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Abstract. Estimating the centroid of a set of time series under time
warp is a major topic for many temporal data mining applications, as
summarization a set of time series, prototype extraction or clustering.
The task is challenging as the estimation of centroid of time series faces
the problem of multiple temporal alignments. This work compares the
major progressive and iterative centroid estimation methods, under the
dynamic time warping, which currently is the most relevant similarity
measure in this context.
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1 Introduction

Time series centroid estimation is a major issue for many temporal data analysis
and mining applications. Estimating the centroid of a set of time series under
time warp however faces the tricky multiple temporal alignment problem [1–4].
Temporal warping alignment of time series has been an active research topic
in many scientific disciplines. To estimate the centroid of two time series under
temporal metrics, as the dynamic time warping [5–7], one standard way is to
embed the time series into a new Euclidean space defined by their temporal
warping alignment. In this space, the centroid can be estimated as the average
of the linked elements. The problem becomes more complex where the number
of time series is more than two, as one needs to determine a multiple alignment
that links simultaneously all the time series on their commonly shared elements.

A first manner to determine a multiple alignment is to search, by dynamic
programming, the optimal path within an N-dimensional grid that crosses the N
time series. The complexity of this approach nevertheless prevents its use, as it
constitutes an NP-complete problem with a complexity of O(TN ) that increases
exponentially with the number of time series N and the time series length T .
A second way, that characterizes progressive approaches, is based on combining
progressively pairs of time series centroids to estimate the global centroid. Such
progressive approaches may su↵er from the error propagation problem through
the set of pairwise centroid combinations. The third approach is iterative. It
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works similarly to the progressive approach but reduces the error propagation
by repeatedly refining the centroid and realigning it to the initial time series.

The main contribution of this work is to present some major progressive and
iterative approaches for time series centroid estimation, prior to present their
characteristics. It also reviews an extensive comparison between the approaches
through public real and synthetic datasets. To the best of our knowledge, such
a comparison has never been conducted before.

The remainder of the paper is organized as follows: In the next section,
di↵erent related progressive and iterative approaches are presented. Section 3
presents the experiments conducted for comparison purposes and discuss the
results obtained. Lastly, Section 4 concludes the paper.

2 Progressive and iterative approaches

The progressive and iterative approaches for time series centroid estimation are
mainly derived from the multiple sequence alignment methods to address the
challenging problem of aligning more than two time series [8–11]. To estimate
the centroid of more than two time series, several heuristic approaches have been
proposed. Here, we review some major progressive and iterative approaches for
time series averaging under the dynamic time warping.

2.1 Progressive approaches

NonLinear Alignment and Averaging Filters (NLAAF)

In the past decades, many averaging methods have been introduced, but only a
few of them have been adapted to time series averaging, clustering and mining.
For instance, Gupta et al. [12], proposed a time series averaging method based
on a tournament scheme, called ”NonLinear Alignment and Averaging Filters

(nlaaf)”. First, pairs of time series are selected randomly, and then aligned
according to the dynamic time warping. That way, (N/2) averaged sequences
are created. The same process is iterated on the centroids estimated, until one
sequence is obtained as a global centroid. In this approach, the averaging method
between two time series is applied (N�1) times, as illustrated in Figure 1, where
c(xi,xj) refers to the estimated centroid of time series xi and xj .

In nlaaf, each element of a centroid is computed as the mean of each linked
elements in the dtw alignment. The main drawback of nlaaf approach lies in
the growth of its resulting length, because each use of averaging method can
almost double the length of the average sequence. As classical datasets comprise
hundreds of time series, with each one including hundreds of data points, simply
storing the resulting average may be impossible. This length problem is moreover
worsened by the complexity of dtw, that grows bi-linearly with the lengths of
the sequences. That is why nlaaf is generally used in conjunction with a process
reducing the length of the average, unfortunately leading to information loss and
unsatisfactory approximation. Additionally, the average strongly depends on the
random selection of sequences and di↵erent choices lead to di↵erent results.
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Fig. 1: Centroid estimation by random pairwise centroid combination.

Prioritized Shape Averaging (PSA)

To avoid the bias induced by random selection, Niennattrakul et al. among
others [8, 16, 17] proposed a framework of shape averaging called ”Prioritized
Shape Averaging (psa)” based on hierarchical clustering. The pairwise time series
centering is guided by the dendrogram obtained through hierarchical clustering
strategy.

