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REGULARIZED NONLINEAR ACCELERATION

DAMIEN SCIEUR, ALEXANDRE D’ASPREMONT, AND FRANCIS BACH

ABSTRACT. We describe a convergence acceleration technique for unconstrained optimization problems. Our

scheme computes estimates of the optimum from a nonlinear average of the iterates produced by any opti-

mization method. The weights in this average are computed via a simple linear system, whose solution can

be updated online. This acceleration scheme runs in parallel to the base algorithm, providing improved esti-

mates of the solution on the fly, while the original optimization method is running. Numerical experiments are

detailed on classical classification problems.

1. INTRODUCTION

Suppose we seek to solve the following optimization problem

min
x∈Rn

f(x) (1)

in the variable x ∈ R
n, where f(x) is strongly convex with parameter µ with respect to the Euclidean norm,

and has a Lipschitz continuous gradient with parameter L with respect to the same norm. Assume we solve

this problem using the fixed-point iteration

x̃i+1 = g(x̃i), for i = 0, ..., k, (FPI)

where x̃i ∈ R
n and k is the number of iterations. This iteration is typically produced by an optimization

algorithm, e.g. the gradient method with fixed step size, written

x̃i+1 = x̃i − h∇f(x̃i), for i = 0, ..., k, (2)

with step length h > 0. Here, we will focus on improving our estimates of the solution to problem (1) by

tracking only the iterate sequence x̃i produced by an optimization algorithm, without any further calls to

oracles on g(x).
Since the publication of Nesterov’s optimal first-order smooth convex minimization algorithm [Nesterov,

1983], significant efforts have been focused on either providing more interpretable views on current accel-

eration techniques, or on replicating these complexity gains using different, more intuitive schemes. Early

efforts sought to directly extend the original acceleration result in [Nesterov, 1983] to broader function

classes [Nemirovskii and Nesterov, 1985], allow for generic metrics, line searches, produce simpler proofs

[Beck and Teboulle, 2009; Nesterov, 2013] or adaptive accelerated algorithms [Nesterov, 2015], etc. More

recently however, several authors [Drori and Teboulle, 2014; Lessard et al., 2016] have started using classi-

cal results from control theory to obtain numerical bounds on convergence rates that match the optimal rates.

Others have studied the second order ODEs obtained as the limit for small step sizes of classical accelerated

schemes, to better understand their convergence [Su et al., 2014; Wibisono and Wilson, 2015]. Finally, re-

cent results have also shown how to wrap classical algorithms in an outer optimization loop, to accelerate

convergence and reach optimal complexity bounds [Lin et al., 2015] on certain structured problems.

Here, we take a significantly different approach to convergence acceleration stemming from classical

results in numerical analysis. We use the iterates produced by any (converging) optimization algorithm, and

Date: April 16, 2019.

Key words and phrases. Acceleration, ε-algorithm, extrapolation.

A SUBSET OF THESE RESULTS APPEARED AT THE 2016 NIPS CONFERENCE UNDER THE SAME TITLE.

1

http://arxiv.org/abs/1606.04133v3


estimate the solution directly from this sequence, assuming only some regularity conditions on the function

to minimize. Our scheme is based on the idea behind Aitken’s ∆2-algorithm [Aitken, 1927], generalized

as the Shanks transform [Shanks, 1955], whose recursive formulation is known as the ε-algorithm [Wynn,

1956] (see e.g. [Brezinski, 2006; Sidi et al., 1986] for a survey). In a nutshell, these methods fit geometrical

models to linearly converging sequences, then extrapolate their limit from the fitted model.

In a sense, this approach is more statistical in nature. It assumes an approximately linear model holds for

iterations near the optimum, and estimates this model using the iterates. In fact, Wynn’s algorithm [Wynn,

1956] is directly connected to the Levinson-Durbin algorithm [Levinson, 1949; Durbin, 1960] used to solve

Toeplitz systems recursively and fit autoregressive models (the Shanks transform solves Hankel systems,

but this is essentially the same problem [Heinig and Rost, 2011]). The key difference in these extrapolation

techniques is that estimating the autocovariance operator A is not required, as we only focus on the limit.

Moreover, the method presents strong links with the conjugate gradient when applied to unconstrained

quadratic optimization, but does not further calls to the operator.

We start from a formulation of these techniques known as Anderson Acceleration [Anderson, 1965],

Mešina’s Algorithm [Mešina, 1977] or minimal polynomial extrapolation (MPE) [Sidi et al., 1986; Smith

et al., 1987]. They use the minimal polynomial of the linear operator driving iterations to estimate the

optimum by a nonlinear average of the iterates (i.e. computing a weighted average using weights which are

nonlinear functions of the iterates).

Our contribution here is to regularize this procedure and produce explicit bounds on the distance to opti-

mality by controlling stability, thus explicitly quantifying acceleration. We show that these extrapolation al-

gorithms reach optimal performance (asymptotically) and describe several numerical examples where these

stabilized estimates often speed up convergence by an order of magnitude. So far, for all the techniques cited

above, no proofs of convergence of the estimates were given when the estimation process became unstable.

Furthermore, the acceleration scheme runs in parallel with the original algorithm, providing improved es-

timates of the solution on the fly, while the original method is progressing, so its numerical complexity is

marginal.

The paper is organized as follows. In Section 2 we recall basic results behind the acceleration for linear

iterations. Then, in Section 3, we generalize these results to nonlinear iterations and show how to fully

control the impact of nonlinearity. We use these results to derive explicit bounds on the acceleration perfor-

mance of our estimates. In Section 4 we connect the acceleration methods to the conjugate gradient method

and Nesterov’s method. Finally, we present numerical results in Section 5.

2. CONVERGENCE ACCELERATION

We begin by recalling the core arguments behind convergence acceleration. These ideas have taken var-

ious forms over time, known for example as Anderson acceleration [Anderson, 1965], the Eddy-Mesina

method [Mešina, 1977; Eddy, 1979] and minimal polynomial extrapolation [Cabay and Jackson, 1976;

Smith et al., 1987]. The core idea behind these methods is to use a Taylor expansion of the function g
in (FPI) to approximate the fixed point iterations by a vector autoregressive model, then compute a weighted

mean of the iterates x̃i to produce a better estimate of the limit x∗. In this paper, we assume x∗ unique.

Suppose g(x) is differentiable and let G be the Jacobian of g evaluated at x∗. In the rest of the paper, we

assume G to be symmetric, positive semi-definite and G � σI , with σ < 1. Equation (FPI) becomes

x̃i+1 = g(x∗) +G(x̃i − x∗) +O(‖x̃i − x∗‖2), for i = 1, . . . , k.

By neglecting the second order term, and because g(x∗) = x∗, we obtain the linear fixed-point iteration

xi+1 − x∗ = G(xi − x∗), (LFPI)
2



where x0 = x̃0 and we recognize here a vector autoregressive process. When using the fixed-step gradient

method in (2) for example, if ∇2f is the Hessian matrix of f(x), we get

xi+1 − x∗ = (I−∇2f(x∗))
︸ ︷︷ ︸

=G

(xi − x∗).

Because ‖G‖2 ≤ σ < 1, the iterates xk converges to x∗ at a linear rate, with

‖xi − x∗‖ ≤ σ‖xi−1 − x∗‖ ≤ σi‖x0 − x∗‖,
where ‖ · ‖ stands for the Euclidean norm here and throughout the paper. We will now see how to improve

convergence rates using a linear combination of the previous iterates.

Suppose we run k iterations of (LFPI), a linear combination of iterates xi with coefficients ci reads

k∑

i=0

cixi =

k∑

i=0

cix
∗ +

k∑

i=0

ciG(xi − x∗)

=

(
k∑

i=0

ci

)

x∗ +

(
k∑

i=0

ciG
i

)

(x0 − x∗). (3)

Now define the polynomial

p(z) ,
k∑

i=0

ciz
i, (4)

we can write (3) more concisely in terms of the matrix polynomial p(G), setting p(1) =
∑k

i=0 ci = 1
without loss of generality, to get

k∑

i=0

cixi = x∗ + p(G)(x0 − x∗).
︸ ︷︷ ︸

Error term

Ideally, we need to find c (or equivalently p) which minimizes the error term p(G)(x0 − x∗). We will study

the error when linearly combining the last k + 1 iterates xi, assuming we have an algorithm computing this

optimal combination, i.e.
∥
∥
∥
∥
∥

k∑

i=0

c⋆i xi − x∗

∥
∥
∥
∥
∥
= min

{c∈Rk+1: cT1=1}

∥
∥
∥
∥
∥

k∑

i=0

ciG
i(x0 − x∗)

∥
∥
∥
∥
∥
= min

{p∈Rk[x]:p(1)=1}
‖p(G)(x0 − x∗)‖

where Rk[x] is the subspace of polynomials of degree at most k and

c⋆ = argmin
{c∈Rk+1: cT1=1}

∥
∥
∥
∥
∥

k∑

i=0

ciG
i(x0 − x∗)

∥
∥
∥
∥
∥
.

The next proposition produces an uniform bound on the value of this error using Chebyshev polynomials.

