Artificial neural network robustness for on-board satellite image processing : results of SEU simulations and ground tests - Archive ouverte HAL
Communication Dans Un Congrès Année : 1997

Artificial neural network robustness for on-board satellite image processing : results of SEU simulations and ground tests

Résumé

Artificial neural networks have been shown to possess fault tolerant properties. We present the architecture of a neural network designed to process satellite images (SPOT photos). Soft simulations and ground tests performed on a digital implementation of this neural network prove its robustness with respect to bit errors.
Fichier non déposé

Dates et versions

hal-01384967 , version 1 (20-10-2016)

Licence

Identifiants

  • HAL Id : hal-01384967 , version 1

Citer

Raoul Velazco, P. Cheynet, J.D. Muller, R. Ecoffet, S. Buchner. Artificial neural network robustness for on-board satellite image processing : results of SEU simulations and ground tests. IEEE Nuclear and Space Radiation Effects Conference (NSREC'97), Jul 1997, Snowmass États-Unis. ⟨hal-01384967⟩
91 Consultations
0 Téléchargements

Partager

More