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Abstract

The present article is a study of an optimal control problem having
a non-differentiable, but Lipschitz, cost function. It is inspired by the
minimisation of the energy consumption of a car-like vehicle or robot
along a road for which the profile is known. This problem is stated by
means of a simple model of the longitudinal dynamics and a running
cost that comprises both an absolute value function and a function that
accounts for the efficiency of the energy conversion process. A regularity
result that excludes chattering phenomena from the set of solutions is
proven. It is valid for the class of control affine systems, which includes
the considered problem. Three case studies are detailed and analysed.
The optimal trajectories are shown to be made of bang-bang, inactivated,
singular and backward arcs.

1 Introduction

This article presents a study of an optimal control problem having a non-
differentiable cost for certain values of the control or of the state. One of the
most notable class of such problems is known as L1-minimisation and consists
of the minimisation of the L1-norm of the control:∫ Tf

0

|u(t)|dt→ min

As it is well-known, cf. [2, 5, 8, 9, 18, 22, 24], such a cost structure implies
inactivations, that is, non-trivial intervals of time where the control vanishes.
As mentioned in [9, 24], this behaviour seems relevant when considering energy
consumption minimisation in the sense that inactivations act as a selection
process that singles out moments when the control variable is the most efficient.

The problem addressed in this paper is an “academic” model of the optimal
energy consumption of a car-like vehicle or robot along a road for which the
profile is known. It follows the ideas of [4] regarding the minimisation of the
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absolute work of an actuated mechanical system. For instance, if x(t) is a
displacement and u(t) an external force, the absolute work of u is just∫ Tf

0

|ẋ(t)u(t)|dt

In the paper, the running cost is derived from this latter expression with the
help of a yield function that translates the efficiency of the energy conversion
process. As it is discussed and highlighted in the rest of the article, optimal
strategies are made of classic bang-bang controls and inactivations, but may
also include singular arcs that cannot be obtained from the successive time
derivatives of the switching function (e.g. [3, 11]).

In Section 2, the problem under consideration is stated through the deriva-
tion of both the model of the vehicle dynamics and the running cost. Section 3
is dedicated to two regularity issues, namely, a theorem that allows us to ex-
clude chattering phenomena and a lemma that allows us to restrict the set of
candidate trajectories for optimality. Theorem 1, which purpose is to allow us
to handle the chattering problem is, in some sense, complementary to recent
strategies developed in the framework of direct methods for optimal control. In
particular, interested reader may refer to [16, 17], and references herein, where
a penalty term that measures the variations of the control variable (called the
total variation) is added to the cost. This strategy results in an optimal control
problem which is non-smooth with respect to the control variable and dealt with
using control parameterization techniques.

Finally, three case studies are detailed in Section 4. The first case, for a
flat road and without friction, is treated in Section 4.1. It is very simple since
optimal trajectories are always obtained from bang-bang controls and inactiva-
tions only. Although counterintuitive, in this case, the optimal strategy doesn’t
depend on the yield function used. In the second case study, where frictions
are now considered, optimal trajectories having singular arcs are observed. The
presence of such arcs depends more on the value of the final time than on the
yield function itself. Still, this latter has a noticeable influence on the result, as
it is highlighted in Section 4.2. The third case study is addressed in Section 4.3,
where a non-flat road profile and no friction coefficient are considered. On top
of all the previous phenomena, we display optimal trajectories that require the
vehicle to travel backward for some time.

2 Problem statement

In the following, in order to simplify the notations, the time dependency of time
varying functions is omitted as soon as there is no ambiguity. The sign function
is denoted by sgn, and Xt is the transpose of vector X.
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2.1 Vehicle dynamics

The vehicle travels on a road represented in a position-height plane as it is
sketched in Figure 1 (see e.g. [12] for general considerations regarding vehicle
dynamics, and [19, 23] for models that take into account both the longitudinal
and the lateral dynamics). Its coordinates are denoted by (ξ, h) and θ is the
orientation. We assume that only the four following forces act on the vehicle
and that the tyre slip is negligible:

• the gravity G, whose norm equals the gravitational constant g times the
mass of the car m;

• the reaction of the road R, whose norm equals mg cos(θ);

• the propulsion force F, whose norm is the control variable u(t);

• the drag force f opposes motion and, in this work, we consider fluid friction

only with a norm proportional to speed: ‖f‖ = α

√
ξ̇2 + ḣ2 where α ≥ 0

is the drag coefficient.

The dynamics are given by Newton’s second law of motion:

m

(
ξ̈

ḧ

)
=

(
u cos(θ)
u sin(θ)

)
−
(

0
mg

)
−

 α sgn(ξ̇)

√
ξ̇2 + ḣ2 cos(θ)

α sgn(ξ̇)

√
ξ̇2 + ḣ2 sin(θ)

+

(
−mg cos(θ) sin(θ)

mg cos2(θ)

)
(1)
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Figure 1: Modelling and notations.

We assume that the road profile is given by a C1 function h = ϕ(ξ). Since
the angle θ belongs to the interval ] − π

2 ,
π
2 [, it is uniquely determined by

θ(ξ) = arctan(ϕ
′
(ξ)) where ϕ

′
denotes the derivative with respect to ξ. Thus,

system (1) has in fact only one degree of freedom whose dynamics are:{
mξ̈ = u cos (θ(ξ))− αξ̇

√
1 + (ϕ′(ξ))2 cos (θ(ξ))−mg cos (θ(ξ)) sin (θ(ξ))

θ(ξ) = arctan(ϕ
′
(ξ))

(2)
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Let x be the curvilinear abscissa of (ξ, h(ξ)) and y be equal to ẋ —i.e. x =∫ ξ

0

√
1 + (ϕ′(z))

2
dz and y = ξ̇

√
1 + (ϕ′(ξ))

2
. Then, system (2) is rewritten:{

ẋ = y
mẏ = u− αy −mg sin (θ(x))

(3)

where both x and y are absolutely continuous functions on R, u(t) ∈ L∞ ([0, T ],R)
and θ(x) is the C1 function that accounts for the road profile —h = ϕ(ξ) is re-
covered from θ(x) [20].

2.2 Cost function

The cost function is the energy consumed to steer the vehicle from a starting
position at time 0 to some final position at time Tf . Let D(t) be the energy
flow rate, then the cost function is simply∫ Tf

0

D(τ)dτ.