Proposition 2.1. Suppose the iterates xi for i = 0, . . . , k are computed using (LFPI), with G the Jacobian

of g, assumed to be symmetric, satisfying 0 � G � σI for σ < 1. Let x∗ be the fixed point of g. The ℓ2
norm of the error is bounded, with

∥
∥
∥
∥
∥

k∑

i=0

c⋆i xi − x∗

∥
∥
∥
∥
∥
≤







2βk

1 + β2k
‖x0 − x∗‖ if k < m

0 otherwise

(5)

where m is the number of distinct eigenvalues of G and

β =
1−

√
1− σ

1 +
√
1− σ

< 1. (6)

3



Proof. Because G is symmetric, it admits the eigenvalue decomposition

G = Q∗ΛQ,

where Λ is the diagonal matrix of eigenvalues {λi, i = 1, . . . ,m}, and Q is a unitary matrix. For any

p ∈ Rk[x], we have

‖p(G)(x0 − x∗)‖2 = ‖Q∗p(Λ)Q(x0 − x∗)‖2
≤ ‖p(Λ)‖2 ‖(x0 − x∗)‖2
= max

i=1,...,m
|p(λi)| ‖(x0 − x∗)‖2.

First, assume k ≥ m. The Cayley-Hamilton theorem means that if p(x) is the characteristic polynomial

of G, then p(G) = p(Λ) = 0. By assumption none of the λi is equal to 1 (we assumed λi ∈ [0, σ] with

σ < 1) so we can normalize p so that p(1) = 1 and p(λi) = 0 for all i = 1, . . . ,m.

We now assume k < m. We have, for any polynomial p,

max
i=1,...,m

|p(λi)| ≤ max
λ∈[λmin,λmax]

|p(λ)|

Because 0 � G � σ, we have 0 ≤ λi ≤ σ, so the error bound becomes

min
{p∈Rk[x]:p(1)=1}

‖p(G)(x0 − x∗)‖2 ≤ min
{p∈Rk[x]:p(1)=1}

max
λ∈[0,σ]

|p(λ)| ‖x0 − x∗‖2 (7)

where the right hand side involves a minmax problem, explicitly solved using Chebyshev’s polynomials.

Let Ck be the Chebyshev polynomial of degree k. By definition, Ck is a monic polynomial (i.e. a polynomial

whose leading coefficient is one) solving

Ck(x) , argmin
{p∈Rk[x]:p(1)=1}

max
x∈[−1,1]

|p(x)|.

Golub and Varga [1961] use a variant of Ck(x) to solve the problem in (7), whose solution is a rescaled

Chebyshev polynomial given by

Tk(x, σ) =
Ck(t(x, σ))

Ck(t(1, σ))
, where t(x, σ) =

2x− σ

σ
, (8)

where t(x, σ) is simply a linear mapping from interval [0, σ] to [−1, 1]. Moreover, they show

min
{p∈Rk[x]:p(1)=1}

max
λ∈[0,σ]

|p(λ)| = max
λ∈[0,σ]

|Tk(λ, σ)| = |Tk(σ, σ)| =
2βk

1 + β2k
, (9)

where β is given by

β =
1−

√
1− σ

1 +
√
1− σ

< σ < 1.

Injecting the result of (9) in (7) yields the desired result.

Corollary 2.2. In the case of the gradient method applied on quadratic function with eigenvalues bounded

in the interval [µ,L] (this correspond also to a L-smooth and µ-strongly convex function), we have

σ = 1− µ

L
< 1.

By consequence, the bound (5) becomes

∥
∥
∥
∥
∥

k∑

i=0

c⋆i xi − x∗

∥
∥
∥
∥
∥
≤







2βk

1 + β2k
‖x0 − x∗‖ if k < m

0 otherwise

4



0 0.2 0.4 0.6 0.8 1

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

PSfrag replacements

x

T
k
(x
,σ

)

σ

FIGURE 1. We plot both T3(x, σ) (blue) and T5(x, σ) (black) for x ∈ [0, 1] and σ = 0.85.

The maximum value of the image of [0, σ] by Tk is clearly smaller when k grows, implying

a better rate of convergence.

with

β =
1−

√

µ/L

1 +
√

µ/L
.

The proof of this proposition suggests Tk(x, σ) is a good universal solution for the convergence accel-

eration problem and we plot both T3(x, σ) and T5(x, σ) for x ∈ [0, 1] and σ = 0.85 in Figure 1. This

solution is called the Chebyshev semi-iterative method in [Golub and Varga, 1961] and was further studied

by e.g. [Nemirovskiy and Polyak, 1984]. Combining the k iterates xi using the coefficients ci in Tk(x, σ),
we ensure

∥
∥
∥
∥
∥

k∑

i=0

cixi − x∗

∥
∥
∥
∥
∥
. (1−

√
1− σ)k‖x0 − x∗‖ ≪ σk‖x0 − x∗‖

which means convergence is indeed accelerated. However, this method has some key drawbacks. First, we

need to know σ to form Tk(x, σ), which is not always the case. For example, in the case of the gradient

method, σ depends on the smoothness constant L and the strong convexity constant µ. In the general non-

linear case, σ depends on the spectrum of the Jacobian at the optimum, which is clearly not observed.

Second, the algorithm does not allow us to control the magnitude of the coefficients in the polynomial

T (x, σ), which has a strong impact on the stability of the algorithm in the presence of numerical errors, or

when the iterates are generated by a non-linear function g.

Because of stability issues with Chebyshev acceleration, we focus now on a method which will approx-

imately minimize the error ‖p(G)(x0 − x∗)‖2. Since we of course do not observe G and x∗ we will work

with the residuals

r̃i = x̃i+1 − x̃i = g(x̃i)− x̃i, (10)

when g is a linear function (LFPI) this becomes

ri = xi+1 − xi = (G− I)(xi − x∗). (11)

A linear combination of residuals ri with coefficients ci is written

k∑

i=0

ciri = (G− I)
k∑

i=0

ci(xi − x∗) = (G− I)p(G)(x0 − x∗).

5



We recognize the error term we wanted to minimize, multiplied by the matrix (G−I). Using the coefficients

which minimize this alternative quantity will approximately minimize the error, as stated in the following

proposition.

Proposition 2.3. Let p∗(x) be the polynomial solving

p∗(x) = argmin
{p∈Rk[x]:p(1)=1}

‖(G− I)p(G)(x0 − x∗)‖2,

whose coefficients, written c∗, satisfy

c∗ = argmin
{c∈Rk+1: cT 1=1}

∥
∥
∥
∥
∥

k∑

i=0

ciri

∥
∥
∥
∥
∥
2

. (12)

The iterates xi defined in (LFPI) averaged with coefficients c∗ satisfy
∥
∥
∥
∥
∥

k∑

i=0

c∗i xi − x∗

∥
∥
∥
∥
∥
≤ 1

1− σ
min

{c∈Rk+1: cT1=1}

∥
∥
∥
∥
∥

k∑

i=0

ciG
i(x0 − x∗)

∥
∥
∥
∥
∥
, (13)

where we have assumed 0 � G � σI , with σ < 1.

Proof. By definition of c∗, and using (LFPI),
∥
∥
∥
∥
∥

k∑

i=0

c∗ixi − x∗

∥
∥
∥
∥
∥

= ‖p∗(G)(x0 − x∗)‖,

= ‖(G − I)−1(G− I)p∗(G)(x0 − x∗)‖,
≤ ‖(G − I)−1‖ ‖(G− I)p∗(G)(x0 − x∗)‖.

By using the definition of p∗,

‖(G − I)p∗(G)(x0 − x∗)‖ = min
{p∈Rk[x]:p(1)=1}

‖(G − I)p(G)(x0 − x∗)‖2.

We can bound this last error term because ‖G− I‖ ≤ 1,

min
{p∈Rk[x]:p(1)=1}

‖(G − I)p(G)(x0 − x∗)‖ ≤ min
{p∈Rk[x]:p(1)=1}

‖(G − I)‖‖p(G)(x0 − x∗)‖,

≤ min
{p∈Rk[x]:p(1)=1}

‖p(G)(x0 − x∗)‖.

Using the fact that ‖(G− I)−1‖ ≤ 1
1−σ

yields the desired result.

This leads to the following acceleration algorithm.

Algorithm 1 Nonlinear Acceleration of Convergence

Input: Iterates x0, x1, . . . , xk+1 ∈ R
d.

1: Form R = [r0, ..., rk]
2: Solve

c∗ = argmin
{c∈Rk+1: cT 1=1}

‖Rc‖

Output: Approximation of x∗ ensuring (13), computed as
∑k

i=0 c
∗
i xi

This acceleration algorithm is called nonlinear because the coefficients ci vary with of xi. This method is

also known as Anderson acceleration [Anderson, 1965], the Eddy-Mesina algorithm [Mešina, 1977; Eddy,

1979], Minimal Polynomial Extrapolation [Cabay and Jackson, 1976], or Reduced Rank Extrapolation [Sidi

et al., 1986; Smith et al., 1987]. There are small variations between all these methods, which lie in the way
6



they solve the minimization problem in (12). The next proposition gives us an explicit solution, involving

the inversion of a k-by-k matrix.