The psa uses hierarchical clustering as a way to identify priorities between
time series. In particular, to estimate a global centroid, the set is first clustered
using the agglomerative clustering to get a hierarchical relationship among the
whole time series. The simple or complete linkage is considered in general to
fasten the dendrogram build, where almost the average linkage or centroids are
the best-performed methods. Subsequently, the pairwise time series centroids
are combined respectively to their clustering order in the dendrogram. Each
parent node is averaged in a bottom-up manner using a weighted dtw averaging.
Therefore, the most similar time series are averaged first. Note that the weight
of an averaged sequence is calculated from the number of time series upon which
the averaged sequence is formed. Initially, all time series have the same weight
of one.

Figure 2 describes an example of averaging six sample time series using psa.
According to the dendrogram, first the time series x
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have the weight of three, since the time series sequences x
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and c(x
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3

) have
weight of one and two, respectively. The process goes on till one obtains a global
centroid.

Although this hierarchical averaging method aims to remove the bias induced
by random selection, growth length of the average sequence remains a problem.
Furthermore, local averaging strategies like nlaaf or psa may let an initial
approximation error propagate throughout the averaging process. If averaging
process has to be repeated (e.g., during k-means iterations), the e↵ects may
dramatically alter the quality of the result. This is why a global approach is



Fig. 2: Example of six time series sequence averaging using psa

desirable, where time series would be averaged all together, with no sensitivity
to their order of consideration.

Cross-Word Reference Template (CWRT)

A direct manner to estimate the centroid is proposed in Abdulla et al. [1], where a
dynamic time warping between each time series and a reference one, generally the
time series medoid, is first performed. Each time series is then described in the
representation space defined by the reference medoid by resampling, stretching
and shortening operations, as in Figure 3. Finally the global centroid is computed
by averaging the time-aligned time series across each point. The method is called
”Cross-Words Reference Template (cwrt)”.

x21 x22

x23 x24

x25 x26 x27

x11

x12 x13 x14 x15 x16
x17

x31
x32 x33

x34

x35

x36 x37

Fig. 3: Centroid estimation based on a reference time series. The dtw is performed
between x1, x2 and the reference time series x3 (left). x1 and x2 are embedded in the
space defined by x3 (right) where the centroid is estimated, and ’avg’ is the standard
mean function.

The global estimated centroid has the same length as the medoid, and the
result does not depend on the order in which time series are processed.



2.2 Iterative approaches

Dtw Barycenter Averaging (DBA)

Petitjean et al. [3] proposed a global averaging method, called ”Dtw Barycenter

Averaging (dba)”. The method consists in iteratively refining an initially average
sequence, in order to minimize its distance to the set of time series. The aim is
to minimize the sum of squared dtw distances from the average sequence to the
set of time series. Technically, dba works in two steps for each refinement. First,
computing dtw between each time series and the temporary average sequence,
and secondly, updating each element of the average sequence with the barycenter
of the elements aligned to it during the first step. in a nutshell, the dba under
temporal warping is a global approach that can average a set of time series all
together. The global estimated centroid has the same length as the initial average
sequence, and like cwrt, the result is not depending on the order in which time
series are processed. However the time complexity of dba is smaller than nlaaf

and psa[3], but the time complexity problem remains.

Weighted DTW Averaging (WDTW)

To circumvent the tricky multiple temporal alignments and the above mentioned
limitations, we proposed a tractable and fast centroid estimation that captures
both global and local temporal features under weighted time warp measures
[20]. It formalizes the multiple time series averaging problem as an optimization
problem and propose a solution yielding a local optimum.

For that, we propose to estimate both the time series centroid c and the
weight vectorw that measures the representativeness of the centroid’s regions. In
addition, we introduce a weighted warping function f(wt) that guides the learned
alignments according to the importance of the centroid elements to capture the
shared global and local temporal features.

Let X = {x
1

,x
2

, ...,xN} be a set of time series, and wdtw the weighted
dissimilarity between xi and the weighted centroid (c,w). The averaging
problem, as formalized in [20], is defined as:

argmin
c ,w

NX

i=1

wdtw(xi, (c,w))

with
wdtw(x, (c,w)) = min

⇡2A

1

|⇡|
X

(t0,t)2⇡

f(wt)'(xt0 , ct)

| {z }
C(⇡)

where f : (0, 1] ! R+ is a non-increasing function (e.g. f(wt) = w�↵
t ) and

' : R ⇥ R ! R+ is a positive, real-valued, dissimilarity function. The cost
function C computes the sum of the weighted dissimilarities ' between x and
(c,w) through the alignment ⇡. When the weights are uniform (or f is a constant



function) and when ' is the Euclidean distance, corresponds to the well known
Dynamic Time Warping (dtw) [5, 7].