Now, let A be the absolute work of the propulsion force. It is given by [4]

A =

∫ Tf

0

∣∣∣ξ̇u∣∣∣√1 + (ϕ′(ξ))2dτ

The associated absolute instantaneous power is dA
dt and is connected to the flow

rate with the help of a yield function ρ(.): dA
dt = D(t)ρ(.). We assume that the

yield function is as follows, with examples displayed in Figure 2:

• its argument is the speed of the vehicle —i.e. y = ξ̇
√

1 + (ϕ′(ξ))2;

• it takes its values in the interval ]0, 1], for all y ∈ R;

• it has one of the two following behaviours for all y ∈ R+ (respectively R−):

1. ρ(y) is identically constant;

2. ρ(y) admits a maximum at y+, is increasing on ]0, y+[ and decreasing
on ]y+,+∞[;
(ρ(y) admits a maximum at y−, is decreasing on ]y−, 0[ and increas-
ing on ]−∞, y−[);

• it is differentiable as many times as needed.

Finally, the cost function is denoted by J(u) and has the following expression:

J(u) =

∫ Tf

0

∣∣∣ξ̇u∣∣∣
ρ
(
ξ̇
√

1 + (ϕ′(ξ))2
)√1 + (ϕ′(ξ))2dτ =

∫ Tf

0

|yu|
ρ(y)

dτ (4)
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Figure 2: Yield function examples.

Remark 1. The proposed model for the running cost may not feel very realistic
since the energy consumption is the same while accelerating (u > 0) or braking
(u < 0). First of all, let us mention that our goal is to capture the influence
of the non-differentiability on the optimal strategy. As such, electrical engines
equipped with regenerative braking devices are not considered for simplicity. On
the other side, if one wants to better model internal combustion engines, where
braking costs almost nothing, phases when u < 0 can be discriminated with the
help of a function of the form:

υ(u) =

{
αu for u ≥ 0
−βu for u < 0

with 0 < β ≤ α and J(u) =

∫ Tf

0

|y| υ(u)

ρ(y)
dτ

This new cost function will have an impact on the several calculations and on the
switching times, but not on the qualitative behaviours displayed in the remainder
of the article.

2.3 A fixed-time optimal control problem

In the remainder of this paper, we restrict our study to trajectories having a
forward destination and a fixed final time Tf . Also, in order to ease the exposure
of the study, we set the parameters m and g to 1. The optimal control problem
under consideration is:

(P1)



Minimise J(u) =

∫ Tf

0

|yu|
ρ(y)

dτ

Subject to (Σ1)

{
ẋ = y
ẏ = u− αy − sin (θ(x))

for t ∈ [0, Tf ]

X(0) =

(
x(0)
y(0)

)
=

(
0
0

)
, X(Tf ) =

(
x(Tf )
y(Tf )

)
=

(
xf
0

)
, with xf > 0

|u(t)| ≤ 1 for t ∈ [0, Tf ]

Tf > 0 is fixed.
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Figure 3: Control strategy of the form uε,∆t(t), and associated trajectory.

Following [15, Thm. 4, P. 259], and also [4, 5], the set of solutions to this
problem is non-empty as soon as Tf is greater or equal to the minimum time
problem associated to (P1).

Let us remark that, in order to perform a relevant study in free time, (P1)
requires a specific road profile, a cost that penalises the travel time or a specific
yield function ρ(y). This statement is illustrated in the case of a flat road (i.e.
θ ≡ 0) by the following proposition.

Proposition 1. Let us consider problem (P1) with a flat road (that is to say
θ ≡ 0). If the final time Tf is free then the optimal strategy lies in the set of
control variables for which the associated cost is null.

Proof. In order to prove this statement, we show that for any strategy having a
finite final time and a strictly positive cost, there exists another strategy (also
with a finite final time) having a smaller associated cost. In order to do so,
we just construct two one-parameter families of control strategies (with and
without friction) such that the associated cost goes to zero when the parameter
tends toward zero.

We also show that the final time associated to those strategies goes to infinity
when the parameter vanishes. Therefore, the optimal solution must display a
null associated cost for a finite final time.

We first detail the case when α = 0: system (Σ1) is just a double integrator.
Let us now consider the following family of controls —see Figure 3:

uε,∆t(t) =

 ε for t ∈ [0,∆t[
0 for t ∈ [∆t, Tf −∆t[
−ε for t ∈ [Tf −∆t, Tf ]

(5)

The trajectory of (Σ1) is easily computed —see Figure 3 for an example. For
a given xf , we have:

x(Tf ) = ε∆t(Tf −∆t) ⇒ Tf =
ε∆t2 + xf

ε∆t

The cost of this trajectory is J(u) =

∫ ∆t

0

εy

ρ(y)
dt +

∫ Tf

Tf−∆t

εy

ρ(y)
dt and tends

toward 0 either when ∆t → 0 or ε → 0. In both cases, Tf → ∞ and the
minimum cost is not reached.
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Figure 4: Control strategy of the form uε(t), and associated trajectory.

For α > 0, we consider the family of controls:

uε(t) =

{
ε t ∈ [0,∆t[
−ε t ∈ [∆t, Tf ]

(6)

Again, the trajectory is easily computed. For a fixed ε > 0, the constraint
y(Tf ) = 0 provide the expression Tf = 1

α ln
(
2eα∆t − 1

)
. This latter expression is

used together with the constraint x(Tf ) = xf to provide the following expression
for ∆t:

∆t =
1

α
ln

(
e
α2xf
ε +

√
e
α2xf
ε

(
e
α2xf
ε − 1

))

Since ∆t
ε→0−→ ∞, the same goes for Tf while J(uε)

ε→0−→ 0. As before, the
minimum is not reached. An example of such a trajectory is shown in Figure 4.

3 On the regularity of the problem

In this section, we address two regularity issues:

• a theorem about the regularity of controls that are solution to a class of
problems that includes (P1);

• a lemma showing that for specific road profiles the search for optimal
solutions can be limited to the set of forward trajectories.