Proposition 2.4. The explicit solution of the problem

c∗ = argmin
cT 1=1

‖Rc‖ (14)

in the variable c ∈ R
k, where R is a d× k matrix assumed to be of rank k, is given by

c∗ =
(RTR)−1

1

1T (RTR)−11
. (15)

Proof. Let µ be the dual variable of the equality constraint. Both c∗ and µ∗ should satisfy the KKT

system
[
2RTR 1

1
T 0

](
c∗

µ∗

)

=

(
0
1

)

(16)

This block matrix can be inverted explicitly, with
[
2RTR 1

1
T 0

]−1

=
1

1T (RTR)−11

[
1
2(R

TR)−1
(
1
T (RTR)−1

1I − 11
T (RTR)−1

)
(RTR)−1

1

1
T (RTR)−1 −2

]

.

Using this inverse we easily solve the linear system, which gives the result in (15).

In practice of course, instead of computing the inverse of the matrix RTR, we solve the linear system

RTRz = 1,

then set c∗ = z/(1T z). This formula is used in Anderson Acceleration algorithm and Mesina method.

Other algorithms usually force the coefficient ck to be equal to one, solve the remaining linear system,

then normalize the vector. However, these alternative strategies are harder to analyze when the iterates are

generated by a non-linear function g. We will now apply this acceleration algorithm on gradient method for

nonlinear functions and compute its rate of convergence.

3. REGULARIZED NONLINEAR ACCELERATION OF CONVERGENCE

So far, we have only considered linear functions g in (LFPI), without perturbations, when computing the

iterates xi. In general, the fixed-point iteration (FPI) is usually generated by a nonlinear function g, thus

inducing a second order error term in O(‖xi − x∗‖2) compared to the dynamics in (LFPI).

Here, in §3.1 we first give a bound on the deviation error when there are perturbations in (LFPI). In §3.2

we then derive a regularized version of Algorithm 1 which better controls the impact of perturbations. We

then study the impact of regularization on the solution when there are no perturbations in §3.3. Finally,

in §3.4 we gather the results of the previous sections to bound the rate of convergence of the regularized

acceleration algorithm.

3.1. Sensitivity Analysis. We now study the sensitivity of the acceleration algorithm to perturbations. Con-

sider the following perturbed linear fixed point iteration

x̃i+1 − x∗ = g(x̃i)− x∗ = G(x̃i − x∗) + ei (Pert. LFPI)

where ei is the noise injected in xi+1 at iteration i. For now, we do not assume any structure on the noise,

so ei may be the nonlinearity of g, stochastic noise, roundoff error, etc. The iterates of this process will be

compared to their noiseless counterpart,

xi+1 − x∗ = G(xi − x∗),
7



with x0 = x̃0. We now apply our acceleration algorithm on the sequences xi and x̃i and compare the results.

We first form the residuals,

ri = g(xi)− xi = xi+1 − xi and r̃i = g(x̃i)− x̃i = x̃i+1 − x̃i.

Consider the matrices of residuals R = [r0, . . . , rk] and R̃ = [r̃0, . . . , r̃k]. We write P the perturbation

matrix defined as

P , R̃T R̃−RTR. (17)

The next proposition describes the sensitivity of Algorithm 1 using R and P .

Proposition 3.1. Let the sequences xi be generated by (LFPI) and x̃i by (Pert. LFPI), with x0 = x̃0, with

R and R̃ the residual matrices defined above and P the perturbation matrix in (17). Assume c∗ and c̃∗ are

computed using formula (15) with matrices R and R̃ respectively. Let

∆c̃∗ , c̃∗ − c∗. (18)

Then the norm of ∆c̃∗ is bounded by

‖∆c̃∗‖ ≤ ‖P‖‖(RTR+ P )−1‖‖c∗‖. (19)

Proof. We start with the sequence x̃i. Let µ̃∗ be the dual variable of the equality constraint of (14). Both

c̃∗ = c∗ +∆c̃∗ and µ̃∗ = µ∗ +∆µ∗ should satisfy the KKT system
[

2R̃T R̃ 1

1
T 0

](
c̃∗

µ̃∗

)

=

(
0
1

)

⇔
[
2(RTR+ P ) 1

1
T 0

](
c∗ +∆c̃∗

µ∗ +∆µ∗

)

=

(
0
1

)

.

Indeed, using the definition of c∗ and µ∗ in (16),
[
2(RTR+ P ) 1

1
T 0

](
c∗ +∆c̃∗

µ∗ +∆µ∗

)

=

[
2RTR 1

1
T 0

](
c∗

µ∗

)

+

[
2RTR 1

1
T 0

](
∆c̃∗

∆µ∗

)

+

[
2P 0
0 0

](
c∗ +∆c̃∗

µ∗ +∆µ∗

)

,

=

(
0
1

)

+

[
2RTR 1

1
T 0

](
∆c̃∗

∆µ∗

)

+

[
2P 0
0 0

](
c∗ +∆c̃∗

µ∗ +∆µ∗

)

.

With this simplification, the system becomes
[
2RTR 1

1
T 0

](
∆c̃∗

∆µ∗

)

+

[
2P 0
0 0

](
c∗ +∆c̃∗

µ∗ +∆µ∗

)

=

(
0
0

)

.

It remains to isolate c∗, [
2(RTR+ P ) 1

1
T 0

](
∆c̃∗

∆µ∗

)

=

(
2Pc∗

0

)

.

The explicit solution in obtained by inverting the block matrix, and is written

∆c̃∗ =

(

I − (RTR+ P )−1
11

T

1T (RTR+ P )−11

)

(RTR+ P )−1Pc∗.

We can bound the norm of ∆c̃∗ by

‖∆c̃∗‖ =

∥
∥
∥
∥
I − (RTR+ P )−1

11
T

1T (RTR+ P )−11

∥
∥
∥
∥
‖(RTR+ P )−1‖‖P‖‖c∗‖.

Because the first factor is the norm of a projector of rank k − 1, its value is bounded by 1, so we get the

desired result.

This proposition bounds the relative error on c̃∗ in comparison with c∗. We will see that the perturbation

magnitude can be arbitrarily large, which is the key issue with the convergence results in [Smith et al., 1987,

§7]. Even when ‖P‖ is small, the term ‖(RTR + P )−1‖ is problematic. Our problem here is the structure

of the residuals matrix R,

R = [r0, Gr0, G
2r0, ..., G

kr0],
8



which matches exactly the structure of Krylov matrices, i.e. square matrices K formed using a matrix M and

a vector v, and computed as K = [v,Mv,M2v, ...,Mkv]. Tyrtyshnikov [1994] showed that the condition

number of Krylov matrices (see Section 4.3) is lower bounded by a function which grows exponentially

with k. Now, the error bound (19) contains the norm of the inverse of a perturbed squared Krylov matrix,

which makes the situation even worse. In other words, even if the perturbations are small, their impact on

the solution can be arbitrarily large. Even in practical cases where k is small (for example, k = 5), R̃T R̃
is usually a singular or nearly-singular matrix. This particular issue means the linear system (RTR)−1

1 in

(15) needs to be regularized.

3.2. Regularized Nonlinear Acceleration of Convergence. In this section, we will analyze the following

acceleration algorithm, which uses Tikhonov regularization to solve the linear system in (15).

Algorithm 2 Regularized Nonlinear Acceleration (RNA)

Input: Iterates x̃0, x̃1, ..., x̃k+1 ∈ R
d produced by (FPI), and a regularization parameter λ > 0.

1: Compute R̃ = [r̃0, ..., r̃k ], where r̃i = x̃i+1 − x̃i
2: Solve

c̃∗λ = argmin
cT 1=1

‖R̃c‖2 + λ‖c‖2,

or equivalently solve (R̃T R̃+ λI)z = 1 then set c̃∗λ = z/1T z.

Output: Approximation of x∗ computed as
∑k

i=0(c̃
∗
λ)ix̃i

Regularization controls the norm of the coefficients produced by the algorithm and reduces the impact of

perturbations, as shown in the following proposition.

Proposition 3.2. Consider the sequences xi satisfying (LFPI) and x̃i satisfying (Pert. LFPI) with x0 = x̃0.

Let c∗λ and c̃∗λ the output of Algorithm 2 with parameter λ applied to xi and x̃i respectively. Let R and R̃ the

matrices of residuals and P be defined in (17). Define ∆c̃∗λ = c̃∗λ − c∗λ. Then, we have the following bounds,

‖c̃∗λ‖ ≤
√

λ+ ‖R̃‖2
(k + 1)λ

, (20)

‖∆c̃∗λ‖ ≤ ‖P‖
λ

‖c∗λ‖, (21)

which control the stability of the solution c̃∗λ.

Proof. Using the same proof technique of Propositions 2.4 and 3.1, we have

c̃∗λ =
(R̃T R̃+ λI)−1

1

1T (R̃T R̃+ λI)−11
, (22)

∆c̃∗λ =

(

I − (R̃T R̃+ λI)−1
11

T

1T (R̃T R̃+ λI)−11

)

(R̃T R̃+ λI)−1Pc∗λ. (23)

9



We begin by the bound on c̃∗λ. Indeed, with (22),

‖c̃∗λ‖2 =
1
T (R̃T R̃+ λI)−2

1

(1T (R̃T R̃+ λI)−11)2
,

≤ 1

k + 1
max
‖v‖=1

vT (R̃T R̃+ λI)−2v

(vT (R̃T R̃+ λI)−1v)2
,

=
1

k + 1
max
‖v‖=1

‖(R̃T R̃+ λI)−
1

2 (R̃T R̃+ λI)−
1

2 v‖2

‖(R̃T R̃+ λI)−
1

2 v‖4
,

≤ 1

k + 1
‖(R̃T R̃+ λI)−

1

2 ‖2 max
‖v‖=1

1

‖(R̃T R̃+ λI)−
1

2 v‖2
,

=
1

k + 1
‖(R̃T R̃+ λI)−

1

2 ‖2‖(R̃T R̃+ λI)
1

2 ‖2.

