Damien Scieur
email: damien.scieur@inria.fr

Alexandre D'aspremont
email: aspremon@ens.fr

Francis Bach
email: francis.bach@inria.fr

REGULARIZED NONLINEAR ACCELERATION

Keywords: Acceleration, ε-algorithm, extrapolation. A SUBSET

We describe a convergence acceleration technique for unconstrained optimization problems. Our scheme computes estimates of the optimum from a nonlinear average of the iterates produced by any optimization method. The weights in this average are computed via a simple linear system, whose solution can be updated online. This acceleration scheme runs in parallel to the base algorithm, providing improved estimates of the solution on the fly, while the original optimization method is running. Numerical experiments are detailed on classical classification problems.

INTRODUCTION

Suppose we seek to solve the following optimization problem

min x∈R n f (x) (1)
in the variable x ∈ R n , where f (x) is strongly convex with parameter µ with respect to the Euclidean norm, and has a Lipschitz continuous gradient with parameter L with respect to the same norm. Assume we solve this problem using the fixed-point iteration xi+1 = g(x i), for i = 0, ..., k,

where xi ∈ R n and k is the number of iterations. This iteration is typically produced by an optimization algorithm, e.g. the gradient method with fixed step size, written xi+1 = xi -h∇f (x i), for i = 0, ..., k,

with step length h > 0. Here, we will focus on improving our estimates of the solution to problem (1) by tracking only the iterate sequence xi produced by an optimization algorithm, without any further calls to oracles on g(x).

Since the publication of Nesterov's optimal first-order smooth convex minimization algorithm [START_REF] Nesterov | A method of solving a convex programming problem with convergence rate o (1/k2)[END_REF], significant efforts have been focused on either providing more interpretable views on current acceleration techniques, or on replicating these complexity gains using different, more intuitive schemes. Early efforts sought to directly extend the original acceleration result in [START_REF] Nesterov | A method of solving a convex programming problem with convergence rate o (1/k2)[END_REF] to broader function classes [START_REF] Nemirovskii | Optimal methods of smooth convex minimization[END_REF], allow for generic metrics, line searches, produce simpler proofs [START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF][START_REF] Nesterov | Introductory lectures on convex optimization: A basic course[END_REF] or adaptive accelerated algorithms [START_REF] Nesterov | Universal gradient methods for convex optimization problems[END_REF], etc. More recently however, several authors [START_REF] Drori | Performance of first-order methods for smooth convex minimization: a novel approach[END_REF][START_REF] Lessard | Analysis and design of optimization algorithms via integral quadratic constraints[END_REF] have started using classical results from control theory to obtain numerical bounds on convergence rates that match the optimal rates. Others have studied the second order ODEs obtained as the limit for small step sizes of classical accelerated schemes, to better understand their convergence [START_REF] Su | Advances in Neural Information Processing Systems[END_REF][START_REF] Wibisono | On accelerated methods in optimization[END_REF]. Finally, recent results have also shown how to wrap classical algorithms in an outer optimization loop, to accelerate convergence and reach optimal complexity bounds [START_REF] Lin | A universal catalyst for first-order optimization[END_REF] on certain structured problems.

Here, we take a significantly different approach to convergence acceleration stemming from classical results in numerical analysis. We use the iterates produced by any (converging) optimization algorithm, and estimate the solution directly from this sequence, assuming only some regularity conditions on the function to minimize. Our scheme is based on the idea behind Aitken's ∆ 2 -algorithm [Aitken, 1927], generalized as the Shanks transform [START_REF] Shanks | Non-linear transformations of divergent and slowly convergent sequences[END_REF], whose recursive formulation is known as the ε-algorithm [START_REF] Wynn | On a device for computing the e m (s n) transformation[END_REF] (see e.g. [START_REF] Brezinski | Accélération de la convergence en analyse numérique[END_REF][START_REF] Sidi | Acceleration of convergence of vector sequences[END_REF] for a survey). In a nutshell, these methods fit geometrical models to linearly converging sequences, then extrapolate their limit from the fitted model.

In a sense, this approach is more statistical in nature. It assumes an approximately linear model holds for iterations near the optimum, and estimates this model using the iterates. In fact, Wynn's algorithm [START_REF] Wynn | On a device for computing the e m (s n) transformation[END_REF] is directly connected to the Levinson-Durbin algorithm [Levinson, 1949;[START_REF] Durbin | The fitting of time-series models[END_REF] used to solve Toeplitz systems recursively and fit autoregressive models (the Shanks transform solves Hankel systems, but this is essentially the same problem [START_REF] Heinig | Fast algorithms for toeplitz and hankel matrices[END_REF]). The key difference in these extrapolation techniques is that estimating the autocovariance operator A is not required, as we only focus on the limit. Moreover, the method presents strong links with the conjugate gradient when applied to unconstrained quadratic optimization, but does not further calls to the operator.

We start from a formulation of these techniques known as Anderson Acceleration [START_REF] Anderson | Iterative procedures for nonlinear integral equations[END_REF]], Mešina's Algorithm [START_REF] Mešina | Convergence acceleration for the iterative solution of the equations x= ax+ f[END_REF] or minimal polynomial extrapolation (MPE) [START_REF] Sidi | Acceleration of convergence of vector sequences[END_REF][START_REF] Smith | Extrapolation methods for vector sequences[END_REF]. They use the minimal polynomial of the linear operator driving iterations to estimate the optimum by a nonlinear average of the iterates (i.e. computing a weighted average using weights which are nonlinear functions of the iterates).

Our contribution here is to regularize this procedure and produce explicit bounds on the distance to optimality by controlling stability, thus explicitly quantifying acceleration. We show that these extrapolation algorithms reach optimal performance (asymptotically) and describe several numerical examples where these stabilized estimates often speed up convergence by an order of magnitude. So far, for all the techniques cited above, no proofs of convergence of the estimates were given when the estimation process became unstable. Furthermore, the acceleration scheme runs in parallel with the original algorithm, providing improved estimates of the solution on the fly, while the original method is progressing, so its numerical complexity is marginal.

The paper is organized as follows. In Section 2 we recall basic results behind the acceleration for linear iterations. Then, in Section 3, we generalize these results to nonlinear iterations and show how to fully control the impact of nonlinearity. We use these results to derive explicit bounds on the acceleration performance of our estimates. In Section 4 we connect the acceleration methods to the conjugate gradient method and Nesterov's method. Finally, we present numerical results in Section 5.

CONVERGENCE ACCELERATION

We begin by recalling the core arguments behind convergence acceleration. These ideas have taken various forms over time, known for example as Anderson acceleration [START_REF] Anderson | Iterative procedures for nonlinear integral equations[END_REF], the Eddy-Mesina method [START_REF] Mešina | Convergence acceleration for the iterative solution of the equations x= ax+ f[END_REF][START_REF] Eddy | Extrapolating to the limit of a vector sequence[END_REF] and minimal polynomial extrapolation [START_REF] Cabay | A polynomial extrapolation method for finding limits and antilimits of vector sequences[END_REF][START_REF] Smith | Extrapolation methods for vector sequences[END_REF]. The core idea behind these methods is to use a Taylor expansion of the function g in (FPI) to approximate the fixed point iterations by a vector autoregressive model, then compute a weighted mean of the iterates xi to produce a better estimate of the limit x * . In this paper, we assume x * unique.