3.1 Regularity of the control variable

Let (Σ0) be the following system for all t ∈ [0, T ] where T > 0 is fixed:

(Σ0) ẋ = F (x) + uG(x)

The initial state of (Σ0) is denoted by x0 ∈ Rn, n > 0. The vector fields F (.)
and G(.) are assumed real analytic. The control variable is such that |u(t)| ≤ 1.
The associated input-output application, is:

Φ : Rn × L1
[0,T ] −→ AC[0,T ]

(x0, u(t)) 7→ x(.)

7



where x(.) is the trajectory of (Σ0) with initial state x0 and control1 u(.), and
AC[0,T ] is the set of absolutely continuous functions over [0, T ]. For a given x0,
we denote Φx0

(u) = Φ(x0, u). The set L1
[0,T ] is embedded with its natural topol-

ogy, AC[0,T ] has the topology of uniform convergence, and Rn, the Euclidean
metric topology.

Let ψ(.) be a continuous function. The cost associated to a trajectory of
(Σ0) generated by u(.) and x0 is:

J : Rn × L1
[0,T ] −→ R+

(x0, u(t)) 7→
∫ T

0

|ψ(x)u|dt

Lemma 1. Φ(.) and J(.) are uniformly continuous functions.

Proof. For the sake of completeness, the proof of this lemma is given in Ap-
pendix A.

Theorem 1. Let PA be the subset of L1
[0,T ] made of piecewise algebraic controls

on a set of full measure —i.e. almost everywhere algebraic on a finite number
of subintervals of [0, T ]. Let us consider an optimal control problem of the form:

(P0)



Minimise J(u) =

Tf∫
0

|ψ(x(τ))u(τ)| dτ

Subject to (Σ0) ẋ(t) = F (x(t)) + uG(x(t)) for t ∈ [0, Tf ]

x(0) = x0 and x(Tf ) = xf

|u(t)| ≤ 1 for t ∈ [0, Tf ]

Tf > 0 is fixed

under the hypotheses:

(H0) ψ(.) has a maximum on Rn;

(H1) J(.) has a minimum on PA, which we denote by JM ;

(H2) the minimum time trajectories of (Σ0) are given by controls belonging to
PA;

(H3) (Σ0) is small time locally controllable2 at xf ;

(H4) (xf , uf ) is an equilibrium point of (Σ0) such that ψ(xf )uf ≡ 0.

1Remind that, for a finite T > 0, then L∞
[0,T ]

⊂ L1
[0,T ]

2A control system (Σ0) is small time locally controllable from x0, if for every positive
time T the set of points reachable from x0 in time less than T via admissible controls contains
an open neighbourhood of x0 —see e.g. [13].
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Then JM is the minimum of J(.) over L1
[0,Tf ].

The theorem is also true when xf is replaced by x0 in hypotheses (H3) and (H4).

Proof. Let x0 an initial state and xf be a final state. Let u∗ ∈
(
L1

[0,Tf ]\PA
)

be a control steering (Σ0) from x0 to xf such that J(u∗) < JM . We show that
it contradicts (H1).

Claim: for all ε > 0, there exists an interval Iε ⊂ [0, Tf ] of measure ε such
that x∗, the trajectory of (Σ0) given by u∗, is not the solution to the minimal

time problem on Iε.
Indeed, if this is not the case: there exists ε > 0 such that, for all interval
Iε ⊂ [0, Tf ] of measure ε, x∗ is the solution to the minimal time problem on

interval Iε.
Therefore, according to (H2), this means: there exists ε > 0 such that, for all

interval Iε ⊂ [0, Tf ] of measure ε, the control u∗ ∈ PA.
We deduce that u∗ ∈ PA, which is in contradiction with the hypothesis:

u∗ /∈ PA.

Let uε be a new control constructed from u∗ as follows.

1. Let t1 and t2 denote the boundaries of Iε, with 0 ≤ t1 < t2 ≤ Tf .

2. For all t ≤ t1, uε(t) = u∗(t).

3. Next, uε(t) is equal to the solution to the minimum time problem associ-
ated to (Σ0) with starting point x∗(t1) and final point x∗(t2).
The corresponding travel time is denoted by tmin, and of course t1+tmin <
t2.
Let δ denote the time saved in the process —i.e. δ = t2 − t1 − tmin.

4. Since (Σ0) is time invariant, for t ∈]t1 + tmin, Tf −δ], then uε(t) = u∗(t2−
t1 − tmin + t) steers x from x(t1 + tmin) = x(t2) to xf .

5. Finally, uε(t) = uf for t ∈]Tf − δ, Tf ].

The new control variable uε steers x from x0 to xf , and the cost difference
between the trajectory associated to uε (denoted by xε) and the trajectory
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associated to u∗ is:

J(u∗)− J(uε) =

Tf∫
0

|ψ(x(t))u(t)| dt−
Tf∫
0

|ψ(xε(t))uε(t)| dt

=

t1∫
0

|ψ(x(t))u(t)| dt

︸ ︷︷ ︸
A

+

t2∫
t1

|ψ(x(t))u(t)| dt

︸ ︷︷ ︸
B

+

Tf∫
t2

|ψ(x(t))u(t)| dt

︸ ︷︷ ︸
C

−
t1∫

0

|ψ(xε(t))uε(t)| dt︸ ︷︷ ︸
D

−
t1+tmin∫
t1

|ψ(xε(t))uε(t)| dt

︸ ︷︷ ︸
E

−
Tf−δ∫

t1+tmin

|ψ(xε(t))uε(t)| dt

︸ ︷︷ ︸
F

−
Tf∫

Tf−δ

|ψ(xε(t))uε(t)| dt

︸ ︷︷ ︸
G

1. By definition of uε, we have A = D.

2. The measures of [t1 + tmin, Tf − δ] and [t2, Tf ] are the same (Tf − δ− t1−
tmin = Tf − t2).
Furthermore

(a) for t ∈ [0, Tf − t2], uε(t1 + tmin + t) = u∗(t2 + t),

(b) xε(t1 + tmin) = x∗(t2),

(c) (Σ0) is time invariant.

Thus, ∀t ∈ [0, Tf − t2], xε(t1 + tmin + t) = x∗(t2 + t).
And finally, since the function ψ(.) is time invariant, then C = F .

3. since (xε, uε) = (xf , uf ) over [Tf − δ, Tf ], then G = 0 —cf. hypothesis
(H4).