The norm of the coefficients c̃∗λ are thus bounded by

‖c̃∗λ‖ ≤

√

1

k + 1

‖R̃T R̃‖+ λ

λ
=

√

‖R̃‖2 + λ

(k + 1)λ
.

We will now bound ‖∆c̃λ‖. With equation (23),

‖∆c̃λ‖ =

∥
∥
∥
∥
∥

(

I − (R̃T R̃+ λI)−1
11

T

1T (R̃T R̃+ λI)−11

)

(R̃T R̃+ λI)−1Pc∗λ

∥
∥
∥
∥
∥
,

≤
∥
∥
∥
∥
∥
I − (R̃T R̃+ λI)−1

11
T

1T (R̃T R̃+ λI)−11

∥
∥
∥
∥
∥

∥
∥
∥(R̃T R̃+ λI)−1

∥
∥
∥ ‖P‖ ‖c∗λ‖ ,

≤
∥
∥
∥(R̃T R̃+ λI)−1

∥
∥
∥ ‖P‖ ‖c∗λ‖ ,

where the last inequality is obtained by bounding the norm of a projector. Since R̃T R̃ � 0, we have

(R̃T R̃+ λI) � λI , we get

‖∆c̃λ‖ ≤ ‖P‖
λ

‖c∗λ‖,
which is the desired result.

Regularization allows a better control of the impact of perturbations, but also changes the solution c∗

into c∗λ. The next section analyses the impact of regularization on the extrapolated solution when there are

no perturbations.

3.3. Regularized Chebyshev Polynomial. The previous section shows that regularization is important for

the control of the perturbations present in (Pert. LFPI). However, the convergence analysis becomes more

complicated in the perturbation-free case, and we introduce regularized Chebyshev polynomials.

Definition 3.3. The regularized Chebyshev polynomial C∗
σ(x, k, α) of degree k, range σ and regularization

parameter α is defined as the solution of

C∗
σ(x, k, α) = argmin

C∈Rk[x] :C(1)=1
max
x∈[0,σ]

C2(x) + α‖C‖2,

where ‖C‖ corresponds to the ℓ2 norm of the coefficients of polynomial C . We write the maximum value as

Sσ(k, α) ,
√

max
x∈[0,σ]

(C∗
σ(x, k, α))

2 + α‖C∗
σ(x, k, α)‖2. (24)
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Using this specific polynomial we can now bound the accuracy of the extrapolated point using the regu-

larized algorithm.

Proposition 3.4. Let c∗λ be the output of Algorithm 2 using the sequence xi generated by (LFPI) (with

‖G‖ ≤ σ < 1) and the parameter λ > 0. The accuracy of the extrapolation is bounded by

∥
∥
∥
∥
∥

k∑

i=0

(c∗λ)ixi − x∗

∥
∥
∥
∥
∥
≤ ‖(G − I)−1‖

√

S2
σ

(

k,
λ

‖x0 − x∗‖2
)

‖x0 − x∗‖2 − λ‖c∗λ‖2. (25)

Proof. Consider the optimization problem in Algorithm 2,

min
cT1=1

‖Rc‖2 + λ‖c‖2.

Since ri = (G − I)(xi − x∗) = (G − I)Gi(x0 − x∗), if we use the polynomial p with coefficients c, the

problem becomes

min
{p∈Rk[x]:p(1)=1}

{
‖(G − I)p(G)(x0 − x∗)‖2 + λ‖p‖2

}
, (26)

≤ ‖x0 − x∗‖2 min
{p∈Rk[x]:p(1)=1}

{

‖(G− I)p(G)‖2 + λ

‖x0 − x∗‖2 ‖p‖
2

}

,

≤ ‖x0 − x∗‖2 min
{p∈Rk[x]:p(1)=1}

{

‖G− I‖2‖p(G)‖2 + λ

‖x0 − x∗‖2 ‖p‖
2

}

,

≤ ‖x0 − x∗‖2 min
{p∈Rk[x]:p(1)=1}

{

‖p(G)‖2 + λ

‖x0 − x∗‖2 ‖p‖
2

}

,

where ‖p‖ is the ℓ2 norm of the coefficients of p. For simplicity, we write λ̄ = λ/‖x0 − x∗‖ to be the

normalized value of λ. In the optimization problem, since ‖G‖ ≤ σ, we can consider the worst-case over

all symmetric matrices M with ‖M‖ ≤ ‖G‖ and M � 0, written

min
{p∈Rk[x]:p(1)=1}

{
‖p(G)‖2 + λ̄‖p‖2

}
≤ min

{p∈Rk[x]:p(1)=1}
max

M�0, ‖M‖≤σ

{
‖p(M)‖2 + λ̄‖p‖2

}
.

Because M is symmetric, we only need to look at its eigenvalues which are inside the segment [0, σ],

min
{p∈Rk[x]:p(1)=1}

max
M�0, ‖M‖≤σ

{
‖p(M)‖2 + λ̄‖p‖2

}
= min

{p∈Rk[x]:p(1)=1}
max
x∈[0,σ]

{
p2(x) + λ̄‖p‖2

}
,

= S2
σ(k, λ̄).

This means that (26) is bounded by

min
{p∈Rk[x]:p(1)=1}

{
‖(G− I)p(G)(x0 − x∗)‖2 + λ‖p‖2

}
≤ ‖x0 − x∗‖2S2

σ(k, λ̄). (27)

It remains to link the optimization problem to the accuracy of the extrapolation. Indeed,

∥
∥
∥
∥
∥

k∑

i=0

(c∗λ)ixi − x∗

∥
∥
∥
∥
∥

2

=

∥
∥
∥
∥
∥
(G− I)−1

k∑

i=0

(c∗λ)iri

∥
∥
∥
∥
∥

2

,

≤
∥
∥(G− I)−1

∥
∥
2

∥
∥
∥
∥
∥

k∑

i=0

(c∗λ)iri

∥
∥
∥
∥
∥

2

,

=
∥
∥(G− I)−1

∥
∥
2





∥
∥
∥
∥
∥

k∑

i=0

(c∗λ)iri

∥
∥
∥
∥
∥

2

+ (λ− λ)‖c∗λ‖2


 .
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By definition, of c∗λ,

∥
∥
∥
∥
∥

k∑

i=0

(c∗λ)iri

∥
∥
∥
∥
∥

2

+ λ‖c∗λ‖2 = min
p∈Rk[x] : p(1)=1

{
‖(G − I)p(G)(x0 − x∗)‖2 + λ‖p‖2

}
.

We proved in (27) that this quantity can be bounded by S2
σ(k, λ̄)‖x0 − x∗‖2, so we finally have

∥
∥
∥
∥
∥

k∑

i=0

(c∗λ)ixi − x∗

∥
∥
∥
∥
∥
≤ ‖(G− I)−1‖

√

S2
σ(k, λ̄)‖x0 − x∗‖2 − λ‖c∗λ‖2,

which is the desired result.

Regularized Chebyshev polynomials are crucial for the bound on the accuracy of Algorithm 2. Un-

fortunately, there is no explicit expressions for Sσ(k, α) in (24). However, this value can be computed

numerically using sum-of-squares optimization. We show in Figure 2 the difference of performances when

using the coefficients of the regularized Chebyshev polynomial instead of its non-regularized version.

We briefly recall basic results on Sum of Squares (SOS) polynomials and moment problems [Nesterov,

2000; Lasserre, 2001; Parrilo, 2000], which will allow us to formulate problem (24) as a (tractable) semi-

definite program. A univariate polynomial is positive if and only if it is a sum of squares. Furthermore, if

we let m(x) = (1, x, . . . , xk)T we have, for any q(x) ∈ R[2k],

q(x) ≥ 0, for all x ∈ R

m
q(x) = m(x)TCm(x), for some C � 0,

which means that checking if a polynomial is non-negative on the real line is equivalent to solving a linear

matrix inequality (see e.g. [Ben-Tal and Nemirovski, 2001, §4.2] for details). We can thus write the problem

of computing the maximum of a polynomial over the real line as

minimize t
subject to t− p(x) = m(x)TCm(x), for all x ∈ R

C � 0,
(28)

which is a semidefinite program in the variables p ∈ R
k+1, C ∈ Sk+1 and t ∈ R, because the first contraint

is equivalent to a set of linear equality constraints. Then, showing that p(x) ≥ 0 on the segment [0, σ] is

equivalent to showing that the rational fraction

p

(
σx2

1 + x2

)

is non-negative on the real line, or equivalently, that the polynomial

(1 + x2)k p

(
σx2

1 + x2

)

is non-negative on the real line. Overall, this implies that problem (24) can be written

Sσ(k, α) = min. t2 + α2‖q‖22
s.t. t− (1 + x2)k+1

((

1− σx2

1+x2

)

q
(

σx2

1+x2

))

= m(x)TCm(x), for all x ∈ R

1
T q = 1, C � 0,

(29)

which is a semidefinite program in the variables q ∈ R
k+1, C ∈ Sk+2 and t ∈ R.
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FIGURE 2. Ratio between the (worst-case) number of iterations required to reach an ar-

bitrary accuracy using the coefficients of the regularized and non-regularized Chebyshev

polynomial for combining the xi. On the left, σ = 0.9 and on the right σ = 0.999. We see

that the impact of the regularization is more important when k is big, or σ close to 1.