Suppose g(x) is differentiable and let G be the Jacobian of g evaluated at x * . In the rest of the paper, we assume G to be symmetric, positive semi-definite and G σI, with σ < 1. Equation (FPI) becomes

xi+1 = g(x *) + G(x i -x *) + O(xi -x * 2), for i = 1, . . . , k.
By neglecting the second order term, and because g(x *) = x * , we obtain the linear fixed-point iteration

x i+1 -x * = G(x i -x *), (LFPI)
where x 0 = x0 and we recognize here a vector autoregressive process. When using the fixed-step gradient method in (2) for example, if ∇ 2 f is the Hessian matrix of f (x), we get

x i+1 -x * = (I -∇ 2 f (x *)) =G (x i -x *).
Because G 2 ≤ σ < 1, the iterates x k converges to x * at a linear rate, with

x i -x * ≤ σ x i-1 -x * ≤ σ i x 0 -x * ,
where • stands for the Euclidean norm here and throughout the paper. We will now see how to improve convergence rates using a linear combination of the previous iterates. Suppose we run k iterations of (LFPI), a linear combination of iterates x i with coefficients c i reads

k i=0 c i x i = k i=0 c i x * + k i=0 c i G(x i -x *) = k i=0 c i x * + k i=0 c i G i (x 0 -x *). (3)
Now define the polynomial

p(z) k i=0 c i z i , (4)
we can write (3) more concisely in terms of the matrix polynomial p(G), setting p(1)

= k i=0 c i = 1 without loss of generality, to get k i=0 c i x i = x * + p(G)(x 0 -x *).
Error term Ideally, we need to find c (or equivalently p) which minimizes the error term p(G)(x 0x *). We will study the error when linearly combining the last k + 1 iterates x i , assuming we have an algorithm computing this optimal combination, i.e.

k i=0 c ⋆ i x i -x * = min {c∈R k+1 : c T 1=1} k i=0 c i G i (x 0 -x *) = min {p∈R k [x]: p(1)=1} p(G)(x 0 -x *) where R k [x]
is the subspace of polynomials of degree at most k and

c ⋆ = argmin {c∈R k+1 : c T 1=1} k i=0 c i G i (x 0 -x *) .
The next proposition produces an uniform bound on the value of this error using Chebyshev polynomials.

Proposition 2.1. Suppose the iterates x i for i = 0, . . . , k are computed using (LFPI), with G the Jacobian of g, assumed to be symmetric, satisfying 0 G σI for σ < 1. Let x * be the fixed point of g. The ℓ 2 norm of the error is bounded, with

k i=0 c ⋆ i x i -x * ≤    2β k 1 + β 2k x 0 -x * if k < m 0 otherwise (5)
where m is the number of distinct eigenvalues of G and

β = 1 - √ 1 -σ 1 + √ 1 -σ < 1. (6)
Proof. Because G is symmetric, it admits the eigenvalue decomposition

G = Q * ΛQ,
where Λ is the diagonal matrix of eigenvalues {λ i , i = 1, . . . , m}, and Q is a unitary matrix. For any

p ∈ R k [x], we have p(G)(x 0 -x *) 2 = Q * p(Λ)Q(x 0 -x *) 2 ≤ p(Λ) 2 (x 0 -x *) 2 = max i=1,...,m |p(λ i)| (x 0 -x *) 2 .
First, assume k ≥ m. The Cayley-Hamilton theorem means that if p(x) is the characteristic polynomial of G, then p(G) = p(Λ) = 0. By assumption none of the λ i is equal to 1 (we assumed λ i ∈ [0, σ] with σ < 1) so we can normalize p so that p(1) = 1 and p(λ i) = 0 for all i = 1, . . . , m.

We now assume k < m. We have, for any polynomial p,

max i=1,...,m |p(λ i)| ≤ max λ∈[λ min ,λmax] |p(λ)|
Because 0 G σ, we have 0 ≤ λ i ≤ σ, so the error bound becomes

min {p∈R k [x]: p(1)=1} p(G)(x 0 -x *) 2 ≤ min {p∈R k [x]: p(1)=1} max λ∈[0,σ] |p(λ)| x 0 -x * 2 (7)
where the right hand side involves a minmax problem, explicitly solved using Chebyshev's polynomials. Let C k be the Chebyshev polynomial of degree k. By definition, C k is a monic polynomial (i.e. a polynomial whose leading coefficient is one) solving [START_REF] Golub | Chebyshev semi-iterative methods, successive overrelaxation iterative methods, and second order richardson iterative methods[END_REF] use a variant of C k (x) to solve the problem in (7), whose solution is a rescaled Chebyshev polynomial given by

C k (x) argmin {p∈R k [x]: p(1)=1} max x∈[-1,1] |p(x)|.
T k (x, σ) = C k (t(x, σ)) C k (t(1, σ)) , where t(x, σ) = 2x -σ σ , (8)
where t(x, σ) is simply a linear mapping from interval [0, σ] to [-1, 1]. Moreover, they show

min {p∈R k [x]: p(1)=1} max λ∈[0,σ] |p(λ)| = max λ∈[0,σ] |T k (λ, σ)| = |T k (σ, σ)| = 2β k 1 + β 2k , (9
)
where β is given by

β = 1 - √ 1 -σ 1 + √ 1 -σ < σ < 1.
Injecting the result of (9) in (7) yields the desired result.

Corollary 2.2. In the case of the gradient method applied on quadratic function with eigenvalues bounded in the interval [µ, L] (this correspond also to a L-smooth and µ-strongly convex function), we have

σ = 1 - µ L < 1.
By consequence, the bound (5) becomes

k i=0 c ⋆ i x i -x * ≤    2β k 1 + β 2k x 0 -x * if k < m 0 otherwise 0 0.
with β = 1 -µ/L 1 + µ/L .
The proof of this proposition suggests T k (x, σ) is a good universal solution for the convergence acceleration problem and we plot both T 3 (x, σ) and T 5 (x, σ) for x ∈ [0, 1] and σ = 0.85 in Figure 1. This solution is called the Chebyshev semi-iterative method in [START_REF] Golub | Chebyshev semi-iterative methods, successive overrelaxation iterative methods, and second order richardson iterative methods[END_REF] and was further studied by e.g. [START_REF] Nemirovskiy | Iterative methods for solving linear ill-posed problems under precise information[END_REF]. Combining the k iterates x i using the coefficients c i in T k (x, σ), we ensure

k i=0 c i x i -x * (1 - √ 1 -σ) k x 0 -x * ≪ σ k x 0 -x *
which means convergence is indeed accelerated. However, this method has some key drawbacks. First, we need to know σ to form T k (x, σ), which is not always the case. For example, in the case of the gradient method, σ depends on the smoothness constant L and the strong convexity constant µ. In the general nonlinear case, σ depends on the spectrum of the Jacobian at the optimum, which is clearly not observed. Second, the algorithm does not allow us to control the magnitude of the coefficients in the polynomial T (x, σ), which has a strong impact on the stability of the algorithm in the presence of numerical errors, or when the iterates are generated by a non-linear function g. Because of stability issues with Chebyshev acceleration, we focus now on a method which will approximately minimize the error p(G)(x 0x *) 2 . Since we of course do not observe G and x * we will work with the residuals

ri = xi+1 -xi = g(x i) -xi , (10
)
when g is a linear function (LFPI) this becomes

r i = x i+1 -x i = (G -I)(x i -x *). (11)
A linear combination of residuals r i with coefficients c i is written

k i=0 c i r i = (G -I) k i=0 c i (x i -x *) = (G -I)p(G)(x 0 -x *).
We recognize the error term we wanted to minimize, multiplied by the matrix (G-I). Using the coefficients which minimize this alternative quantity will approximately minimize the error, as stated in the following proposition.

Proposition 2.3. Let p * (x) be the polynomial solving

p * (x) = argmin {p∈R k [x]: p(1)=1} (G -I)p(G)(x 0 -x *) 2 ,
whose coefficients, written c * , satisfy

c * = argmin {c∈R k+1 : c T 1=1} k i=0 c i r i 2 . (12
)
The iterates x i defined in (LFPI) averaged with coefficients c * satisfy

k i=0 c * i x i -x * ≤ 1 1 -σ min {c∈R k+1 : c T 1=1} k i=0 c i G i (x 0 -x *) , (13
)
where we have assumed 0 G σI, with σ < 1.

Proof. By definition of c * , and using (LFPI),

k i=0 c * i x i -x * = p * (G)(x 0 -x *) , = (G -I) -1 (G -I)p * (G)(x 0 -x *) , ≤ (G -I) -1 (G -I)p * (G)(x 0 -x *) .
By using the definition of p * ,

(G -I)p * (G)(x 0 -x *) = min {p∈R k [x]: p(1)=1} (G -I)p(G)(x 0 -x *) 2 .
We can bound this last error term because G -I ≤ 1, min

{p∈R k [x]: p(1)=1} (G -I)p(G)(x 0 -x *) ≤ min {p∈R k [x]: p(1)=1} (G -I) p(G)(x 0 -x *) , ≤ min {p∈R k [x]:p(1)=1} p(G)(x 0 -x *) .
Using the fact that (G -I) -1 ≤ 1 1-σ yields the desired result.