Those considerations lead to:

|J(u∗)− J(uε)| =

∣∣∣∣∣∣
t2∫
t1

|ψ(x(t))u(t)| dt−
t1+tmin∫
t1

|ψ(xε(t))uε(t)| dt

∣∣∣∣∣∣
≤

t2∫
t1

|ψ(x(t))|︸ ︷︷ ︸
≤M

|u(t)|︸ ︷︷ ︸
≤1

dt+

t1+tmin∫
t1

|ψ(xε(t))| |uε(t)| dt

≤ M(t2 − t1) +Mtmin ≤ 2εM

where M > 0 denotes the maximum of ψ(.) —cf. hypothesis (H0).
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Henceforth, we fix ε > 0 such that 2εM < JM−J(u∗)
3 , and xε is the trajectory

of (Σ0) given by x0 and uε.
As a consequence, the small time δ > 0 is now fixed. The same goes for the

accessibility set of (−Σ0) starting3 from xf for times less or equal than δ. We
denote this set by A−δ (xf ).

Following [13]:

1. the small time local controllability of (Σ0), implies the small time local
controllability of (−Σ0);

2. the real analyticity hypothesis for F (x) and G(x) leads to the small time
self-reachability of (−Σ0);

3. since xf is an equilibrium point of (−Σ0), then self-reachability is valid in
fixed time.

Therefore, for any point in A−δ (xf ), there exists a control ue ∈ PA steering this
point to xf in a time exactly equal to δ. The cost of such a piece of trajectory
is:

Tf∫
Tf−δ

|ψ(xe(t))ue(t)| dt ≤ 2δM < 2εM <
JM − J(u∗)

3
(7)

Let us now construct a L1
[0,Tf ]-perturbation of uε that lives in PA and de-

noted by uδ. It is important to point out that the reachable set A−δ (xf ) is now
independent from the construction that follows. This is a crucial point of the
proof.

Firstly, following Luzin’s theorem [14], for all m > 0 there is a continuous
function Cδ such that {t : Cδ(t) 6= uε(t)} is of measure at most m. Next, the
function Cδ is saturated in ±1 in order to obtain a continuous function C̄δ such
that

∥∥uε − C̄δ∥∥L1 < 2m.
Secondly, there is a sequence of polynomials, denoted by {Pn}n∈N, that

converges uniformly to C̄δ. Therefore, for all m̃ > 0, there exists a polynomial
Pδ taken from {Pn}n∈N which is m̃-close to C̄δ in the L1

[0,Tf ]-sense. We consider

the control variable uδ(t) ∈ PA obtained from the polynomial Pδ saturated in
±1, then ‖uε − uδ‖L1 < 2m+ m̃.

The uniform continuity of Φx0
(.), and Jx0

(.), cf. Lemma 1, guarantees that
we can choose m and m̃ such that:

1. |J(uε)− J(uδ)| < JM−J(u∗)
3 ,

2. xδ(Tf − δ) is close enough to xf , that is to say xδ(Tf ) ∈ A−δ (xf ).

Finally, the following control ũ ∈ PA steers x0 to xf in a fixed time Tf :

ũ(t) =

{
uδ(t) if 0 ≤ t ≤ Tf − δ
ue(t) otherwise

3(−Σ0) denotes system (Σ0) with reversed time.
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In particular, we have the relations J(ũ) = J(uδ) + J(ue) and

|J(u∗)− J(ũ)| < |J(u∗)− J(uε)|︸ ︷︷ ︸
<
JM−J(u∗)

3

+ |J(uε)− J(uδ)|︸ ︷︷ ︸
<
JM−J(u∗)

3

+ |J(ue)|︸ ︷︷ ︸
<
JM−J(u∗)

3

< JM − J(u∗)

which contradicts the minimality of JM over the subset PA —i.e. hypothesis
(H1)— and concludes the proof.

Now, let us show that this result is preserved when (x0, u0) is the equilibrium
point around which (Σ0) is small time locally controllable.

• The control uε(t) is constructed in the same way as before, except that it
equals u0 over [0, δ].

• The small time δ being fixed during the previous step, the same goes for
the reachable set of (Σ0) starting from x0, in time less or equal to δ:
A+
δ (x0).

As before, the results on small time self-reachability guarantee the exis-
tence of a control on PA that steers x0 to any point of A+

δ (x0) in a time
that is exactly equal to δ. The cost of such a piece of trajectory is less

than JM−J(u∗)
3 .

• xε(t) denotes the trajectory starting from x0 when the control uε is ap-
plied. We define x̃ε(τ) = xε(Tf − τ) which dynamics are:

dx̃ε
dτ

= − xε(t)

dt

∣∣∣∣
(Tf−τ)

= −F (x̃ε(τ))− uε(Tf − τ)G(x̃ε(τ))

The control ũε(τ) = uε(Tf −τ), for τ ∈ [0, Tf −δ], applied to (−Σ0) steers
x̃(0) = xf to x̃(Tf − δ) = x0.
Again, we use Luzin’s theorem and the density property of polynomials.
Since Lemma 1 also applies to system (−Σ0), there is therefore a control

ũδ ∈ PA such that |J(ũδ)− J(ũε)| < JM−J(u∗)
3 , such that x̃δ(Tf − δ) ∈

A+
δ (x0).

• With a change of variables similar to the one of the previous step —i.e.
xδ(t) = x̃δ(Tf − t)— the control uδ(t) = ũδ(Tf − t), for t ∈ [δ, Tf ], applied
to (Σ0), steers some point xδ(δ) ∈ A+

δ (x0) to xδ(Tf ) = x̃δ(0) = xf .

• Finally, a PA control steering x0 to xf , with an associated cost less than
JM is obtained by firstly joining x0 to xδ(δ) ∈ A+

δ (x0) for t ∈ [0, δ], and
secondly using uδ(t) for t ∈ [δ, Tf ].

Remark 2. The small time self-reachability of (Σ0) is a key point of the proof.
As it can be seen in Corollary 4.15 of [13], the property “ F (.) and G(.) are
real analytic vector fields” can be replaced by “F (.) and G(.) are C1 and locally
bounded”.
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3.2 Trajectories without backward arcs

A backward arc is understood as a piece of trajectory, defined over a non-
trivial interval of time, along which the quantity y is strictly negative.

