and the
model’s parameters

a3 Nominal flooded dry
ModelParameter ? ? ?
IdentifiedParameter ? ? ?

The prediction equation is

ŷ(k + 1) = θ̂tk+1φ(k) (32)

The parameter vector is estimated by minimizing a
quadratic criterion:

θ̂k = arg min
θ

1

k

K∑
k=1

[y(k)− ŷ(k, θ)]
2

(33)

The solution to this problem [39] is given by:

θ̂ (K) =

[
K∑
k=1

φ (k)φT (k)

]−1 K∑
k=1

φ (k) [y(k)− Y0(k)]

(34)
The algorithm of the recursive least square method is470

then implanted using the following relations at each itera-
tion:

θ̂k = θ̂k−1 +
F (k−1)φ(k)(y(k)−[θ̂Tk−1φ(k)−Y0(k)])

1+φT (k)F (k−1)φ(k)

F (k) = F (k − 1)− F (k−1)φ(k)φT (k)F (k−1)
1+φT (k)F (k−1)φ(k)

(35)

The data used to identify the FOM, with the previ-
ous method, are current/voltage temporal series measure-
ments. The control signal is a Pseudo-Random Binary475

Sequence (PRBS) with an amplitude δI = 1(A), applied
around a current of polarization I0 = 7 [A].

The parameters identification using this method and
time series experimental data permit to mimic correctly
the experimental output voltage for slow and quick vari-480

ations, and enable reproducing correctly the shape of the
impedance spectrum, as shown in fig.14 and 15, respec-
tively.

Figure 14: : online identification validation of the FOM using RLS
method for FOM

The parameters identified using this method are com-
posed by the physical parameters of the PEMFC. The so-485

lution of equations to go back to the FC physical param-
eters (Rd, Cdc, Rt..etc) is not unique. It is therefore not

9



Figure 15: : online identification frequential validation of the FOM
using RLS method for FOM

possible, to find the physical parameters using the param-
eters identified by this method, A diagnosis by monitoring
the evolution of the physical parameters reflecting certain490

phenomena is not possible.
It is nevertheless possible to achieve a sensitivity anal-

ysis of the transfer function parameters to the changes of
operating conditions. It is then possible to perform a diag-
nosis based on the values of the identified transfer function495

parameters, considering as reference their values in a nom-
inal, dry and flooding cases.

10. Conclusion

This paper presented the modeling and identification of
a PEMFC fractional order model in the perspective of the500

PEMFC state monitoring. It presented a new explicit frac-
tional order transfer function model. To identify directly
the impedance spectrum form and validate the presented
model, a frequency identification method had been used
to find the FOM parameters which allow reproducing the505

impedance form. The nonlinear optimization key point
is the initialization of the identification algorithm. The
paper discusses then an initialization strategy which al-
lows finding better results. The frequency identification
results had been compared with experimental impedance510

spectrum which leads to the conclusion that the frac-
tional order model is well adapted to describe a PEMFC
impedance. For on-line diagnosis method, only time-series
measurements can be technically used. The second part
of this paper presented an identification method based on515

time series data. A least square method, adapted to frac-
tional order models, had been implemented. The obtained
results shown a good consistency with PEMFC simulated
voltage response. This method does not use directly the
FC experimental impedance spectrum data, but is tech-520

nically feasible on a FC placed in a car for an on-line
diagnosis goal, unlike an EIS. Time-series identification
by least square method adapted to fractional order gives
good results which suggests that for future on line moni-
toring, recursive least square method is well suited for frac-525

tional order systems. As on-line monitoring methods can
only rely on time-series measurements, these first pieces
of evidence are key-points for the ongoing work. They in-
deed confirm that the FOM mimics well the FC behavior

and with the objective of on-line diagnosis, recursive least530

square adapted to FOM can be an efficient tool to identify
the model’s parameters.
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