This leads to the following acceleration algorithm.

Algorithm 1 Nonlinear Acceleration of Convergence

Input: Iterates x 0 , x 1 , . . . , x k+1 ∈ R d . 1: Form R = [r 0 , ..., r k] 2: Solve c * = argmin {c∈R k+1 : c T 1=1} Rc Output: Approximation of x * ensuring (13), computed as k i=0 c * i x i
This acceleration algorithm is called nonlinear because the coefficients c i vary with of x i . This method is also known as Anderson acceleration [START_REF] Anderson | Iterative procedures for nonlinear integral equations[END_REF], the Eddy-Mesina algorithm [START_REF] Mešina | Convergence acceleration for the iterative solution of the equations x= ax+ f[END_REF][START_REF] Eddy | Extrapolating to the limit of a vector sequence[END_REF], Minimal Polynomial Extrapolation [START_REF] Cabay | A polynomial extrapolation method for finding limits and antilimits of vector sequences[END_REF], or Reduced Rank Extrapolation [START_REF] Sidi | Acceleration of convergence of vector sequences[END_REF][START_REF] Smith | Extrapolation methods for vector sequences[END_REF]. There are small variations between all these methods, which lie in the way they solve the minimization problem in (12). The next proposition gives us an explicit solution, involving the inversion of a k-by-k matrix.

Proposition 2.4. The explicit solution of the problem

c * = argmin c T 1=1 Rc (14)
in the variable c ∈ R k , where R is a d × k matrix assumed to be of rank k, is given by

c * = (R T R) -1 1 1 T (R T R) -1 1 . (15
)
Proof. Let µ be the dual variable of the equality constraint. Both c * and µ * should satisfy the KKT system

2R T R 1 1 T 0 c * µ * = 0 1 (16)
This block matrix can be inverted explicitly, with

2R T R 1 1 T 0 -1 = 1 1 T (R T R) -1 1 1 2 (R T R) -1 1 T (R T R) -1 1I -11 T (R T R) -1 (R T R) -1 1 1 T (R T R) -1 -2 .
Using this inverse we easily solve the linear system, which gives the result in (15).

In practice of course, instead of computing the inverse of the matrix R T R, we solve the linear system

R T Rz = 1, then set c * = z/(1 T z).
This formula is used in Anderson Acceleration algorithm and Mesina method.

Other algorithms usually force the coefficient c k to be equal to one, solve the remaining linear system, then normalize the vector. However, these alternative strategies are harder to analyze when the iterates are generated by a non-linear function g. We will now apply this acceleration algorithm on gradient method for nonlinear functions and compute its rate of convergence.

REGULARIZED NONLINEAR ACCELERATION OF CONVERGENCE

So far, we have only considered linear functions g in (LFPI), without perturbations, when computing the iterates x i . In general, the fixed-point iteration (FPI) is usually generated by a nonlinear function g, thus inducing a second order error term in O(x ix * 2) compared to the dynamics in (LFPI).

Here, in §3.1 we first give a bound on the deviation error when there are perturbations in (LFPI). In §3.2 we then derive a regularized version of Algorithm 1 which better controls the impact of perturbations. We then study the impact of regularization on the solution when there are no perturbations in §3.3. Finally, in §3.4 we gather the results of the previous sections to bound the rate of convergence of the regularized acceleration algorithm.

3.1. Sensitivity Analysis. We now study the sensitivity of the acceleration algorithm to perturbations. Consider the following perturbed linear fixed point iteration

xi+1 -x * = g(x i) -x * = G(x i -x *) + e i (Pert. LFPI)
where e i is the noise injected in x i+1 at iteration i. For now, we do not assume any structure on the noise, so e i may be the nonlinearity of g, stochastic noise, roundoff error, etc. The iterates of this process will be compared to their noiseless counterpart,

x i+1 -x * = G(x i -x *),
with x 0 = x0 . We now apply our acceleration algorithm on the sequences x i and xi and compare the results. We first form the residuals,

r i = g(x i) -x i = x i+1 -x i and ri = g(x i) -xi = xi+1 -xi .
Consider the matrices of residuals R = [r 0 , . . . , r k] and R = [r 0 , . . . , rk]. We write P the perturbation matrix defined as

P RT R -R T R. (17
)
The next proposition describes the sensitivity of Algorithm 1 using R and P .

Proposition 3.1. Let the sequences x i be generated by (LFPI) and xi by (Pert. LFPI), with x 0 = x0 , with R and R the residual matrices defined above and P the perturbation matrix in (17). Assume c * and c * are computed using formula (15) with matrices R and R respectively. Let

∆c * c * -c * . (18
)
Then the norm of ∆c * is bounded by

∆c * ≤ P (R T R + P) -1 c * . (19
)
Proof. We start with the sequence xi . Let μ * be the dual variable of the equality constraint of (14). Both c * = c * + ∆c * and μ * = µ * + ∆µ * should satisfy the KKT system

2 RT R 1 1 T 0 c * μ * = 0 1 ⇔ 2(R T R + P) 1 1 T 0 c * + ∆c * µ * + ∆µ * = 0 1 .
Indeed, using the definition of c * and µ * in (16),

2(R T R + P) 1 1 T 0 c * + ∆c * µ * + ∆µ * = 2R T R 1 1 T 0 c * µ * + 2R T R 1 1 T 0 ∆c * ∆µ * + 2P 0 0 0 c * + ∆c * µ * + ∆µ * , = 0 1 + 2R T R 1 1 T 0 ∆c * ∆µ * + 2P 0 0 0 c * + ∆c * µ * + ∆µ * .
With this simplification, the system becomes

2R T R 1 1 T 0 ∆c * ∆µ * + 2P 0 0 0 c * + ∆c * µ * + ∆µ * = 0 0 . It remains to isolate c * , 2(R T R + P) 1 1 T 0 ∆c * ∆µ * = 2P c * 0 .
The explicit solution in obtained by inverting the block matrix, and is written

∆c * = I - (R T R + P) -1 11 T 1 T (R T R + P) -1 1 (R T R + P) -1 P c * .
We can bound the norm of ∆c * by

∆c * = I - (R T R + P) -1 11 T 1 T (R T R + P) -1 1 (R T R + P) -1 P c * .
Because the first factor is the norm of a projector of rank k -1, its value is bounded by 1, so we get the desired result.

This proposition bounds the relative error on c * in comparison with c * . We will see that the perturbation magnitude can be arbitrarily large, which is the key issue with the convergence results in [Smith et al., 1987, §7]. Even when P is small, the term (R T R + P) -1 is problematic. Our problem here is the structure of the residuals matrix R, R = [r 0 , Gr 0 , G 2 r 0 , ..., G k r 0],

which matches exactly the structure of Krylov matrices, i.e. square matrices K formed using a matrix M and a vector v, and computed as [START_REF] Tyrtyshnikov | How bad are hankel matrices?[END_REF] showed that the condition number of Krylov matrices (see Section 4.3) is lower bounded by a function which grows exponentially with k. Now, the error bound (19) contains the norm of the inverse of a perturbed squared Krylov matrix, which makes the situation even worse. In other words, even if the perturbations are small, their impact on the solution can be arbitrarily large. Even in practical cases where k is small (for example, k = 5), RT R is usually a singular or nearly-singular matrix. This particular issue means the linear system (R T R) -1 1 in (15) needs to be regularized.

K = [v, M v, M 2 v, ..., M k v].

3.2.

Regularized Nonlinear Acceleration of Convergence. In this section, we will analyze the following acceleration algorithm, which uses Tikhonov regularization to solve the linear system in (15).

Algorithm 2 Regularized Nonlinear Acceleration (RNA)

Input: Iterates x0 , x1 , ..., xk+1 ∈ R d produced by (FPI)
, and a regularization parameter λ > 0.

1: Compute R = [r 0 , ..., rk], where ri = xi+1 -xi 2: Solve c * λ = argmin c T 1=1 Rc 2 + λ c 2 , or equivalently solve (RT R + λI)z = 1 then set c * λ = z/1 T z. Output: Approximation of x * computed as k i=0 (c * λ) i xi
Regularization controls the norm of the coefficients produced by the algorithm and reduces the impact of perturbations, as shown in the following proposition.

c * λ ≤ λ + R 2 (k + 1)λ , (20
) ∆c * λ ≤ P λ c * λ , (21)
which control the stability of the solution c * λ .