Lemma 2. Let us consider a road for which the profile is such that Problem
(P1) is invariant under a translation along the x−axis of the phase diagram of
(Σ1). Then, trajectories including backward arcs can be disregarded when looking
for solutions to (P1).

Proof. Let Γ(t) = (xΓ(t), yΓ(t))t be a trajectory of (Σ1). According to Theo-
rem 1, in order to be a candidate for optimality, this trajectory is made of a
finite number of arcs. Let us assume that yΓ(t) has only one backward arc —the
following argument remains in the case of multiple backward arcs:

yΓ(t) =

{
yΓ(t) < 0 over [0, t1[
yΓ(t) ≥ 0 over [t1, Tf ]

Let Γ− denote the arc such that y < 0, and Γ+ the other one. We now construct
a new trajectory, denoted by γ = (xγ , yγ)t, that doesn’t include any backward
arc and having an associated cost less or equal to the one of Γ. The explanations
below are illustrated in Figure 5.

Let us translate the arc Γ+ along the x−axis in order to moveA = (xΓ(t1), yΓ(t1))t

to (0, 0)t. This new curve, denoted by Γ+
trans is the dotted curve in Figure 5.

The time instants t2 and t3 are defined as follows:

• letB be the intersection point between Γ+ and Γ+
trans, thenB = (xΓ(t3), yΓ(t3))t;

• let C be the translation of B when Γ+
trans is translated back to Γ+, then

C = (xΓ(t2), yΓ(t2))t.

The trajectory γ is:

γ(t) =

 Γ+
trans(t+ t1) for 0 ≤ t ≤ t2 − t1

Γ+(t+ t3) for t2 − t1 ≤ t ≤ (t2 − t1) + (Tf − t3)
(xf , 0)t for (t2 − t1) + (Tf − t3) ≤ t ≤ Tf

Let uΓ (resp. uγ) denote the control corresponding to Γ (resp. γ), and JΓ(u)
(resp. Jγ(u)), then:

JΓ(u) =

Tf∫
0

|yΓuΓ|
ρ(yΓ)

dt =

t1∫
0

|yΓuΓ|
ρ(yΓ)

dt+

t2∫
t1

|yΓuΓ|
ρ(yΓ)

dt+

t3∫
t2

|yΓuΓ|
ρ(yΓ)

dt+

Tf∫
t3

|yΓuΓ|
ρ(yΓ)

dt

≥
t2∫
t1

|yΓuΓ|
ρ(yΓ)

dt+

Tf∫
t3

|yΓuΓ|
ρ(yΓ)

dt =

t2−t1∫
0

|yγuγ |
ρ(yγ)

dt+

(t2−t1)+(Tf−t3)∫
t2−t1

|yγuγ |
ρ(yγ)

dt = Jγ(u)

13
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Figure 5: The Γ(t) trajectory.

4 Case studies

In this paper, three configurations of Problem (P1) are investigated:

1. a flat road without drag;

2. a flat road with drag;

3. a non-flat road profile, and a null drag coefficient.

System (Σ1) is linear in the two first configurations, and nonlinear in the third.
As we deal with a fixed time control problem, a solution exists only if the final
time Tf is larger than the minimum time (Tmin) needed to reach the prescribed
destination. In all those three cases, the minimum time strategy consists of the
following control sequence, and the calculation of Tmin is straightforward:

umin(t) =

{
1 for 0 ≤ t < ∆t
−1 for ∆t ≤ Tmin

Case (1) is an elementary example treated in the first chapter of [21], and
cases (2) and (3) are easily dealt with following the procedure in [21]. The
expressions of the minimum travel time for cases (1) and (2) are, respectively,
the two expressions below:

Tmin = 2
√
xf and Tmin =

1

α

(
ln
(

1 +
√

1− e−α2xf

)
− ln

(
1−

√
1− e−α2xf

))
(8)

In the last case, the formula is provided in Section 4.3 below.
The study is performed with the help of Pontryagin’s Maximum Princi-

ple [21, 1, 10, 7]. To this end, we introduce P(t) = (p(t), q(t))t, the adjoint
vector of X(t) = (x(t), y(t))t and form the Hamiltonian:

H (X,P, u, λ0) = py + q (u− αy − sin(θ(x)))− λ0
|yu|
ρ(y)

with λ0 ∈ {1, 0}

14



Since (P1) is an autonomous problem, then H (X,P, u, λ0) is constant along
extremal trajectories and denoted by H. Also, still along extremal trajectories,
for almost every t, we have the maximisation condition:

H = max
|u|≤1

H (X,P, u, λ0)

and the adjoint equations:

ṗ = −∂H
∂x

(X,P, u, λ0) (9)

−q̇ ∈ DyH (X,P, u, λ0) (10)

where DyH denotes the subdifferential of H with respect to y, cf. [10].
As a consequence, following the maximisation condition, the candidate con-

trol strategy for abnormal extremals is given by:

u(t) = argmax
|u|≤1

H (X,P, u, 0) = sgn (q)

For normal extremals the maximisation condition, illustrated in Figure 6,
yields:

u(t) = argmax
|u|≤1

H (X,P, u, 1) = argmax
|u|≤1

(
qu− |yu|

ρ(y)

)
=



1 if q > |y|
ρ(y)

u ∈ [0, 1] if q = |y|
ρ(y)

0 if − |y|
ρ(y) < q < |y|

ρ(y)

u ∈ [−1, 0] if q = − |y|ρ(y)

−1 if q < − |y|ρ(y)

(11)

A singular arc is a piece of extremal trajectory such that either q = |y|
ρ(y)

or q = − |y|ρ(y) over a non-trivial interval of time —see for instance [7, 6, 24].

Also, a control u(t) is said extremal if there exists P(0) = (p0, q0) such that
the trajectories of the Hamiltonian system, formed by (Σ1), (9) and (10) is
extremal.

On the properties of singular arcs.

Let us write the Hamiltonian along an extremal singular arc. Following the set
of rules (11), we have:

H = py − q (sin(θ(x)) + αy) where q(t) is either
|y(t)|
ρ(y(t))

or − |y(t)|
ρ(y(t))

As a consequence, if the y trajectory of an extremal singular arc crosses y = 0,
then H = 0 along the corresponding extremal.
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Figure 6: The maximisation condition in the normal case.