The problem given above, can be solved by computing the partial derivatives
of Lagrangian with respect to c to 0 and solving for c, and with respect to w to
0 and solving for w, described more in details in [20].

Let us summarize the main characteristics of the above approaches. In both
nlaaf and psa, the length of the global centroid increases with the number of
time series to average, inducing an increase of the space and time complexity that
is particularly critical under the dtw. The length of the centroids estimated by
cwrt, dba and wdtw averaging is however the same as the reference time series
length. Furthermore, all the progressive approaches as well as dba method are
heuristic, with no guarantee of optimality. Even, if the provided approximations
are accurate for globally similar time series, they are in general poor for time
series that share local characteristics with distinctive global behaviors. In this
view, wdtw is a tractable fast and accurate averaging method that captures
both global and local temporal features, as shown in [20].

3 Experimental study

The experiments are conducted to compare the above approaches on classes of
time series composing various datasets. The datasets can be divided into two
categories. The first one is composed of time series that have similar global
behavior within the classes, where the time series of the second category may
have distinct global behavior, while sharing local characteristics [19]. For the
comparison, the induced inertia reduction rate and the required run time are
evaluated as well as the qualitative comparison of the centroids obtained by a
visualization. In the following, we first describe the datasets used, then specify
the validation process and discuss the obtained results.

3.1 Data description

The experiments are first carried out on four well known public datasets cbf, cc,
digits and character traj. [14, 15]. These data define a favorable case for the
averaging task as time series behave similarly within the classes, as illustrated
in Figure 4.

Fig. 4: The time series behaviors with the classes ”Funnel”, ”Cyclic”, ”6” and ”b” of
the datasets cbf, cc, digits and character traj., respectively



We then consider more complex datasets: bme1, umd1 [19], spiral [4], noised
spiral

1 and consseason [14]. They are composed of time series that behave
di↵erently within the same classes while sharing several local characteristics.

bme includes two challenging classes begin and end (Figure 5-left), which
characterized by a small bell arising at the initial and final period respectively.
The overall behavior may be di↵erent depending on whether the large bell is
pointing upward or downward. umd introduces more complexity with the classes
up and down (Figure 5-right) characterized by a small bell that may occur at
di↵erent time stamps.

Fig. 5: The time series behaviors with the classes ”Begin” and ”End” of the dataset
bme (left), ”Up” and ”Down” of the dataset umd (right)

The spiral data, proposed in [18], consists of 3-D spatio-temporal time series
(2-D spatial and 1-D temporal) generated from latent time series:

Xi =


U

T
i (Z+ bi1

T
l )Mi

e

T
i

�
2 R3⇤ni

where the canonical time series Z 2 R2⇤l is a curve in two dimensions (x, y).Ui 2
R2⇤2 and bi 2 R2 are randomly generated projection matrix and translation
vector respectively. The binary matrix Mi 2 {0, 1}l⇤ni is generated by randomly
choosing ni  l columns from Il for temporal distortion. The spatial dimension
ei 2 Rni is generated with zero-mean Gaussian noise. The latent time series Z

and three generated time series are visualized in Figure 6.

Fig. 6: Latent curve Z and three induced instances X1, X2, X3 without noise (left),
and with noise ei (right) - spiral dataset

1 http://ama.liglab.fr/⇠douzal/data



spiral2 extends spiral data to more challenging time series that are highly
noisy and globally behave di↵erently while sharing a three dimensional latent
time series that may appear randomly at di↵erent time stamps. The latent time
series Z and three generated time series are visualized in Figure 7.

Fig. 7: Latent curve Z and 3 induced instances X1, X2, X3 sharing local characteristics
for the spiral2 dataset

Finally, consseason data provides the electric power consumption recorded
in a personal home over almost one year. consseason is composed of time series
distributed in two season classes (Warm and Cold) depending on whether the
power consumption is recorded during the warm (from April to September) or
cold (from October to March) season. Note that the electric power consumption
profiles di↵er markedly within classes.

Table 1 indicates for each data set: the number of classes it includes (nb.
class), the number of instances (nb. ts.), the number of attributes (nb. att.),
the time series length (ts. length) and the global or local nature of similarity
within the classes (type).