Proof. Using the same proof technique of Propositions 2.4 and 3.1, we have

c * λ = (RT R + λI) -1 1 1 T (RT R + λI) -1 1 , (22
)
∆c * λ = I - (RT R + λI) -1 11 T 1 T (RT R + λI) -1 1 (RT R + λI) -1 P c * λ . (23
)
We begin by the bound on c * λ . Indeed, with (22),

c * λ 2 = 1 T (RT R + λI) -2 1 (1 T (RT R + λI) -1 1) 2 , ≤ 1 k + 1 max v =1 v T (RT R + λI) -2 v (v T (RT R + λI) -1 v) 2 , = 1 k + 1 max v =1 (RT R + λI) -1 2 (RT R + λI) -1 2 v 2 (RT R + λI) -1 2 v 4 , ≤ 1 k + 1 (RT R + λI) -1 2 2 max v =1 1 (RT R + λI) -1 2 v 2 , = 1 k + 1 (RT R + λI) -1 2 2 (RT R + λI) 1 2 2 .
The norm of the coefficients c * λ are thus bounded by

c * λ ≤ 1 k + 1 RT R + λ λ = R 2 + λ (k + 1)λ .
We will now bound ∆c λ . With equation (23),

∆c λ = I - (RT R + λI) -1 11 T 1 T (RT R + λI) -1 1 (RT R + λI) -1 P c * λ , ≤ I - (RT R + λI) -1 11 T 1 T (RT R + λI) -1 1 (RT R + λI) -1 P c * λ , ≤ (RT R + λI) -1 P c * λ ,
where the last inequality is obtained by bounding the norm of a projector. Since RT R 0, we have (RT R + λI) λI, we get

∆c λ ≤ P λ c * λ , which is the desired result.
Regularization allows a better control of the impact of perturbations, but also changes the solution c * into c * λ . The next section analyses the impact of regularization on the extrapolated solution when there are no perturbations.

3.3. Regularized Chebyshev Polynomial. The previous section shows that regularization is important for the control of the perturbations present in (Pert. LFPI). However, the convergence analysis becomes more complicated in the perturbation-free case, and we introduce regularized Chebyshev polynomials.

Definition 3.3. The regularized Chebyshev polynomial C * σ (x, k, α) of degree k, range σ and regularization parameter α is defined as the solution of

C * σ (x, k, α) = argmin C∈R k [x] : C(1)=1 max x∈[0,σ] C 2 (x) + α C 2 ,
where C corresponds to the ℓ 2 norm of the coefficients of polynomial C. We write the maximum value as

S σ (k, α) max x∈[0,σ] (C * σ (x, k, α)) 2 + α C * σ (x, k, α) 2 . (24
)
Using this specific polynomial we can now bound the accuracy of the extrapolated point using the regularized algorithm.

Proposition 3.4. Let c * λ be the output of Algorithm 2 using the sequence x i generated by (LFPI) (with G ≤ σ < 1) and the parameter λ > 0. The accuracy of the extrapolation is bounded by

k i=0 (c * λ) i x i -x * ≤ (G -I) -1 S 2 σ k, λ x 0 -x * 2 x 0 -x * 2 -λ c * λ 2 . (25
)
Proof. Consider the optimization problem in Algorithm 2,

min c T 1=1 Rc 2 + λ c 2 . Since r i = (G -I)(x i -x *) = (G -I)G i (x 0 -x *
), if we use the polynomial p with coefficients c, the problem becomes

min {p∈R k [x]: p(1)=1} (G -I)p(G)(x 0 -x *) 2 + λ p 2 , (26
)
≤ x 0 -x * 2 min {p∈R k [x]: p(1)=1} (G -I)p(G) 2 + λ x 0 -x * 2 p 2 , ≤ x 0 -x * 2 min {p∈R k [x]: p(1)=1} G -I 2 p(G) 2 + λ x 0 -x * 2 p 2 , ≤ x 0 -x * 2 min {p∈R k [x]: p(1)=1} p(G) 2 + λ x 0 -x * 2 p 2 ,
where p is the ℓ 2 norm of the coefficients of p. For simplicity, we write λ = λ/ x 0x * to be the normalized value of λ. In the optimization problem, since G ≤ σ, we can consider the worst-case over all symmetric matrices M with M ≤ G and M 0, written

min {p∈R k [x]: p(1)=1} p(G) 2 + λ p 2 ≤ min {p∈R k [x]: p(1)=1} max M 0, M ≤σ p(M) 2 + λ p 2 .
Because M is symmetric, we only need to look at its eigenvalues which are inside the segment [0, σ],

min {p∈R k [x]: p(1)=1} max M 0, M ≤σ p(M) 2 + λ p 2 = min {p∈R k [x]: p(1)=1} max x∈[0,σ] p 2 (x) + λ p 2 , = S 2 σ (k, λ
). This means that (26) is bounded by

min {p∈R k [x]: p(1)=1} (G -I)p(G)(x 0 -x *) 2 + λ p 2 ≤ x 0 -x * 2 S 2 σ (k, λ). (27
)
It remains to link the optimization problem to the accuracy of the extrapolation. Indeed,

k i=0 (c * λ) i x i -x * 2 = (G -I) -1 k i=0 (c * λ) i r i 2 , ≤ (G -I) -1 2 k i=0 (c * λ) i r i 2 , = (G -I) -1 2   k i=0 (c * λ) i r i 2 + (λ -λ) c * λ 2   . By definition, of c * λ , k i=0 (c * λ) i r i 2 + λ c * λ 2 = min p∈R k [x] : p(1)=1 (G -I)p(G)(x 0 -x *) 2 + λ p 2 .
We proved in (27) that this quantity can be bounded by S 2 σ (k, λ) x 0x * 2 , so we finally have

k i=0 (c * λ) i x i -x * ≤ (G -I) -1 S 2 σ (k, λ) x 0 -x * 2 -λ c * λ 2 ,
which is the desired result.

Regularized Chebyshev polynomials are crucial for the bound on the accuracy of Algorithm 2. Unfortunately, there is no explicit expressions for S σ (k, α) in (24). However, this value can be computed numerically using sum-of-squares optimization. We show in Figure 2 the difference of performances when using the coefficients of the regularized Chebyshev polynomial instead of its non-regularized version.

We briefly recall basic results on Sum of Squares (SOS) polynomials and moment problems [START_REF] Nesterov | Squared functional systems and optimization problems[END_REF][START_REF] Lasserre | Global optimization with polynomials and the problem of moments[END_REF][START_REF] Parrilo | Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization[END_REF], which will allow us to formulate problem (24) as a (tractable) semidefinite program. A univariate polynomial is positive if and only if it is a sum of squares. Furthermore, if we let m(x) = (1, x, . . . , x k) T we have, for any q(x) ∈ R [2k] , q(x) ≥ 0, for all x ∈ R q(x) = m(x) T Cm(x), for some C 0, which means that checking if a polynomial is non-negative on the real line is equivalent to solving a linear matrix inequality (see e.g. [Ben-Tal and Nemirovski, 2001, §4.2] for details). We can thus write the problem of computing the maximum of a polynomial over the real line as

minimize t subject to t -p(x) = m(x) T Cm(x), for all x ∈ R C 0, (28)
which is a semidefinite program in the variables p ∈ R k+1 , C ∈ S k+1 and t ∈ R, because the first contraint is equivalent to a set of linear equality constraints. Then, showing that p(x) ≥ 0 on the segment [0, σ] is equivalent to showing that the rational fraction

p σx 2 1 + x 2
is non-negative on the real line, or equivalently, that the polynomial

(1 + x 2) k p σx 2 1 + x 2
is non-negative on the real line. Overall, this implies that problem (24) can be written

S σ (k, α) = min. t 2 + α 2 q 2 2 s.t. t -(1 + x 2) k+1 1 -σx 2 1+x 2 q σx 2 1+x 2 = m(x) T Cm(x), for all x ∈ R 1 T q = 1, C 0, (29)
which is a semidefinite program in the variables q ∈ R k+1 , C ∈ S k+2 and t ∈ R. . Ratio between the (worst-case) number of iterations required to reach an arbitrary accuracy using the coefficients of the regularized and non-regularized Chebyshev polynomial for combining the x i . On the left, σ = 0.9 and on the right σ = 0.999. We see that the impact of the regularization is more important when k is big, or σ close to 1.