We now consider the case q = |y|
ρ(y) and y > 0, then u ∈ [0, 1] and the

Hamiltonian is

H (X,P, u, λ0) = py − y

ρ(y)
(sin(θ(x)) + αy) (12)

Its time derivative is:

0 = ẏ

[
p− sin(θ(x))

(
1

ρ(y)
− yρ

′
(y)

ρ2(y)

)
− αy

(
2

ρ(y)
− yρ

′
(y)

ρ2(y)

)]
where ρ

′
(y) =

∂ρ(y)

∂y

This last expression is of the form 0 = ẏ [p− sin(θ(x))A−B]. Therefore, one
possible behaviour for singular arcs is to have y constant. Over intervals such
that y is not constant, the quantity [p− sin(θ(x))A−B] must vanish. Following
equation (9), the time derivative of p is given by:

ṗ = q cos(θ(x))
∂θ(x)

∂x
=

y

ρ(y)
cos(θ(x))

∂θ(x)

∂x

If ∂θ
∂x doesn’t vanish, the time derivative of [p− sin(θ(x))A−B] is of the form:

C + ẏD = 0 where4 both C and D are independent from ẏ. At this point
one can investigate possible behaviours for extremal singular arcs by using the
differential equation ẏ = −C

D .

If ∂θ
∂x vanishes, then both p and sin(θ(x)) are constants. The time derivative

of [p− sin(θ(x))A−B] is of the form (ẏD) where D depends on y, ρ(y), ρ′(y)
and ρ′′(y). Since we assumed that ẏ 6= 0, then D = 0, and the time derivative
of D is computed. It is of the form (ẏE) where E depends on y, ρ(y), and the
derivatives of ρ up to order 3. In fact, there is no new information to be found

4The expressions C and D are rather long, and as such, we do not reproduce them in the
paper. It is straightforward to recover them with the help of a symbolic computation software.
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and an extremal singular arc of this kind exists only if the yield function is of
the form given by the Hamiltonian (12), which is almost never the case.

The same conclusions are drawn for y < 0 and in the case q = − |y|ρ(y) .

4.1 Flat road without drag

In this section, the drag coefficient α is null and the road is flat —i.e. θ(x) ≡ 0.
System (Σ1) is then a simple double integrator and the Hamiltonian associated
to Problem (P1) is:

H (X,P, u, λ0) = py + qu− λ0
|yu|
ρ(y)

System (Σ1) being linear, there is no abnormal extremal trajectory. Let us
write the Hamiltonian, along extremal trajectories at times t = 0 and t = Tf :

H|t=0 = H|t=Tf = H ⇒ H = u(0)q(0) = u(Tf )q(Tf ) (13)

From Lemma 2, y ≥ 0 for all t ∈ [0, Tf ]. There exist t1 and t2 in [0, Tf ] such

that y(t1) = y(t2) = 0 and y(t) > 0 for all t ∈]t1, t2[. The quantity κ(t) =
qρ(y)

y
is well defined over ]t1, t2[ and the set of rules (11) translates into:

u(t) =

 1 if κ(1) > 1
0 if − 1 < κ(t) < 1
−1 if κ(t) < −1

(14)

Since there is no backward arc, there exists ε > 0 such that u = 1 over an
interval of the form ]t1, t1 + ε[. Remember that (Σ1) is a double integrator and
that y(t2) = 0. This means that the control variable must become negative
at some point (or equivalently, κ must be less than −1), thus there is a time
t? ∈]t1, t2[ such that κ(t?) = 0 and κ̇ < 0. Note that, κ(t?) = 0 cannot be an
inflexion point as it is shown later on. First, let us compute the time derivative
of κ(t):

κ̇(t) =

˙̂(
qρ(y)

y

)
=
qẏyρ′(y)

y2
+
q̇ρ(y)y

y2
− qρ(y)ẏ

y2

=
qẏρ′(y)

y
+ ρ(y)

1

y2
(q̇y − qẏ)︸ ︷︷ ︸

−H−
|u|ρ′(y)y2

ρ(y)2

= −ρ(y)
H

y2
+ ρ′(y)

(
qẏ

y
− |u|
ρ(y)

)

=− ρ(y)

y2
H +

ρ′(y)

ρ(y)
(κu− |u|) (15)

Following (14), u = 0 when κ ∈]− 1, 1[. Therefore, equation (15) yields κ̇(t?) =

−ρ(y)
y2 H. If κ(t?) = 0 is an inflexion point, then H = 0 along the extremal
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trajectory. As a consequence, from (15), κ̇ = 0 as soon as u = 0 and κ never
reaches −1. Therefore, κ(t?) = 0 is not an inflexion point, and H must be
strictly positive.

Now, relation (13) tells us that u(0) = 1 and u(Tf ) = −1. Indeed, since
u(0)q(0) 6= 0 then q(0) 6= 0. If q(0) < 0 then u(0) = −1 which contradicts the
fact that there is no backward arc. A similar argument yields u(Tf ) = −1.

Going back to equation (15), let us consider the case when κ = 1. According

to the set of rules (14), u ≥ 0, therefore (κu − |u|) = 0 and κ̇ = −ρ(y)
y2 H < 0.

When κ = −1, u ≤ 0 and κ̇ is also strictly negative. As a consequence, an
extremal trajectory contains no singular arc and has a maximum of 2 commu-
tations. In fact, for a given Tf > Tmin, there is only one possible extremal
trajectory, the one generated by the control sequence:

u(t) =

 1 for t ∈ [0,∆t[
0 for t ∈ [∆t, Tf −∆t[
−1 for t ∈ [Tf −∆t, Tf ]

(16)

The terminal condition xf = ∆tTf −∆t2 allows the explicit computation of ∆t:

∆t =
1

2

(
Tf −

√
T 2
f − 4xf

)
This relation is well defined. Indeed, Tf > Tmin implies (T 2

f − 4xf ) > 0 —cf.
equation (8).

It is clear from expression (15), that the yield function has no part to play
in this specific problem. Actually, the solution to this problem is exactly the

same as the one to the problem that consists of minimising

∫ Tf

0

|u(t)|dt for a

double integrator. The interested reader can refer to [22] where this problem is
solved.

Figure 7 illustrates this optimal strategy. The trajectory is shown in Fig-
ure 7a. Figures 7b and 7d show the switching functions for a constant and a
non-constant yield function respectively. Finally, Figure 7c represents the non-
constant yield function: the dotted part shows the shape of the yield function,
while the plain red part shows the visited values of the yield function.