3.4. Convergence rate. We will now prove global accuracy bounds, using the following decomposition of

the error term,

k∑

i=0

(c̃∗λ)ix̃i − x∗ =
k∑

i=0

(c∗λ)ixi − x∗

︸ ︷︷ ︸

Linear case

+
k∑

i=0

(∆c̃∗λ)ixi

︸ ︷︷ ︸

Stability

+
k∑

i=0

(c̃∗λ)i(x̃i − xi)

︸ ︷︷ ︸

Nonlinearity

, (30)

where ∆c̃∗λ = c̃∗λ − c∗λ. In the equation above, the first term is the accuracy of the accelerated method in the

noiseless case. The second term corresponds the stability of the coefficients computed by the regularized

algorithm when we have some perturbations in the sequence. The last term is the induced error by the

combination of the perturbations. The following Theorem shows how to bound these three terms by putting

together the results of Propositions 3.4 and 3.2.

Theorem 3.5. Let x̄ be an arbitrary point in R
n. Given iterates x̃i, i = 0, . . . , k + 1 generated by

(Pert. LFPI), Algorithm (2) outputs xextr =
∑k

i=0(c̃
∗
λ)ix̃i. Consider the matrices X̄ and E , with columns

X̄i = xi − x̄ and Ei = x̃i − xi respectively. We have the following bound on the extrapolated point,

‖xextr − x∗‖ ≤ ‖x0 − x∗‖Sσ(k, λ̄)

√

κ2 +
‖X̄‖2‖P‖2

λ3
+

‖E‖√
k + 1

√

1 +
‖R̃‖2
λ

.

where κ > 1 with ‖(G− I)−1‖ ≤ 1
1−σ

= κ.

Proof. The proof is divided into four parts, where the three first parts bound each term of (30) and the

last one combines everything. The bound on the first term comes explicitly from Proposition 3.4, with

∥
∥
∥
∥
∥

k∑

i=0

(c∗λ)ixi − x∗

∥
∥
∥
∥
∥
≤ κ

√

S2
σ(k, λ̄)‖x0 − x∗‖2 − λ‖c∗λ‖2, (31)
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where λ̄ = λ/‖x0 − x∗‖2. The second term can be bounded using the fact that both c∗λ and c̃∗λ sum to one,

so ∆c̃∗λ sum to zero. In this case,

∥
∥
∥
∥
∥

k∑

i=0

(∆c̃∗λ)ixi

∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥

k∑

i=0

(∆c̃∗λ)i(xi − x̄)

∥
∥
∥
∥
∥
,

≤ ‖∆c̃∗λ‖‖X̄‖.
Proposition 3.2 bounds the value of ‖∆c̃∗λ‖ and yields

∥
∥
∥
∥
∥

k∑

i=0

(∆c̃∗λ)ixi

∥
∥
∥
∥
∥
≤ ‖X‖‖P‖

λ
‖c∗λ‖. (32)

For the third term in (30), we have
∥
∥
∥
∥
∥

k∑

i=0

(c̃∗λ)i(x̃i − xi)

∥
∥
∥
∥
∥
≤ ‖c̃∗λ‖‖E‖.

The norm ‖c̃∗λ‖ can be bounded using Proposition 3.2, with

∥
∥
∥
∥
∥

k∑

i=0

(c̃∗λ)i(x̃i − xi)

∥
∥
∥
∥
∥
≤ ‖E‖√

k + 1

√

1 +
‖R̃‖2
λ

. (33)

We finally combine the bounds (31), (32) and (33) according to the decomposition (30), to get
∥
∥
∥
∥
∥

k∑

i=0

(c̃∗λ)ixi − x∗

∥
∥
∥
∥
∥
≤ (34)

κ
√

S2
σ(k, λ̄)‖x0 − x∗‖2 − λ‖c∗λ‖2 + ‖X̄‖‖P‖

λ
‖c∗λ‖+

‖E‖√
k + 1

√

1 +
‖R̃‖2
λ

.

Here, ‖c∗λ‖ appears twice in the expression. We remove it by maximizing the bound over ‖c∗λ‖. The first

two terms of (34) can be written

x 7→
√

a− λx2 + bx.

with a = S2
σ(k, λ̄)‖x0 − x∗‖2 and b = ‖X̄‖‖P‖

λ
. By Proposition A.1 (in the Appendix), its maximum value

is equal to

√
a

√

κ2 +
b2

λ
,

which is

Sσ(k, λ̄)‖x0 − x∗‖
√

κ2 +
‖X̄‖2‖P‖2

λ3
.

The bound on extrapolation accuracy in (34) now becomes

∥
∥
∥
∥
∥

k∑

i=0

(c̃∗λ)ixi − x∗

∥
∥
∥
∥
∥
≤ Sσ(k, λ̄)‖x0 − x∗‖

√

κ2 +
‖X̄‖2‖P‖2

λ3
+

‖E‖√
k + 1

√

1 +
‖R̃‖2
λ

.

which is the desired result.

We can further simplify the bound above by bounding ‖P‖ using σ, E and ‖X̄‖.
14



Proposition 3.6. Let P the perturbation matrix defined in (17). Then

‖P‖ ≤ 4(‖E‖‖R‖ + ‖E‖2),

‖R‖ ≤ 1− σk+1

1− σ
‖x0 − x∗‖,

where E is defined in Theorem 3.5, R is the matrix of residuals for the sequence xi generated by (LFPI), for

‖G‖ ≤ σ.

Proof. We begin by the bound on R,

‖R‖ ≤
k∑

i=0

‖ri‖ ≤
k∑

i=0

‖G‖i‖r0‖ ≤
k∑

i=0

σi‖r0‖.

Since r0 = (G − I)(x0 − x∗), and ‖G − I‖ ≤ 1, we have ‖r0‖ ≤ ‖x0 − x∗‖. Injecting this result in the

previous bound gives the desired result,

‖R‖ ≤
k∑

i=0

σi‖x0 − x∗‖ =
1− σk+1

1− σ
‖x0 − x∗‖.

Now we prove the bound on ‖P‖. Let R̃ = R+∆ for some perturbation matrix ∆. Then

‖P‖ = ‖RTR− R̃T R̃‖,
≤ 2‖∆‖‖R‖ + ‖∆‖2.

It remains to bound ‖∆‖. Consider X̄, where each column of X̄ = (xi − x̄) for some point x̄. Then we can

build R from X,

R = X̄






−1 1
−1 1

. . .




 = X̄D.

It is possible to show ‖D‖ ≤ 2. Using the same logic, we can build R̃,

R̃ = (X + E)D = R+ ED.

By identification, we have ∆ = ED, so ‖∆‖ ≤ ‖D‖‖E‖ ≤ 2‖E‖.

Assuming again ‖G‖ ≤ σ, the following propositions bound ‖X̄‖ when x̄ = x∗.

Proposition 3.7. Let X̄ be the matrix built with the columns X̄i = xi−x̄, where the sequence xi is generated

by (LFPI) and x̄ = x∗. If ‖G‖ ≤ σ, where G is the matrix present in (LFPI), the norm of X̄ is bounded by

‖X̄‖ ≤ 1− σk+1

1− σ
‖x0 − x∗‖. (35)

Proof. Since each column of X̄ correspond to xi − x∗,

‖X̄‖ ≤
k∑

i=0

‖xi − x∗‖ ≤
k∑

i=0

‖Gi(x0 − x∗)‖ ≤
k∑

i=0

‖G‖i‖x0 − x∗)‖.

Because ‖G‖ ≤ σ < 1,

‖X̄‖ ≤ 1− σk+1

1− σ
‖x0 − x∗‖,

which is the desired result.

The bound of Theorem 3.5 is quite generic. For now, we only need a sequence x̃k generated by a perturbed

fixed-point process which is convergent and differentiable, and the accuracy depends on matrices R̃ and E .

The next section will bound these quantities when the fixed point process is the gradient descent algorithm.
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FIGURE 3. Convergence speedup relative to Nesterov’s accelerated method of theoretical

bound in Theorem 3.5 and gradient method, using upper bounds from Propositions 3.6, 3.7

and 3.8. We see that our (highly conservative) bound shows a slight speedup when k is well

chosen.

3.5. Accelerating Gradient Descent. Assume the sequence x̃i is generated by the gradient descend algo-

rithm,

x̃i+1 = x̃i −
1

L
f ′(x̃i),

where f is a µ-strongly convex, L-smooth function with a Lipschitz-continuous Hessian with constant M .

In this case, we can bound the values ‖R̃‖ and ‖E‖ and hence ‖P‖. We show the following result in Section

A.2.

Proposition 3.8. When using gradient method on a µ-strongly convex, L-smooth function with a Lipschitz-

continuous Hessian with constant M , we have the following bounds,

‖R̃‖ ≤ 1− σk+1

1− σ
L‖x0 − x∗‖, (36)

‖E‖ ≤ (k + 2)2
M

4L
‖x0 − x∗‖2, (37)

where σ = 1− µ
L

satisfies ‖G‖ ≤ σ.