3.4. Convergence rate. We will now prove global accuracy bounds, using the following decomposition of the error term,

k i=0 (c * λ) i xi -x * = k i=0 (c * λ) i x i -x * Linear case + k i=0 (∆c * λ) i x i Stability + k i=0 (c * λ) i (x i -x i) Nonlinearity , (30)
where ∆c * λ = c * λc * λ . In the equation above, the first term is the accuracy of the accelerated method in the noiseless case. The second term corresponds the stability of the coefficients computed by the regularized algorithm when we have some perturbations in the sequence. The last term is the induced error by the combination of the perturbations. The following Theorem shows how to bound these three terms by putting together the results of Propositions 3.4 and 3.2. Theorem 3.5. Let x be an arbitrary point in R n . Given iterates xi , i = 0, . . . , k + 1 generated by (Pert. LFPI), Algorithm (2) outputs x extr = k i=0 (c * λ) i xi . Consider the matrices X and E, with columns Xi = x ix and E i = xix i respectively. We have the following bound on the extrapolated point,

x extr -x * ≤ x 0 -x * S σ (k, λ) κ 2 + X 2 P 2 λ 3 + E √ k + 1 1 + R 2 λ .
where

κ > 1 with (G -I) -1 ≤ 1 1-σ = κ.
Proof. The proof is divided into four parts, where the three first parts bound each term of (30) and the last one combines everything. The bound on the first term comes explicitly from Proposition 3.4, with

k i=0 (c * λ) i x i -x * ≤ κ S 2 σ (k, λ) x 0 -x * 2 -λ c * λ 2 , (31
)
where λ = λ/ x 0x * 2 . The second term can be bounded using the fact that both c * λ and c * λ sum to one, so ∆c * λ sum to zero. In this case,

k i=0 (∆c * λ) i x i = k i=0 (∆c * λ) i (x i -x) , ≤ ∆c * λ X .
Proposition 3.2 bounds the value of ∆c * λ and yields

k i=0 (∆c * λ) i x i ≤ X P λ c * λ . (32
)
For the third term in (30), we have

k i=0 (c * λ) i (x i -x i) ≤ c * λ E .
The norm c * λ can be bounded using Proposition 3.2, with

k i=0 (c * λ) i (x i -x i) ≤ E √ k + 1 1 + R 2 λ . (33
)
We finally combine the bounds (31), (32) and (33) according to the decomposition (30), to get

k i=0 (c * λ) i x i -x * ≤ (34) κ S 2 σ (k, λ) x 0 -x * 2 -λ c * λ 2 + X P λ c * λ + E √ k + 1 1 + R 2 λ .
Here, c * λ appears twice in the expression. We remove it by maximizing the bound over c * λ . The first two terms of (34) can be written

x → aλx 2 + bx.

with a = S 2 σ (k, λ) x 0x * 2 and b = X P λ . By Proposition A.1 (in the Appendix), its maximum value is equal to

√ a κ 2 + b 2 λ , which is S σ (k, λ) x 0 -x * κ 2 + X 2 P 2 λ 3 .
The bound on extrapolation accuracy in (34) now becomes

k i=0 (c * λ) i x i -x * ≤ S σ (k, λ) x 0 -x * κ 2 + X 2 P 2 λ 3 + E √ k + 1 1 + R 2 λ .
which is the desired result.

We can further simplify the bound above by bounding P using σ, E and X .

Proposition 3.6. Let P the perturbation matrix defined in (17). Then

P ≤ 4(E R + E 2), R ≤ 1 -σ k+1 1 -σ x 0 -x * ,
where E is defined in Theorem 3.5, R is the matrix of residuals for the sequence x i generated by (LFPI), for G ≤ σ.

Proof. We begin by the bound on R,

R ≤ k i=0 r i ≤ k i=0 G i r 0 ≤ k i=0 σ i r 0 .
Since r 0 = (G -I)(x 0x *), and G -I ≤ 1, we have r 0 ≤ x 0x * . Injecting this result in the previous bound gives the desired result,

R ≤ k i=0 σ i x 0 -x * = 1 -σ k+1 1 -σ x 0 -x * .
Now we prove the bound on P . Let R = R + ∆ for some perturbation matrix ∆. Then

P = R T R -RT R , ≤ 2 ∆ R + ∆ 2 .
It remains to bound ∆ . Consider X, where each column of X = (x ix) for some point x.

Then we can build R from X, R = X    -1 1 -1 1 . . .    = XD.
It is possible to show D ≤ 2. Using the same logic, we can build R, R = (X + E)D = R + ED.

By identification, we have ∆ = ED, so ∆ ≤ D E ≤ 2 E .

Assuming again G ≤ σ, the following propositions bound X when x = x * .

Proposition 3.7. Let X be the matrix built with the columns Xi = x ix, where the sequence x i is generated by (LFPI) and x = x * . If G ≤ σ, where G is the matrix present in (LFPI), the norm of X is bounded by

X ≤ 1 -σ k+1 1 -σ x 0 -x * . (35
)
Proof. Since each column of X correspond to

x i -x * , X ≤ k i=0 x i -x * ≤ k i=0 G i (x 0 -x *) ≤ k i=0 G i x 0 -x *) . Because G ≤ σ < 1, X ≤ 1 -σ k+1 1 -σ x 0 -x * ,
which is the desired result.

The bound of Theorem 3.5 is quite generic. For now, we only need a sequence xk generated by a perturbed fixed-point process which is convergent and differentiable, and the accuracy depends on matrices R and E. The next section will bound these quantities when the fixed point process is the gradient descent algorithm. FIGURE 3. Convergence speedup relative to Nesterov's accelerated method of theoretical bound in Theorem 3.5 and gradient method, using upper bounds from Propositions 3.6, 3.7 and 3.8. We see that our (highly conservative) bound shows a slight speedup when k is well chosen.

3.5. Accelerating Gradient Descent. Assume the sequence xi is generated by the gradient descend algorithm,

xi+1 = xi - 1 L f ′ (x i),
where f is a µ-strongly convex, L-smooth function with a Lipschitz-continuous Hessian with constant M .

In this case, we can bound the values R and E and hence P . We show the following result in Section A.2.

Proposition 3.8. When using gradient method on a µ-strongly convex, L-smooth function with a Lipschitzcontinuous Hessian with constant M , we have the following bounds,

R ≤ 1 -σ k+1 1 -σ L x 0 -x * , (36)
E ≤ (k + 2) 2 M 4L x 0 -x * 2 , (37
)
where σ = 1 -µ L satisfies G ≤ σ. Using these expressions, we can compare convergence rates between convergence acceleration in Algorithm 2 and Nesterov's method. In Figure 3 we illustrate the difference on a particular instance where x 0x * = 10 -4 , L = 1, µ = M = 0.1. We see that, despite the highly conservative nature of this bound, for small k at least our method is faster than Nesterov's acceleration.