4.2 Flat road with drag

In this second case study a drag coefficient is introduced. Again, system (Σ1)
is linear and is written: {

ẋ = y
ẏ = u− αy

As before, abnormal extremal trajectories are out of the picture, Lemma 2 ap-
plies and optimal trajectories don’t include backward arcs. The normal Hamil-
tonian H is:

H(X,P, u, 1) = py + q(u− αy)− y|u|
ρ(y)
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Figure 7: Optimal trajectory in the double integrator case. Parameters: xf = 2,
Tmin ≈ 2.82 and Tf = 3.8.

As in Section 4.1, we have the relation: H = u(0)q(0) = u(Tf )q(Tf ), and

we define the quantity κ =
qρ(y)

y
. It is defined over some open subinterval

]t1, t2[⊂ [0, Tf ], such that y(t) > 0 and y(t1) = y(t2) = 0. The time derivative
of κ is:

κ̇(t) = −ρ(y)

y2
H − ρ′(y)

ρ(y)
|u|+ κ(t)

(
α+

ρ′(y)

ρ(y)
(u− αy)

)
(17)

As in section 4.1, there exists ε > 0 such that u = 1 over an interval of the form
]t1, t1 +ε[, and (Σ1) is such that the control u must be negative in order to have
y(Tf ) = 0. As a consequence, there is a time t? such that κ(t?) vanishes, and
κ̇(t?) < 0.

Again, κ(t?) = 0 cannot be an inflexion point. Indeed, according to (17), if

κ(t?) = 0 is an inflexion point, then κ̇(t∗) = −ρ(y(t∗))
y(t∗)2 H = 0, and H = 0 along

the extremal. Let us now, consider (17) for κ ∈]− 1, 1[ (i.e. u=0) and compute
the second order time derivative of κ:

κ̈(t) =
d

dt

[
−ρ(y)

y2
H + κ(t)

(
α− αyρ

′(y)

ρ(y)

)]
=

d

dt

[
κ(t)

(
α− αyρ

′(y)

ρ(y)

)]
This computation shows that κ̈(t?) = 0 but also that all the successive deriva-
tives of κ(t) are null at time t?. In fact, κ(t?) is not an inflexion point and
therefore H > 0, u(0) = 1 and u(Tf ) = −1.
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The rest of this section is divided into two parts. In the first one, the yield
function ρ(y) is assumed equal to some constant 0 < ρ̄ ≤ 1. This assumption
allows us to completely describe the solution to problem (P1) with respect to
the value of Tf > Tmin. In a second part, we build upon this basis and propose
a methodology to search for the solution to the problem when the yield function
is not constant.

4.2.1 Constant yield function.

First of all, let us remark that the solution to problem (P1) doesn’t depend on
the value taken by ρ̄. We therefore set ρ̄ = 1. Up to now, we know the three
following facts:

1. the control variable is equal to 1 over an interval of the form [0, ε[;

2. the control variable equals −1 over an interval of the form [Tf − ε, Tf ];

3. there might be singular arcs and such arcs are characterised by ẏ = 0 with
y > 0.

An immediate consequence of the third fact is that there is no singular arc of
the form q = −y —i.e. with u ∈ [−1, 0]. Indeed, ẏ = 0 with y > 0 can only be
achieved with a strictly positive control. In the following, using ∈]0, 1[ denotes a
singular control. The following lemma states several facts allowing us to narrow
down the list of candidate strategies.

Lemma 3.

1. If the control variable switches to u = 0 then it cannot be strictly positive
again.

2. If the control variable switches to u = −1 then it cannot switch back to 0.

3. There can be at most one singular arc.

4. For extremal trajectories comprising a singular arc:

(a) y =
√

q0
α along the singular arc;

(b) the corresponding control is using =
√
αq0;

(c) the following relation holds: p = 2
√
αq0.

Proof. 1. We use the quantity κ(t). A commutation of the control from u > 0
to u = 0 means that, at some time t?, κ(t?) = 1 and κ̇(t?) < 0. Let us
write the expression of κ̇(t?) —cf. equation (17):

κ̇(t?) = ακ(t?)− H

y(t?)2
< 0
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Therefore, κ(t) < κ(t?) over a small interval of the form [t?, t? + ε[. Also,
since the control switched to 0, then the same goes for the variable y(t).
As a consequence, over [t?, t? + ε[, we have:

κ̇(t) = ακ(t)− H

y(t)2
< κ̇(t?) < 0

As a consequence, κ(t) remains less than 1 and the control cannot switch
back to a positive value.

2. The second assertion is derived from similar arguments;

3. Assume that there exists an extremal trajectory that includes two singular
arcs. Since this cannot happen as soon as u = 0, then, the control sequence
is of the following form —with t4 < Tf :

u = 1 for t ∈ [0, t1[
using for t ∈ [t1, t2[
u = 1 for t ∈ [t2, t3[
using for t ∈ [t3, t4[

Along a singular arc, we have κ = 1 and κ̇ = 0, and equation (17) is
rewritten:

0 = − H

y(t)2
+ α ⇒ y2 =

H

α
=
q0

α

Since y is constant along a singular arc, then y2(t1) = q0
α and y2(t3) = q0

α .
Those two equalities contradict the existence of two singular arcs. Indeed,
ẏ 6= 0 over [t2, t3[, therefore, y(t1) and y(t3) are not equal while having
the same sign.