Table 1: Data description

dataset nb. class nb. ts. nb. att. ts. length type

CBF 3 930 1 128

global

CC 6 600 1 60
DIGITS 10 220 2 85
CHARACTER TRAJ. 20 200 3 20
BME 3 150 1 90

local

UMD 3 150 1 121
SPIRAL 1 50 3 95
NOISED SPIRAL 1 50 3 300
CONSSEASON 2 365 1 144



3.2 Validation process

The five mentioned methods nlaaf, psa, cwrt, dba and wdtw described in
Section 2 are compared together. The performances of these approaches are
evaluated through the centroid estimation of each class of the above described
datasets. Particularly, the e�ciency of each approach is measured through: a) the
reduction rate of the inertia criterion; the initial inertia being evaluated around
the time series medoid that minimizes the distances to the rest of time series and
b) the space and time complexity. The results reported hereafter are averages of
10 repetitions of the corresponding algorithms. Finally for all reported results,
the one which is significantly di↵erent from the rest (two-sided t-test at 5% risk)
is indicated in bold.

Inertia reduction rate Time series averaging approaches are used to estimate
centroid of the time series classes described above, then the inertia w.r.t. the
centroids is measured. Lower is the inertia higher representative is the extracted
centroid. Table 2, gives the obtained inertia reduction rates (irr), averaged per
dataset, as:

IRR = 1�
PN

i=1

D(xi, c)PN
i=1

D(xi,m)

where x

1

, ...,xN are the set of time series, D is the distance metric, c is the
determined centroid and m the initial medoid. The alternative of a centroid is
a medoid. Medoid is a time series in a set that minimizes sum of the distances
to all other time series within the same set. Note that, we use the medoid in the
criteria defined above to make the results comparable. In the case, we compare
the obtained centroid of each method with a specific time series in the set (i.e.
medoid) as its alternative one. Table 2 shows that thewdtw provides the highest
irr for the most datasets, followed by dba and psa. Notice that, the results
presented by psa is obtained through the centroid linkage, which outperformed
the other linkage (e.g. simple linkage, complete linkage), mostly. Some negative
rates observed indicate an inertia increase.

Table 2: The mean of inertia reduction rate (in %) and standard deviations (±�)

dataset nlaaf psa cwrt dba wdtw

CBF 8.3±4.0 12.3 -61.3±9.1 32.1±1.4
82.6

±1.8

CC 9.8±6.6 28.6 6.8±5.0 34.2±0.9
70.5

±0.7

DIGITS 26.1±7.2
79.5 77.6

±2.4
82.2

±1.7
87.6

±1.3

CHARACTER TRAJ. 67.1±8.6
87.7 85.2

±5.1
90.6

±2.3
93.1

±2.0

BME 34.9±5.4 43.1 -11.8±9.2 59.4±2.7
91.2

±3.1

UMD 25.6±9.7 51.1 -56.2±9.4 48.8±1.9
78.5

±1.5

SPIRAL 59.8

±2.5
64.4 64.2

±1.1
65.8

±1.1
72.8

±0.9

NOISED SPIRAL 61.4±4.2 66.3 9.3±14.7 9.8±3.2
98.9

±0.4

CONSSEASON 84.1

±3.2 70.5 4.6±12.7 21.4±1.6
95.5

±1.7



Time and space complexity In Table 3 the studied approaches are compared
w.r.t their space and time complexity. Are reported the length of the extracted
centroid (length), the time consumption in seconds (time) and for the iterative
methods the request number of iterations (iter nb.). The results, averaged per
dataset, reveal almost wdtw the faster method, followd by dba, and psa the
slowest one. The cwrt approach is not comparable to the rest of the methods
as it performs directly an euclidean distance on the time series once the initial
dtw matrix evaluated. Remark that for nlaaf and psa the centroid lengths
are very large making these approaches unusable for large time series, while the
centroid lengths for the remaining methods are equal to the length of the initial
medoid. The higher time consumptions observed for nlaaf and psa are mainly
explained by the progressive increase of the centroid length during the pairwise
combination process.

Table 3: Comparison of Time/Space complexity

dataset

nlaaf psa dba wdtw

length time length time length time(nb-it.) length time(nb-it.)