When using the gradient method, this result bounds all quantities present in Theorem 3.5 as a function of µ, L, M and x 0x * . Asymptotically, i.e. when x 0x * → 0 and we are starting close enough to the optimal point, we show that we recover the acceleration rate for linear sequences in Proposition 2.3 if the regularization parameter λ il well-chosen. Proposition 3.9. Assume we used the gradient method on a L-smooth and µ-strongly convex function with Lipschitz-continuous Hessian to generate the sequence xi . Setting λ = O(x 0x * s) with s ∈]2, 8 3 [and x 0x * → 0 (i.e., starting close enough to the optimal point), then the rate of convergence of the extrapolated point is bounded by

lim x 0 -x * →0 k i=0 c * λ xi -x * x 0 -x * ≤ κ 2β k 1 + β 2k , β = 1 - √ κ -1 1 + √ κ -1 , where κ = L µ . Proof. The bounds above show X = R = O(x 0 -x *) , E = O(x -x * 2) , P = O(x 0 -x * 3).
Let λ = O(x 0x * s) for some scalar s. The bound of Theorem 3.5 normalized by x 0x * becomes

S σ (k, O(x 0 -x * s-2)) κ 2 + O(x 0 -x * 8-3s) + O(x 0 -x * 2) + O(x 0 -x * 4-s).
If 4s < 0, clearly the last terms vanishes when x 0x * → 0. It remains to analyze

lim x 0 -x * →0 S σ (k, O(x 0 -x * s-2)) κ 2 + O(x 0 -x * 8-3s). If s ∈]2, 8/3[then s -2 > 0 and 8 -3s > 0, implying (x 0 -x * s-2) → 0 and O(x 0 -x * 8-3s) → 0 when x 0 -x * → 0.
The bound finally becomes

lim x 0 -x * →0 k i=0 c * λ xi -x * x 0 -x * ≤ κS σ (k, 0).
However, S σ (k, 0) is exactly equal to the maximum value of the rescaled (non-regularized) Chebyshev polynomial T k (x, σ), so by equation (9),

S σ (k, 0) = max x∈[0,σ] T k (x, σ) = 2β k 1 + β 2k .
This result conclude the proof.

In other words, the result above means that the bound of Theorem 3.5 tends to be the bound of Proposition 2.3 (for the case where k < m) and, asymptotically, we recover the optimal rate of convergence in [START_REF] Nesterov | Introductory lectures on convex optimization: A basic course[END_REF]. In fact, the result may also hold for other kinds of methods, because the proof only needs

X = R = O(x 0 -x *) , E = O(x -x * 2) , P = O(x 0 -x * 3).
These assumptions are not too restrictive, and are often encountered when using deterministic, twicedifferentiable, linearly convergent iterations g in (FPI).

In practice of course, xx * is unknown and the regularization parameter λ should decrease fast enough to ensure S σ (k, λ) → S σ (k, 0), but not too fast otherwise the algorithm becomes unstable. An adaptive strategy thus ensures a good convergence rate, which is what we detail next.

3.6. Adaptive regularization. The major problem of the regularized Algorithm 2 is the presence of the parameter λ, unknown in advance. Of course, one can use the bound in Theorem 3.5 to search the best λ, but this requires a lot of information on the problem, like the constants L, µ and M as well as the distance to the optimum x 0x * . Moreover, the bound is extremely pessimistic and does not correspond to the good numerical performances of the algorithm.

To avoid this problem we use adaptive strategy to find λ, based on grid search, which requires k additional calls to f (x). In comparison, we also need to call k times the oracle for common adaptive strategy in the (accelerated) gradient method. For example, the backtracking line-search over the constant L requires the evaluation of f (x i) at each iteration i = 1...k.

Finally, the introduction of the regularization parameter introduces some damping in the acceleration algorithm, in the sense that the step length x extr (λ)x 0 is reduced with higher values of λ. A simple line search over the step-size, which consists in finding a good scalar t which minimizes the function, solving

min t>0 f x 0 + t(x extr (λ) -x 0 Extrapolation step
) significantly improves the solution. Nevertheless, this requires further calls to f (x), and an inexact linesearch is usually preferable. We start with t = 1, then multiply the value by two until the objective function increases, f x 0 + t(x extr (λ)x 0) < f x 0 + 2t(x extr (λ)x 0) .

In our numerical experiments, this line-search dramatically increases acceleration performances. We summarize all the steps detailed above as the Adaptive Regularized Convergence Acceleration Algorithm 3. The only required inputs are the sequence xi generated by the optimization algorithm and the objective function f . Solve in z the linear system (M + λ j)z = 1 6:

Normalize the solution, c *

λ j = z/1 T z 7: Compute x extr (λ j) = k i=0 (c * λ j) i xi 8: end for 9: Pick x * extr = argmin j=1..k f (x extr (λ j)) 10: Define F t = f (x 0 + t(x * extr -x 0)) 11: Initialize with t = 1 12: while F 2t < F t do 13:
Update t = 2t 14: end while Output: Return (x 0 + t(x * extrx 0)), the extrapolated point.

3.7. Computational Complexity of Convergence Acceleration. In Algorithm 2, computing the coefficients c * λ means solving the k × k system (RT R + λI)z = 1. We then get c * λ = z/(1 T z). This can be done in both batch and online mode. We will see that, in any case, we end with a complexity of O(nk 2 + k 3), for a small value of k (usually, k = 5). The complexity of the acceleration algorithm is linear in the dimension, thus adding a negligible additional computation cost to the original procedure. 3.7.1. Online updates. Here, we receive the vectors r i one by one from the optimization algorithm, and we would like to solve the linear system in parallel of the optimization algorithm. In this case, we perform low-rank updates on the Cholesky factorization of the system matrix. At iteration i, we have the Cholesky factorization LL T = RT R + λI, where L is a triangular matrix. We receive a new vector r + and we want

L + L T + = L 0 a T b L T a 0 b = RT Ũ + λI RT r + (RT r +) T r T + r + + λ .
We can explicitly solve this system in variables a and b, and the solutions are

a = L -1 RT r + , b = a T a + λ.
The complexity of this update is thus O(i n + i 2), i.e. the matrix-vector multiplication of RT r + with cost O(i n) and solving a i × i triangular system with cost O(i 2). Since we need to do it k times, the final complexity is thus O(nk 2 + k 3).

Batch mode.

The complexity is divided in two parts: First, we need to build the linear system itself. Since R ∈ R n×k , it takes O(nk 2) flops to perform the multiplication. Then we need to solve the linear system (RT R + λI)z = 1 which can be done by Gaussian elimination (in particular when k is small), by Cholesky factorization or by using an iterative method like conjugate gradient. It takes O(k 3) flops to solve the linear system in the worst case, meaning that the overall complexity is O(nk 2 + k 3).

EXTENSIONS & LINKS WITH OTHER METHODS

4.1. Smooth Minimization. We can extend our results to smooth functions that are not strongly convex using a simple regularization trick which we trace back at least to [START_REF] Hazan | [END_REF]. Suppose we seek to solve

min x∈R n f (x) in the variable x ∈ R n ,
where f (x) has a Lipschitz continuous gradient with parameter L with respect to the Euclidean norm, but is not strongly convex. Assume for simplicity that the initial iterate x 0 is close enough to the optimum so that D

x 0x * ≥ x kx * for any k ≥ 0. We can approximate the above problem by

min x∈R n f ε (x) f (x) + ε 2D 2 x 0 -x 2 2 (38)
in the variable x ∈ R n , where f ε (x) has a Lipschitz continuous gradient with parameter L + ε/D 2 with respect to the Euclidean norm, is strongly convex with parameter ε/D 2 with respect to the same norm. Furthermore f ε (x) is an ε approximation of f (x) near the optimum and we get

f (x k) -f (x *) = f ε (x k) - ε 2D 2 x 0 -x k 2 2 -f ε (x *) + ε 2D 2 x 0 -x * 2 2 , ≤ f ε (x k) -f ε (x *) + ε 2 , ≤ f ε (x k) -f ε (x * ε) + ε 2 ,
using the smoothness of f ε (x) and writing x * ε the optimum of problem (38). It suffices to optimize f ε up to ε/2 to find an ε-solution for the original problem. The linear convergence of gradient [START_REF] Nesterov | Introductory lectures on convex optimization: A basic course[END_REF] algorithms guarantees

f ε (x k) -f ε (x * ε) = (L + ε)D 2 2 r k , r = 1 - 2ε LD 2 + 2ε
.

The number of iterations required to reach a target precision ε/2 is thus bounded by

k = O log((L + ε)D 2 /ε) log(1/r) .
By replacing the value of r, we have

log(1/r) ∼ 1 -r = LD 2 ε , while accelerated algorithms have r = 1 -ε/(LD 2 + ε) which yields log(1/r) ∼ LD 2 ε .
Up to a logarithmic constant, these upper bounds match the complexity of gradient and accelerated gradient methods. Overall, an algorithm for strongly convex function used with this regularization trick recovers an ε-approximated solution. This means we can always reduce a not strongly convex problem to (1), where our acceleration analysis applies.