Using these expressions, we can compare convergence rates between convergence acceleration in Al-

gorithm 2 and Nesterov’s method. In Figure 3 we illustrate the difference on a particular instance where

‖x0−x∗‖ = 10−4, L = 1, µ = M = 0.1. We see that, despite the highly conservative nature of this bound,

for small k at least our method is faster than Nesterov’s acceleration.

When using the gradient method, this result bounds all quantities present in Theorem 3.5 as a function of

µ, L, M and ‖x0 − x∗‖. Asymptotically, i.e. when ‖x0 − x∗‖ → 0 and we are starting close enough to the

optimal point, we show that we recover the acceleration rate for linear sequences in Proposition 2.3 if the

regularization parameter λ il well-chosen.

Proposition 3.9. Assume we used the gradient method on a L-smooth and µ-strongly convex function with

Lipschitz-continuous Hessian to generate the sequence x̃i. Setting λ = O(‖x0 − x∗‖s) with s ∈]2, 83 [
and ‖x0 − x∗‖ → 0 (i.e., starting close enough to the optimal point), then the rate of convergence of the

extrapolated point is bounded by

lim
‖x0−x∗‖→0

‖∑k
i=0 c̃

∗
λx̃i − x∗‖

‖x0 − x∗‖ ≤ κ
2βk

1 + β2k
, β =

1−
√
κ−1

1 +
√
κ−1

,
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where κ = L
µ

.

Proof. The bounds above show

‖X̄‖ = ‖R̃‖ = O(‖x0 − x∗‖) , ‖E‖ = O(‖x− x∗‖2) , ‖P‖ = O(‖x0 − x∗‖3).
Let λ = O(‖x0 − x∗‖s) for some scalar s. The bound of Theorem 3.5 normalized by ‖x0 − x∗‖ becomes

Sσ(k,O(‖x0 − x∗‖s−2))
√

κ2 +O(‖x0 − x∗‖8−3s) +
√

O(‖x0 − x∗‖2) +O(‖x0 − x∗‖4−s).

If 4− s < 0, clearly the last terms vanishes when ‖x0 − x∗‖ → 0. It remains to analyze

lim
‖x0−x∗‖→0

Sσ(k,O(‖x0 − x∗‖s−2))
√

κ2 +O(‖x0 − x∗‖8−3s).

If s ∈]2, 8/3[ then s− 2 > 0 and 8 − 3s > 0, implying (‖x0 − x∗‖s−2) → 0 and O(‖x0 − x∗‖8−3s) → 0
when ‖x0 − x∗‖ → 0. The bound finally becomes

lim
‖x0−x∗‖→0

‖∑k
i=0 c̃

∗
λx̃i − x∗‖

‖x0 − x∗‖ ≤ κSσ(k, 0).

However, Sσ(k, 0) is exactly equal to the maximum value of the rescaled (non-regularized) Chebyshev

polynomial Tk(x, σ), so by equation (9),

Sσ(k, 0) = max
x∈[0,σ]

Tk(x, σ) =
2βk

1 + β2k
.

This result conclude the proof.

In other words, the result above means that the bound of Theorem 3.5 tends to be the bound of Propo-

sition 2.3 (for the case where k < m) and, asymptotically, we recover the optimal rate of convergence in

[Nesterov, 2013]. In fact, the result may also hold for other kinds of methods, because the proof only needs

‖X̄‖ = ‖R̃‖ = O(‖x0 − x∗‖) , ‖E‖ = O(‖x− x∗‖2) , ‖P‖ = O(‖x0 − x∗‖3).
These assumptions are not too restrictive, and are often encountered when using deterministic, twice-

differentiable, linearly convergent iterations g in (FPI).

In practice of course, ‖x − x∗‖ is unknown and the regularization parameter λ should decrease fast

enough to ensure Sσ(k, λ̄) → Sσ(k, 0), but not too fast otherwise the algorithm becomes unstable. An

adaptive strategy thus ensures a good convergence rate, which is what we detail next.

3.6. Adaptive regularization. The major problem of the regularized Algorithm 2 is the presence of the

parameter λ, unknown in advance. Of course, one can use the bound in Theorem 3.5 to search the best λ,

but this requires a lot of information on the problem, like the constants L, µ and M as well as the distance

to the optimum ‖x0 − x∗‖. Moreover, the bound is extremely pessimistic and does not correspond to the

good numerical performances of the algorithm.

To avoid this problem we use adaptive strategy to find λ, based on grid search, which requires k additional

calls to f(x). In comparison, we also need to call k times the oracle for common adaptive strategy in the

(accelerated) gradient method. For example, the backtracking line-search over the constant L requires the

evaluation of f(xi) at each iteration i = 1...k.

Finally, the introduction of the regularization parameter introduces some damping in the acceleration

algorithm, in the sense that the step length xextr(λ) − x0 is reduced with higher values of λ. A simple line

search over the step-size, which consists in finding a good scalar t which minimizes the function, solving

min
t>0

f
(
x0 + t(xextr(λ)− x0

︸ ︷︷ ︸

Extrapolation step

)
)
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significantly improves the solution. Nevertheless, this requires further calls to f(x), and an inexact line-

search is usually preferable. We start with t = 1, then multiply the value by two until the objective function

increases,

f
(
x0 + t(xextr(λ)− x0)

)
< f

(
x0 + 2t(xextr(λ)− x0)

)
.

In our numerical experiments, this line-search dramatically increases acceleration performances.

We summarize all the steps detailed above as the Adaptive Regularized Convergence Acceleration Al-

gorithm 3. The only required inputs are the sequence x̃i generated by the optimization algorithm and the

objective function f .

Algorithm 3 Adaptive Regularized Nonlinear Acceleration of Convergence

Input: Sequence {x̃0, x̃1, ..., x̃k+1}, bounds [λmin, λmax], objective function f(x).
1: Divide the segment [λmin, λmax] into k points {λj} using a logarithmic scale.

2: Compute the residual matrix R̃ such that R̃i = x̃i+1 − x̃i.
3: Build the matrix M = R̃T R̃/‖R̃T R̃‖
4: for j in 1...k do

5: Solve in z the linear system (M + λj)z = 1

6: Normalize the solution, c̃∗λj
= z/1T z

7: Compute xextr(λj) =
∑k

i=0(c̃
∗
λj
)
i
x̃i

8: end for

9: Pick x∗extr = argminj=1..k f(xextr(λj))
10: Define Ft = f(x0 + t(x∗extr − x0))
11: Initialize with t = 1
12: while F2t < Ft do

13: Update t = 2t
14: end while

Output: Return (x0 + t(x∗extr − x0)), the extrapolated point.

3.7. Computational Complexity of Convergence Acceleration. In Algorithm 2, computing the coeffi-

cients c̃∗λ means solving the k× k system (R̃T R̃+ λI)z = 1. We then get c̃∗λ = z/(1T z). This can be done

in both batch and online mode. We will see that, in any case, we end with a complexity of O(nk2 + k3), for

a small value of k (usually, k = 5). The complexity of the acceleration algorithm is linear in the dimension,

thus adding a negligible additional computation cost to the original procedure.

3.7.1. Online updates. Here, we receive the vectors ri one by one from the optimization algorithm, and

we would like to solve the linear system in parallel of the optimization algorithm. In this case, we perform

low-rank updates on the Cholesky factorization of the system matrix. At iteration i, we have the Cholesky

factorization LLT = R̃T R̃+ λI , where L is a triangular matrix. We receive a new vector r+ and we want

L+L
T
+ =

[
L 0
aT b

] [
LT a
0 b

]

=

[
R̃T Ũ + λI R̃T r+
(R̃T r+)

T rT+r+ + λ

]

.

We can explicitly solve this system in variables a and b, and the solutions are

a = L−1R̃T r+, b = aTa+ λ.

The complexity of this update is thus O(i n + i2), i.e. the matrix-vector multiplication of R̃T r+ with cost

O(i n) and solving a i × i triangular system with cost O(i2). Since we need to do it k times, the final

complexity is thus O(nk2 + k3).
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3.7.2. Batch mode. The complexity is divided in two parts: First, we need to build the linear system itself.

Since R̃ ∈ R
n×k, it takes O(nk2) flops to perform the multiplication. Then we need to solve the linear

system (R̃T R̃ + λI)z = 1 which can be done by Gaussian elimination (in particular when k is small), by

Cholesky factorization or by using an iterative method like conjugate gradient. It takes O(k3) flops to solve

the linear system in the worst case, meaning that the overall complexity is O(nk2 + k3).

4. EXTENSIONS & LINKS WITH OTHER METHODS

4.1. Smooth Minimization. We can extend our results to smooth functions that are not strongly convex

using a simple regularization trick which we trace back at least to [Hazan, 2014]. Suppose we seek to solve

min
x∈Rn

f(x)

in the variable x ∈ R
n, where f(x) has a Lipschitz continuous gradient with parameter L with respect to the

Euclidean norm, but is not strongly convex. Assume for simplicity that the initial iterate x0 is close enough

to the optimum so that D , ‖x0−x∗‖ ≥ ‖xk −x∗‖ for any k ≥ 0. We can approximate the above problem

by

min
x∈Rn

fε(x) , f(x) +
ε

2D2
‖x0 − x‖22 (38)

in the variable x ∈ R
n, where fε(x) has a Lipschitz continuous gradient with parameter L + ε/D2 with

respect to the Euclidean norm, is strongly convex with parameter ε/D2 with respect to the same norm.