CBF 8283 392.32 35042 9999.89 128 42.91(30) 128 33.42(25)
CC 992 4.15 1677 12.75 60 6.46(40) 60 3.91(20)
DIGITS 313 0.52 530 1.09 85 0.51(15) 85 0.47(10)
CHAR. TRAJ. 33 0.06 29 0.06 20 0.03(10) 20 0.02(05)
BME 2027 5.46 2781 11.92 90 3.93(30) 90 3.04(15)
UMD 2729 10.32 4280 28.87 121 4.75(30) 121 3.43(15)
SPIRAL 660 1.62 1122 3.33 95 1.19(10) 95 0.83(05)
NOISED SPIRAL 1699 16.13 9030 269.93 300 34.84(25) 300 15.74(10)
CONSSEASON 5741 77.10 32706 3680.81 144 29.79(35) 144 21.85(20)

3.3 Discussion

From Table 2, we can see that wdtw lead to the highest inertia reduction rates
for almost all datasets, where the best scores (significantly di↵erent) indicated in
bold. As expected, the dbamethod that iteratively optimizes an inertia criterion,
in general, reaches higher values than the non-iterative methods (nlaaf, psa
and cwrt). Finally, cwrt has the lowest inertia reduction rates. The negative
rates observed for cwrt indicate an inertia increase.

From Table 3, the results reveal wdtw the fastest method and the psa the
slowest one. For nlaaf and psa the estimated centroids have a drastically large
dimension (i.e. a length around 104) making these approaches unusable for large
time series datasets. The nlaaf and psa methods are highly time consuming,
largely because of the progressive increase of the centroid length during the
pairwise combination process. The centroid lengths for the remaining methods
are equal to the length of the initial medoid (Table 3). Finally, psa appears
greatly slower than nlaaf; this is due to the hierarchical clustering on the whole
time series.

We finally visualize here some of the centroids obtained by the di↵erent
methods to compare their shape to the one of the time series they represent.



Figure 8 till 12 display the centroids obtained by the mentioned methods for
the class ”funnel” of cbf, ”cyclic” of data set cc, the spiral1, ”begin” of bme
and ”down” of data set umd, respectively. As one can note, for global datasets,
almost all approaches succeed in obtainging centroids more or less similar to the
initial time series. However, we observe generally less representative centroids for
nlaaf and psa, with a drastically large centroid’s length of about 104 elements
vs. 102 for the other methods. For the more complex (e.g. spiral), Figure 10
shows the ability of the dba method, in obtainging centroids more or less similar
to the initial time series, but one should circumvent the noise problem. Finally,
as shown in the figures, the wdtw provide the most representative centroid
for all datasets. For complex dataset, one can see the ability of the wdtw to
circumvent the noise problem and to reveal the locally shared signature.

Fig. 8: cbf-”funnel” centroids: a) ground through, b) nlaaf, c) psa, d) cwrt, e) dba, f) wdtw

Fig. 9: cc-”cyclic” centroids: a) ground through, b) nlaaf, c) psa, d) cwrt, e) dba, f) wdtw

Fig. 10: spiral-1 centroids: a) ground through, b) nlaaf, c) psa, d) cwrt, e) dba, f) wdtw

Fig. 11: bme-”begin” centroids: a) ground through, b) nlaaf, c) psa, d) cwrt, e) dba, f) wdtw

Fig. 12: umd-”down” centroids: a) ground through, b) nlaaf, c) psa, d) cwrt, e) dba, f) wdtw



4 Conclusion

The dtw is among the most frequently used metrics for time series in several
domains as signal processing, temporal data analysis and mining or machine
learning. However, for time series clustering, approaches are generally limited
to k-medoid to circumvent time series averaging under dynamic time warping
and tricky multiple temporal alignments. The present study compares the major
progressive and iterative time series averaging methods under the dynamic time
warping. The experimental validation is based on standard datasets in which
time series share similar behaviors within classes, as well as on more complex
datasets. They are multidimensional, noisy and share only local characteristics.
Both the quantitative evaluation, based on an inertia criterion (i.e. irr), time
and space complexity, and the qualitative one (consisting in the visualization
of the centroids obtained by di↵erent methods) show the e↵ectiveness of wdtw

method to provide fastly accurate time series averaging for standard and complex
datasets. The centroids obtained through wdtw are more representative of the
set than the centroids obtained by the other methods, and the time requirements
are lower than the rest. Following wdtw approach, the dba, the second best
method that iteratively optimizes an inertia criterion, reaches higher values than
the non iterative methods (nlaaf, psa and cwrt).
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