4.2. Convergence Acceleration on Gradient Method for Quadratic Functions. Assume we want to minimize a quadratic function f . Its gradient reads, for A ∈ R n×n a symmetric positive definite matrix,

∇f (x) = A(x -x *).
This formulation is equivalent to ∇f = Axb, where b = Ax * but it will be more convenient in this section to manipulate directly x * . Let µI A LI so that the function f is strongly convex of constant µ and smooth of constant L. If we use the fixed-step gradient method, with step-size 1/L,

x i+1 = x k - 1 L ∇f (x k) = x k - 1 L A(x k -x *). (39)
The fixed point iteration corresponds to

g(x) = (I -A/L)(x -x *) + x * .
Notice that g(x k+1) and (39) are equivalent. The Jacobian of g is thus equal to (I -A/L). We have the following bounds on G,

0 G 1 - µ L I.
By consequence, σ = 1 -µ L , thus the rate of convergence of our method is linear and the bound is

x k -x * ≤ 1 - µ L k x 0 -x * .
However, if we use Algorithm (1), we combine the iterates x i with coefficients c * (computed by formula (15)). By equations (5) and (13) the accuracy of this extrapolation is bounded by

N i=0 c * i x i -x * ≤ L µ 2β k 1 + β 2k x 0 -x * , where β = 1 -µ L 1 + µ L . (40)
This bound matches the rate obtained using the optimal method in [START_REF] Nesterov | Introductory lectures on convex optimization: A basic course[END_REF]. Outside of the normalization constraint, this is very similar to the convergence analysis of Lanczos' method.

4.3. Convergence acceleration versus conjugate gradient. The rate of convergence obtained above also matches that of the conjugate gradient within a factor L/µ. Indeed, the acceleration algorithm has a strong link with the conjugate gradient. Denote v M = √ v T M v the norm induced by the positive definite matrix M . Also, assume we want to solve Ax = b using conjugate gradient method (where A is assumed to be symmetric and positive definite). By definition, at the k-th iteration, the conjugate gradient computes an approximation of x * which follows argmin

x∈K k x -x * A ,
where K k = span{b, Ab, ..., A k-1 b} = span{Ax * , A 2 x * , ..., A k x * } is called a Krylov subspace. Since the constraint x ∈ K k impose us to build x from a linear combination of the basis of K k , we can write

x = k-1 i=0 c i A i+1 x * = q(A)x * ,
where q(x) is a polynomial of degree k and q(1) = 0. So the conjugate gradient method solves

argmin {q∈R k [x]: q(0)=0} q(A)x * -x * A = argmin {q∈R k [x]: q(0)=1} q(A)x * A ,
which is very similar to the equations in (12). However, while conjugate gradient has access to an oracle giving the result of the product between A and any vector v, the acceleration algorithm can only use the iterations produced by (LFPI), so it does not require the knowledge of A. Moreover, the convergence of conjugate gradient is analyzed in another norm (• A instead of • 2), which explains why a condition number appears in the bound (40).

Analysis of convergence on conjugate gradient often use Chebyshev's polynomial, like the acceleration algorithm (1). We will now see that Nesterov's algorithm generates also a polynomial, making the convergence analysis for quadratics easier. 4.4. Chebyshev's Acceleration and Nesterov's Accelerated Gradient Method. In Proposition 2.1, we bounded the rate of convergence of Algorithm 1 using Chebyshev polynomials. In fact, this is exactly the idea behind Chebyshev's semi-iterative method, which uses these coefficients in order to accelerate gradient descent on quadratic functions. Here, we present Chebyshev semi-iterative acceleration and its analysis, then use the same arguments on Nesterov's method. These points were also discussed in [START_REF] Hardt | The zen of gradient descent[END_REF].

Assume as above that we use the gradient method to minimize a quadratic function, we get the recurrence (39). We see easily that

x k = x * + G k (x 0 -x *). Since G 2 ≤ 1 -µ L = σ, the rate of convergence is x k -x * 2 ≤ σ k x 0 -x * 2 .
Moreover, if we average the vectors x i using coefficients c i (with unitary sum) from 0 to k, we get

k i=0 c i x i = x * + p(G)(x 0 -x *) for p ∈ R k [x]
a polynomial of coefficients c. Instead of using Algorithm (1), which minimizes the combination of the residuals instead of the error term, we will use the coefficients of the rescaled Chebyshev polynomial (8). Recall this polynomial makes p(G) 2 small for all matrices G such that 0 G σI. In other terms, the rescaled Chebyshev polynomial satisfies

T (x) = arg min p∈R[x] p(1)=1 max 0 G σI p (G) 2 , = C k (t σ (x)).
where T k and t σ are also defined in (8). Furthermore, the Chebyshev polynomials can be constructed using a three-terms recurrence

C k (x) = xC k-1 (x) -C k-2 (x).
The same holds for T k (x), with

α k = t(1)α k-1 -α k-2 , z k-1 = y k-1 -∇f (y k-1), y k = α k-1 α k 2z k-1 σ -y k-1 - α k-2 α k y k-2 .
This scheme looks very similar to Nesterov's accelerated gradient method, which reads

z k-1 = y k-1 -∇f (y k-1) y k = z k-1 + β k (z k-1 -z k-2)
Compared with Chebyshev acceleration, Nesterov's scheme is iteratively building a polynomial N k (x) with y ky * = N k (G) (y 0x *). If we replace z k by its definition in the expression of y k in the Nesterov's scheme we get the following recurrence of order two

y k -x * = (1 + β k)G(y k-1 -y *) -β k G(y k-2 -y *), = G ((1 + β k)N k-1 (G) -β k N k-2 (G)) (y 0 -x *).
We can extract the polynomial N k , which reads

N k (x) = x((1 + β k)N k-1 (x) -β k N k-2 (x)),
with initial conditions N 0 (x) = 1 and N 1 (x) = x. Notice that N k (1) = 1 for all k.

When minimizing smooth strongly convex functions with Nesterov's method, we use

β k = √ L - √ µ √ L + √ µ .
Moreover, empirically at least, the maximum value of N k (x) in the interval [0, σ] is N k (σ). We conjecture that this always holds. We thus have the following recurrence

N k (σ) = σ ((1 + β) N k-1 (σ) -βN k-2 (σ))
To get linear convergence with rate r, we need

N k ≤ rN k-1 ≤ r 2 N k-2 , or again N k (σ) ≤ σ ((1 + β) rN k-2 (σ) -βN k-2 (σ)) = σ ((1 + β) r -β) N k-2 (σ). Now, consider the condition σ ((1 + β) r -β) ≤ r 2 .
We have that Nesterov's coefficients and rate, i.e. β = (1µ/L)/(1 + µ/L) and r = (1µ/L), satisfy this condition, showing that Nesterov's method converges with a rate at least r = (1µ/L) on quadratic problems. This provides an alternate proof of Nesterov's acceleration result on these problems using Chebyshev polynomials (provided the conjecture on N (σ) holds).

NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of the adaptive acceleration methods without/with line-search on the step size, described in Algorithm 3. 5.1. Minimizing logistic regression. We begin by testing our methods on a regularized logistic regression problem written

f (w) = m i=1 log 1 + exp(-y i ξ T i w) + τ 2 w 2 2 ,
where Z = [ξ 1 , ..., ξ m] T ∈ R m×n is the design matrix and y is a {-1, 1} m vector of labels. The Lipschitz constant of the logistic regression is L = Z 2 2 /4 + τ and the strong convexity parameter is µ = τ . We solve this problem using several algorithms.

• Fixed-step gradient method for smooth strongly convex functions [Nesterov, 2013, Th. 2.1.15]

x k+1 = x k - 2 L + µ ∇f (x k).
• Accelerated gradient method for smooth strongly convex functions [Nesterov, 2013, Th. 2.2.3]

x k+1 = y k - 1 L ∇f (y k), y k+1 = x k+1 + √ L - √ µ √ L + √ µ (x k+1 -x k) .
• The accelerated gradient method with backtracking line-search on the parameter L.

• The Adaptive acceleration algorithm 3 on k iterations of gradient descent without line search (written RNA k).

• The Black-box acceleration algorithm 3 (written RNA k + LS) on k iterations of gradient descent.

The matrix Z is build using datasets Sonar (60 features, 208 points), Madelon (500 features, 4400 points) or Sido0 (4932 features, 12678 points), concatenated with a column of ones. The optimization is done on the raw data, i.e. without normalization. The starting point is always w 0 = 0.