Furthermore fε(x) is an ε approximation of f(x) near the optimum and we get

f(xk)− f(x∗) = fε(xk)−
ε

2D2
‖x0 − xk‖22 − fε(x

∗) +
ε

2D2
‖x0 − x∗‖22,

≤ fε(xk)− fε(x
∗) +

ε

2
,

≤ fε(xk)− fε(x
∗
ε) +

ε

2
,

using the smoothness of fε(x) and writing x∗ε the optimum of problem (38). It suffices to optimize fε up

to ε/2 to find an ε-solution for the original problem. The linear convergence of gradient [Nesterov, 2013]

algorithms guarantees

fε(xk)− fε(x
∗
ε) =

(L+ ε)D2

2
rk , r = 1− 2ε

LD2 + 2ε
.

The number of iterations required to reach a target precision ε/2 is thus bounded by

k = O

(
log((L+ ε)D2/ε)

log(1/r)

)

.

By replacing the value of r, we have

log(1/r) ∼ 1− r =
LD2

ε
,

while accelerated algorithms have r = 1−
√

ε/(LD2 + ε) which yields

log(1/r) ∼
√

LD2

ε
.

Up to a logarithmic constant, these upper bounds match the complexity of gradient and accelerated gradient

methods. Overall, an algorithm for strongly convex function used with this regularization trick recovers an

ε-approximated solution. This means we can always reduce a not strongly convex problem to (1), where our

acceleration analysis applies.
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4.2. Convergence Acceleration on Gradient Method for Quadratic Functions. Assume we want to min-

imize a quadratic function f . Its gradient reads, for A ∈ R
n×n a symmetric positive definite matrix,

∇f(x) = A(x− x∗).

This formulation is equivalent to ∇f = Ax − b, where b = Ax∗ but it will be more convenient in this

section to manipulate directly x∗. Let µI � A � LI so that the function f is strongly convex of constant µ
and smooth of constant L. If we use the fixed-step gradient method, with step-size 1/L,

xi+1 = xk −
1

L
∇f(xk) = xk −

1

L
A(xk − x∗). (39)

The fixed point iteration corresponds to

g(x) = (I −A/L)(x − x∗) + x∗.

Notice that g(xk+1) and (39) are equivalent. The Jacobian of g is thus equal to (I − A/L). We have the

following bounds on G,

0 � G �
(

1− µ

L

)

I.

By consequence, σ = 1− µ
L

, thus the rate of convergence of our method is linear and the bound is

‖xk − x∗‖ ≤
(

1− µ

L

)k

‖x0 − x∗‖.
However, if we use Algorithm (1), we combine the iterates xi with coefficients c∗ (computed by formula

(15)). By equations (5) and (13) the accuracy of this extrapolation is bounded by

∥
∥
∥
∥
∥

N∑

i=0

c∗i xi − x∗

∥
∥
∥
∥
∥
≤ L

µ

2βk

1 + β2k
‖x0 − x∗‖, where β =

1−
√

µ
L

1 +
√

µ
L

. (40)

This bound matches the rate obtained using the optimal method in [Nesterov, 2013]. Outside of the normal-

ization constraint, this is very similar to the convergence analysis of Lanczos’ method.

4.3. Convergence acceleration versus conjugate gradient. The rate of convergence obtained above also

matches that of the conjugate gradient within a factor L/µ. Indeed, the acceleration algorithm has a strong

link with the conjugate gradient. Denote ‖v‖M =
√
vTMv the norm induced by the positive definite matrix

M . Also, assume we want to solve Ax = b using conjugate gradient method (where A is assumed to be

symmetric and positive definite). By definition, at the k-th iteration, the conjugate gradient computes an

approximation of x∗ which follows

argmin
x∈Kk

‖x− x∗‖A,

where Kk = span{b,Ab, ..., Ak−1b} = span{Ax∗, A2x∗, ..., Akx∗} is called a Krylov subspace. Since the

constraint x ∈ Kk impose us to build x from a linear combination of the basis of Kk, we can write

x =
k−1∑

i=0

ciA
i+1x∗ = q(A)x∗,

where q(x) is a polynomial of degree k and q(1) = 0. So the conjugate gradient method solves

argmin
{q∈Rk [x]: q(0)=0}

‖q(A)x∗ − x∗‖A = argmin
{q̂∈Rk [x]: q̂(0)=1}

‖q̂(A)x∗‖A,

which is very similar to the equations in (12). However, while conjugate gradient has access to an oracle

giving the result of the product between A and any vector v, the acceleration algorithm can only use the

iterations produced by (LFPI), so it does not require the knowledge of A. Moreover, the convergence of

conjugate gradient is analyzed in another norm (‖ · ‖A instead of ‖ · ‖2), which explains why a condition

number appears in the bound (40).
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Analysis of convergence on conjugate gradient often use Chebyshev’s polynomial, like the acceleration

algorithm (1). We will now see that Nesterov’s algorithm generates also a polynomial, making the conver-

gence analysis for quadratics easier.

4.4. Chebyshev’s Acceleration and Nesterov’s Accelerated Gradient Method. In Proposition 2.1, we

bounded the rate of convergence of Algorithm 1 using Chebyshev polynomials. In fact, this is exactly the

idea behind Chebyshev’s semi-iterative method, which uses these coefficients in order to accelerate gradient

descent on quadratic functions. Here, we present Chebyshev semi-iterative acceleration and its analysis,

then use the same arguments on Nesterov’s method. These points were also discussed in [Hardt, 2013].

Assume as above that we use the gradient method to minimize a quadratic function, we get the recurrence

(39). We see easily that

xk = x∗ +Gk(x0 − x∗).

Since ‖G‖2 ≤ 1− µ
L
= σ, the rate of convergence is ‖xk −x∗‖2 ≤ σk‖x0 −x∗‖2. Moreover, if we average

the vectors xi using coefficients ci (with unitary sum) from 0 to k, we get

k∑

i=0

cixi = x∗ + p(G)(x0 − x∗)

for p ∈ Rk[x] a polynomial of coefficients c. Instead of using Algorithm (1), which minimizes the com-

bination of the residuals instead of the error term, we will use the coefficients of the rescaled Chebyshev

polynomial (8). Recall this polynomial makes ‖p(G)‖2 small for all matrices G such that 0 � G � σI . In

other terms, the rescaled Chebyshev polynomial satisfies

T (x) = arg min
p∈R[x]
p(1)=1

max
0�G�σI

‖p (G)‖2 ,

= Ck(tσ(x)).

where Tk and tσ are also defined in (8). Furthermore, the Chebyshev polynomials can be constructed using

a three-terms recurrence

Ck(x) = xCk−1(x)− Ck−2(x).

The same holds for Tk(x), with

αk = t(1)αk−1 − αk−2,

zk−1 = yk−1 −∇f(yk−1),

yk =
αk−1

αk

(
2zk−1

σ
− yk−1

)

− αk−2

αk
yk−2.

This scheme looks very similar to Nesterov’s accelerated gradient method, which reads

zk−1 = yk−1 −∇f(yk−1)

yk = zk−1 + βk(zk−1 − zk−2)

Compared with Chebyshev acceleration, Nesterov’s scheme is iteratively building a polynomial Nk(x) with

yk − y∗ = Nk (G) (y0 − x∗). If we replace zk by its definition in the expression of yk in the Nesterov’s

scheme we get the following recurrence of order two

yk − x∗ = (1 + βk)G(yk−1 − y∗)− βkG(yk−2 − y∗),

= G ((1 + βk)Nk−1 (G)− βkNk−2 (G)) (y0 − x∗).

We can extract the polynomial Nk, which reads

Nk(x) = x((1 + βk)Nk−1(x)− βkNk−2(x)),

with initial conditions N0(x) = 1 and N1(x) = x. Notice that Nk(1) = 1 for all k.
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When minimizing smooth strongly convex functions with Nesterov’s method, we use

βk =

√
L−√

µ√
L+

√
µ
.

Moreover, empirically at least, the maximum value of Nk(x) in the interval [0, σ] is Nk(σ). We conjecture

that this always holds. We thus have the following recurrence

Nk(σ) = σ ((1 + β)Nk−1(σ)− βNk−2(σ))

To get linear convergence with rate r, we need Nk ≤ rNk−1 ≤ r2Nk−2, or again

Nk(σ) ≤ σ ((1 + β) rNk−2(σ)− βNk−2(σ)) = σ ((1 + β) r − β)Nk−2(σ).

Now, consider the condition

σ ((1 + β) r − β) ≤ r2.

We have that Nesterov’s coefficients and rate, i.e. β = (1−
√

µ/L)/(1 +
√

µ/L) and r = (1 −
√

µ/L),

satisfy this condition, showing that Nesterov’s method converges with a rate at least r = (1 −
√

µ/L) on

quadratic problems. This provides an alternate proof of Nesterov’s acceleration result on these problems

using Chebyshev polynomials (provided the conjecture on N(σ) holds).

5. NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of the adaptive acceleration methods without/with line-search

on the step size, described in Algorithm 3.

5.1. Minimizing logistic regression. We begin by testing our methods on a regularized logistic regression

problem written

f(w) =

m∑

i=1

log
(
1 + exp(−yiξ

T
i w)

)
+

τ

2
‖w‖22,

where Z = [ξ1, ..., ξm]T ∈ R
m×n is the design matrix and y is a {−1, 1}m vector of labels. The Lipschitz

constant of the logistic regression is L = ‖Z‖22/4 + τ and the strong convexity parameter is µ = τ . We

solve this problem using several algorithms.

• Fixed-step gradient method for smooth strongly convex functions [Nesterov, 2013, Th. 2.1.15]

xk+1 = xk −
2

L+ µ
∇f(xk).

• Accelerated gradient method for smooth strongly convex functions [Nesterov, 2013, Th. 2.2.3]

xk+1 = yk −
1

L
∇f(yk),

yk+1 = xk+1 +

√
L−√

µ√
L+

√
µ
(xk+1 − xk) .

• The accelerated gradient method with backtracking line-search on the parameter L.

• The Adaptive acceleration algorithm 3 on k iterations of gradient descent without line search (writ-

ten RNA k).

• The Black-box acceleration algorithm 3 (written RNA k + LS) on k iterations of gradient descent.
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The matrix Z is build using datasets Sonar (60 features, 208 points), Madelon (500 features, 4400 points)

or Sido0 (4932 features, 12678 points), concatenated with a column of ones. The optimization is done on

the raw data, i.e. without normalization. The starting point is always w0 = 0.

Figure 4 shows the importance of the regularization in the acceleration algorithm. Indeed, if we use

Algorithm 1 then the norm of the inverse of R̃T R̃ may be huge, so the computation of the coefficients c̃∗λ is

unstable. This leads to an unreliable acceleration method, which may improve sometimes the accuracy, but

often making the process divergent. In Figures 5, 6 and 7, we see that our algorithm has a similar behavior

to the conjugate gradient: unlike the Nesterov’s method, where we need to provide parameters µ and L,

the acceleration algorithm adapts himself in function of the spectrum of G (so it can exploit the good local

strong convexity parameter), without any prior specification. We can, for example, observe this behavior

when the global strong convexity parameter is bad but not the local one.
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FIGURE 4. Logistic regression on Madelon UCI Dataset with a condition number equal

to 1.2 · 109, solved using Gradient method, Nesterov’s method and two versions of the

acceleration algorithm applied to the gradient descent: the acceleration algorithm 1 (called

Acc. 5) and the adaptive Regularized Nonlinear Acceleration algorithm 3 (called RNA 5)

applied to 5 iterations of the gradient descend. We see that without regularization, the

acceleration is unstable because ‖(R̃T R̃)−1‖2 is huge (cf. Proposition 3.1).

6. CONCLUSION AND PERSPECTIVES

In this paper, we developed a method which is able to accelerate, under some regularity conditions, the

convergence of a sequence {x̃i} without any information on the algorithm which generated this sequence.

The regularization parameter used in the acceleration method is found by a simple and inexpensive grid-

search. The algorithm itself is simple as it only requires solving a small linear system. Also, we showed

(using gradient method on logistic regression) that the strategy which consists in restarting the algorithm

after an extrapolation method can lead to significantly improved convergence rates. Future work will consist

in improving the performance of the algorithm by exploiting the structure of the perturbations matrix in

some cases and extending the algorithm to the stochastic case and to the non-symmetric case.
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FIGURE 5. Logistic regression on sido0 dataset, with τ = 102 (condition number = 1.5 · 105)
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FIGURE 6. Logistic regression on sonar dataset. From top to bottom, we used τ = 10−1

(condition number = 7 · 103) and τ = 10−6 (condition number = 7 · 108).
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FIGURE 7. Logistic regression on Madelon dataset. From top to bottom, we used , τ = 107

(condition number = 6·103), τ = 102 (condition number = 1.2·109 and τ = 10−3 (condition

number = 6 · 1013).
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APPENDIX A. MISSING PROPOSITIONS AND PROOFS

A.1. Missing propositions.

Proposition A.1. Consider the function

f(x) =
√

a− λx2 + bx

defined for x ∈ [0,
√

a/λ]. The its maximal value is attained at

xopt =
b
√
a√

λ2κ2 + λb2

and its maximal value is thus, if xopt ∈ [0,
√

a/λ],

fmax =
√
a

√

κ2 +
b2

λ
. (41)

Proof. The (positive) root of the derivative of f follows

b
√

a− λx2 − κλx = 0 ⇔ x =
b
√
a√

λ2κ2 + λb2
.

If we inject the solution in our function, we obtain its maximal value,

κ

√

a− λ

(
b
√
a√

λ2κ2 + λb2

)2

+ b
b
√
a√

λ2κ2 + λb2
= κ

√

a− λ
b2a

λ2κ2 + λb2
+ b

b
√
a√

λ2κ2 + λb2
,

= κ

√

a− λ
b2a

λ2κ2 + λb2
+ b

b
√
a√

λ2κ2 + λb2
,

= κ

√

aλ2κ2

λ2κ2 + λb2
+ b

b
√
a√

λ2κ2 + λb2
,

=
√
a

κ2λ+ b2√
λ2κ2 + λb2

,

=

√
a

λ

√

λ2κ2 + λb2.

The simplification with λ in the last equality concludes the proof.

A.2. Proof of proposition 3.8. First, we show that the choice σ = 1 − µ
L

satisfies ‖G‖ = ‖g′(x∗)‖ ≤ σ.

Our fixed-point function g reads

g(x) = x− 1

L
f ′(x).

Since g′(x) = I − 1
L
f ′′(x), we have g′(x∗) = I − 1

L
f ′′(x∗). Because f is µ-strongly convex, f ′′(x) � µI ,

in particular at x = x∗. In conclusion,

‖g′(x∗)‖ = ‖I − 1

L
f ′′(x∗)‖ ≤ 1− µ

L
.

Now, consider the matrix R̃. Since the i− th column R̃i is equal to x̃i − x̃i−1,

‖R̃i‖ = ‖x̃i − x̃i−1‖,

=
1

L
‖f ′(x̃i)‖,

≤ ‖x̃i − x∗‖.
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In the last inequality, we used the fact that f is L-Lipschitz, so ‖f(x) − f(x∗)‖ ≤ L‖x − x∗‖. It is also

possible to prove [Nesterov, 2013] that gradient method converges at rate

‖x̃i+1 − x∗‖ ≤ σ‖xi − x∗‖.

It remains to link this quantity to ‖R̃‖,

‖R̃‖ ≤
k∑

i=0

‖Ri‖,

≤
k∑

i=0

σi‖x0 − x∗‖,

=
1− σk+1

1− σ
‖x0 − x∗‖.

We continue with ‖E‖. We express ‖Ei‖ = ‖x̃i+1−xi+1‖2 in function of ‖x̃0−x0‖2 using a recursion with

‖x̃i − xi‖2,

x̃i+1 − xi+1 = x̃i −
1

L
∇f(x̃i)− xi +

1

L
∇2f(x∗)(xi − x∗),

= x̃i − xi −
1

L
(∇f(x̃i)−∇2f(x∗)(xi − x∗)),

=

(

I − ∇2f(x∗)

L

)

(x̃i − xi)−
1

L
(∇f(x̃i)−∇2f(x∗)(x̃i − x∗)).

Since our function has a Lipschitz-continuous Hessian, it is possible to show that (Nesterov [2013], Lemma 1.2.4)

∥
∥∇f(y)−∇f(x)−∇2f(x)(y − x)

∥
∥
2
≤ M

2
‖y − x‖2. (42)

We can thus bound the norm of the error at the ith iteration,

‖xi+1 − x̃i+1‖2 ≤
∥
∥
∥
∥
I − ∇2f(x∗)

L
)

∥
∥
∥
∥
2

‖xi − x̃i‖2 +
1

L

∥
∥∇f(x̃i)−∇2f(x∗)(x̃i − x∗)

∥
∥
2
,

= ‖g′′(x∗)‖2‖xi − x̃i‖2 +
1

L

∥
∥∇f(x̃i)−∇f(x∗)−∇2f(x∗)(x̃i − x∗)

∥
∥
2
.

By equation (42), and because ‖g′′(x∗)‖ ≤ σ, we have

‖xi+1 − x̃i+1‖2 ≤ σ‖xi − x̃i‖2 +
M

2L
‖x̃i − x∗‖22 ,

≤ σ‖xi − x̃i‖2 +
M

2L
σ2i‖x0 − x∗‖22,

≤ ‖xi − x̃i‖2 +
M

2L
‖x0 − x∗‖22.

The simplification in the last line greatly simplifies future computations. We thus have the bound

‖xi+1 − x̃i+1‖2 ≤ (i+ 1)
M

2L
‖x0 − x∗‖2.
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Finally,

‖E‖ ≤
k∑

i=0

‖xi+1 − x̃i+1‖2,

≤
k∑

i=0

(i+ 1)
M

2L
‖x0 − x∗‖2,

≤ (k + 2)2
M

4L
‖x0 − x∗‖2.

Despite the simplification made earlier, the results of this bounds are close to the one obtained without

simplification.
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