Figure 4 shows the importance of the regularization in the acceleration algorithm. Indeed, if we use Algorithm 1 then the norm of the inverse of RT R may be huge, so the computation of the coefficients c * λ is unstable. This leads to an unreliable acceleration method, which may improve sometimes the accuracy, but often making the process divergent. In Figures 5,6 and 7, we see that our algorithm has a similar behavior to the conjugate gradient: unlike the Nesterov's method, where we need to provide parameters µ and L, the acceleration algorithm adapts himself in function of the spectrum of G (so it can exploit the good local strong convexity parameter), without any prior specification. We can, for example, observe this behavior when the global strong convexity parameter is bad but not the local one. FIGURE 4. Logistic regression on Madelon UCI Dataset with a condition number equal to 1.2 • 10 9 , solved using Gradient method, Nesterov's method and two versions of the acceleration algorithm applied to the gradient descent: the acceleration algorithm 1 (called Acc. 5) and the adaptive Regularized Nonlinear Acceleration algorithm 3 (called RNA 5) applied to 5 iterations of the gradient descend. We see that without regularization, the acceleration is unstable because (RT R) -1 2 is huge (cf. Proposition 3.1).

CONCLUSION AND PERSPECTIVES

In this paper, we developed a method which is able to accelerate, under some regularity conditions, the convergence of a sequence {x i } without any information on the algorithm which generated this sequence. The regularization parameter used in the acceleration method is found by a simple and inexpensive gridsearch. The algorithm itself is simple as it only requires solving a small linear system. Also, we showed (using gradient method on logistic regression) that the strategy which consists in restarting the algorithm after an extrapolation method can lead to significantly improved convergence rates. Future work will consist in improving the performance of the algorithm by exploiting the structure of the perturbations matrix in some cases and extending the algorithm to the stochastic case and to the non-symmetric case. The its maximal value is attained at

x opt = b √ a √ λ 2 κ 2 + λb 2
and its maximal value is thus, if x opt ∈ [0, a/λ],

f max = √ a κ 2 + b 2 λ . (41
)
Proof. The (positive) root of the derivative of f follows

b a -λx 2 -κλx = 0 ⇔ x = b √ a √ λ 2 κ 2 + λb 2 .
If we inject the solution in our function, we obtain its maximal value,

κ a -λ b √ a √ λ 2 κ 2 + λb 2 2 + b b √ a √ λ 2 κ 2 + λb 2 = κ a -λ b 2 a λ 2 κ 2 + λb 2 + b b √ a √ λ 2 κ 2 + λb 2 , = κ a -λ b 2 a λ 2 κ 2 + λb 2 + b b √ a √ λ 2 κ 2 + λb 2 , = κ aλ 2 κ 2 λ 2 κ 2 + λb 2 + b b √ a √ λ 2 κ 2 + λb 2 , = √ a κ 2 λ + b 2 √ λ 2 κ 2 + λb 2 , = √ a λ λ 2 κ 2 + λb 2 .
The simplification with λ in the last equality concludes the proof.

A.2. Proof of proposition 3.8. First, we show that the choice σ = 1 -µ L satisfies G = g ′ (x *) ≤ σ. Our fixed-point function g reads

g(x) = x - 1 L f ′ (x).
Since g ′ (x) = I -1 L f ′′ (x), we have g ′ (x *) = I -1 L f ′′ (x *). Because f is µ-strongly convex, f ′′ (x) µI, in particular at x = x * . In conclusion,

g ′ (x *) = I - 1 L f ′′ (x *) ≤ 1 - µ L .
Now, consider the matrix R. Since the ith column Ri is equal to

xi -xi-1 , Ri = xi -xi-1 , = 1 L f ′ (x i) , ≤ xi -x * .
In the last inequality, we used the fact that f is L-Lipschitz, so f (x)f (x *) ≤ L xx * . It is also possible to prove [START_REF] Nesterov | Introductory lectures on convex optimization: A basic course[END_REF] that gradient method converges at rate xi+1x * ≤ σ x ix * .

It remains to link this quantity to R ,

R ≤ k i=0 R i , ≤ k i=0 σ i x 0 -x * , = 1 -σ k+1 1 -σ x 0 -x * .
We continue with E . We express E i = xi+1x i+1 2 in function of x0x 0 2 using a recursion with xix i 2 ,

xi+1 -x i+1 = xi - 1 L ∇f (x i) -x i + 1 L ∇ 2 f (x *)(x i -x *), = xi -x i - 1 L (∇f (x i) -∇ 2 f (x *)(x i -x *)), = I - ∇ 2 f (x *) L (x i -x i) - 1 L (∇f (x i) -∇ 2 f (x *)(x i -x *)).
Since our function has a Lipschitz-continuous Hessian, it is possible to show that [START_REF] Nesterov | Introductory lectures on convex optimization: A basic course[END_REF], Lemma 1.2.4)

∇f (y) -∇f (x) -∇ 2 f (x)(y -x) 2 ≤ M 2 y -x 2 . (42
)
We can thus bound the norm of the error at the i th iteration,

x i+1 -xi+1 2 ≤ I - ∇ 2 f (x *) L) 2 x i -xi 2 + 1 L ∇f (x i) -∇ 2 f (x *)(x i -x *) 2 , = g ′′ (x *) 2 x i -xi 2 + 1 L ∇f (x i) -∇f (x *) -∇ 2 f (x *)(x i -x *) 2 .
By equation (42), and because g ′′ (x *) ≤ σ, we have

x i+1 -xi+1 2 ≤ σ x i -xi 2 + M 2L xi -x * 2 2 , ≤ σ x i -xi 2 + M 2L σ 2i x 0 -x * 2 2 , ≤ x i -xi 2 + M 2L x 0 -x * 2 2 .
The simplification in the last line greatly simplifies future computations. We thus have the bound

x i+1 -xi+1 2 ≤ (i + 1) M 2L x 0 -x * 2 .
Finally,

E ≤ k i=0 x i+1 -xi+1 2 , ≤ k i=0 (i + 1) M 2L x 0 -x * 2 , ≤ (k + 2) 2 M 4L x 0 -x * 2 .
Despite the simplification made earlier, the results of this bounds are close to the one obtained without simplification.

 Proposition 3.2. Consider the sequences x i satisfying (LFPI) and xi satisfying (Pert. LFPI) with x 0 = x0 . Let c * λ and c * λ the output of Algorithm 2 with parameter λ applied to x i and xi respectively. Let R and R the matrices of residuals and P be defined in (17). Define ∆c * λ = c * λc * λ . Then, we have the following bounds,

 FIGURE 2. Ratio between the (worst-case) number of iterations required to reach an arbitrary accuracy using the coefficients of the regularized and non-regularized Chebyshev polynomial for combining the x i . On the left, σ = 0.9 and on the right σ = 0.999. We see that the impact of the regularization is more important when k is big, or σ close to 1.

Algorithm 3

 3 Adaptive Regularized Nonlinear Acceleration of Convergence Input: Sequence {x 0 , x1 , ..., xk+1 }, bounds [λ min , λ max], objective function f (x). 1: Divide the segment [λ min , λ max] into k points {λ j } using a logarithmic scale. 2: Compute the residual matrix R such that Ri = xi+1xi . 3: Build the matrix M = RT R/ RT R 4: for j in 1...k do 5:

FIGURE 5 .

 5 FIGURE 5. Logistic regression on sido0 dataset, with τ = 10 2 (condition number = 1.5 • 10 5)

FIGURE 7 .

 7 FIGURE 7. Logistic regression on Madelon dataset. From top to bottom, we used , τ = 10 7 (condition number = 6•10 3), τ = 10 2 (condition number = 1.2•10 9 and τ = 10 -3 (condition number = 6 • 10 13).

ACKNOWLEDGEMENTS

AA is at the département d'informatique de l'ENS, École normale supérieure, UMR CNRS 8548, PSL Research University, 75005 Paris, France, and INRIA Sierra project-team. The authors would like to acknowledge support from a starting grant from the European Research Council (ERC project SIPA), from the ITN MacSeNet (project number 642685), as well as support from the chaire Économie des nouvelles données with the data science joint research initiative with the fonds AXA pour la recherche, and from a Google focused award.