4. Items (a) and (b) come directly from the relation y2 = q0
α used in the

proof of fact (3). In order to prove item (c) we simply need to remark
that, since both κ̇ and ẏ are null along a singular arc, the same is true for
q̇:

0 = q̇ = −∂H
∂y

(X,P, u, 1) = −p+ αq + |u|

= −p+ αy + using

= −p+ 2using

Remark 3. According to the informations gathered so far, control sequences
candidate for optimality are:

1. u = 1, then u = 0 and finally u = −1;

2. u = 1, then u = using, u = 0 and finally u = −1;

3. u = 1, then u = using, u = 1, u = 0 and finally u = −1.
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Lemma 4. The following control sequence, with
√
αq0 6= 1, is not extremal

u(t) =


1 for t ∈ [0, t1[√
αq0 for t ∈ [t1, t2[
1 for t ∈ [t2, t3[
0 for t ∈ [t3, t4[
−1 for t ∈ [t4, Tf ]

Proof. Let us focus on the subinterval [t2, t3[ and show that time t3 actually
doesn’t exist. Let t̄ be the quantity t− t2 and solve (Σ1) for t > t2 with u = 1:

y(t) =

(
y(t2)− 1

α

)
e−αt̄ +

1

α
and q(t) =

(
q(t2)− p0 − 1

α

)
eαt̄ +

p0 − 1

α

The commutation of the control variable at time t2 implies y(t2) = q(t2), and
the commutation at time t3 implies y(t3) = q(t3). Therefore, t3 − t2 is the
solution to the following equation:(

y(t2)− 1

α

)
e−αt̄ +

1

α
=

(
q(t2)− p0 − 1

α

)
eαt̄ +

p0 − 1

α

which is rewritten, denoting q2 = q(t2):(
q2 −

1

α

)
e−αt̄ +

1

α
=

(
q2 −

p0 − 1

α

)
eαt̄ +

p0 − 1

α

After a few simplifications, and denoting X = eαt̄, we obtain:

(αq2 − p0 + 1)X2 + (p0 − 2)X − αq2 + 1 = 0 (18)

We have, y(t2) = y(t1), which implies q2 =
√

q0
α —cf. Lemma 3. Let us write

the Hamiltonian at time t = t2 —i.e. H|t=t2 = H|t=0 = q0. We obtain the
relations:

q0 = αq2
2 and q0 = p0q2 − αq2

2 ===⇒
q2 6=0

p0 = 2αq2 (19)

Therefore, the equation given in (18) becomes:

(1− αq2) (X − 1)
2

= 0

• If (1− αq2) = 0, then q0 = αq2
2 = 1

α , and
√
αq0 = 1 which is a contradic-

tion.

• If (X − 1) = 0, then X = 1 and t̄ = 0, which means that t3 > t2 doesn’t
exist.

As a consequence, the control strategy under consideration is not an extremal
trajectory.
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Lemma 5. Consider the control sequence:

u(t) =


1 for t ∈ [0, t1[√
αq0 for t ∈ [t1, t2[
0 for t ∈ [t2, t3[
−1 for t ∈ [t3, Tf ]

(20)

1. If strategy (20) is extremal, then t3 − t2 = 1
α ln

(
1 +
√

2
)
.

2. For given values of parameters α and xf , there is a time Tlim > 0 such
that for all Tf > Tlim, control sequence (20) is candidate for optimality.

Proof. 1. Using the notation y1 = y(t1), since the second arc is singular,
we know that y(t2) = q(t2) = y1. Let t̄ be defined by t̄ = t − t2, the
expressions of q and y over the interval [t2, t3] are:

q(t̄) = y1e
αt̄ − p0

α
(eαt̄ − 1) et y(t̄) = y1e

−αt̄

At time t3, the control commutes from 0 to −1, which corresponds to the
relation q(t3) = −y(t3). We now combine the relation p0 = 2

√
αq0 =

2using from Lemma 3, fact (4), with the fact that y is constant and equals
y1 along the singular arc: using = αy1 and p0 = 2αy1.

Let us now compute t̄ such that −y(t̄) = q(t̄) :

−y1e
−αt̄ = y1e

αt̄ − p0

α
(eαt̄ − 1)

−y1e
−αt̄ = y1e

αt̄ − 2αy1

α
(eαt̄ − 1)

−e−αt̄ = eαt̄ − 2(eαt̄ − 1) (since y1 > 0)

−1 = e2αt̄ − 2(e2αt̄ − eαt̄)
0 =X2 − 2X − 1 ( with X = eαt̄)

Therefore X = 1±
√

2, which yields t3 − t2 = 1
α ln

(
1 +
√

2
)
.

2. Consider the following procedure.

• Let t1 = t2.

• Let t3− t2 = 1
α ln

(
1 +
√

2
)
, set Tf − t3 = Tf − 1

α ln
(
1 +
√

2
)
− t1 and

solve y(Tf ) = 0 for t1. It is the following function of α and Tf :

t1 =
1

α
ln

[(
1−
√

2

2

)(
1 + eαTf

)]

• For a given final time Tf , control strategy (20) leads to:

xf = −Tf
α

+
ln
(
1 +
√

2
)

α2
+

2

α2
ln

((
1−
√

2

2

)(
1 + eαTf

))
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• The above relation is reversed in order to express Tf , as a function
of α and xf . We obtain the following relations, and Tlim is the latter
one:

1

α
ln

(
(1 +

√
2)eα

2xf − 1−
√(

(1 +
√

2)eα
2xf − 1

)2

− 1

)
≤ 0

and

1

α
ln

(
(1 +

√
2)eα

2xf − 1 +

√(
(1 +

√
2)eα

2xf − 1
)2

− 1

)
> 0

The only strategy left to investigate is the following one:

u(t) =

 1 for t ∈ [0, t1[
0 for t ∈ [t1, t2[
−1 for t ∈ [t2, Tf ]

(21)

For given values of α, xf , Tf > Tmin, there always exists a control of the
form (21) joining (0, 0)t to (xf , 0)t. From the two constraints y(Tf ) = 0 and
x(Tf ) = xf , we compute the expressions of t1 et t2 :{

t1 = 1
α ln

[
1
2

(
1 + eαTf −

√
1 + 2eαTf + e2αTf − 4eα

2xf+αTf

)]
t2 = 1

α ln
[
(1− eαt1 + eαTf )

] (22)

The trajectory generated by control (21) is clearly optimal when Tmin < Tf <
Tlim. Indeed, there is no other extremal trajectory.

Theorem 2 (Optimal strategy for a constant yield function).
For a given set of parameters α, xf and Tf , let X(t) : t 7→ (x(t), y(t))t denote
the trajectory of (Σ1) steering (0, 0)t to (xf , 0)t under a control sequence of the
form (21).

1. If (X(t), p0, q(t)) is an extremal trajectory of Pontryagin’s maximum prin-
ciple, then p0 and q0 are given by the following expressions:

p0 =
e−αt2(eαt1 − 1)(1 + e2α(t2−t1))

eα(t2−t1) − 1

q0 =
e−2αt1

α
(eαt1 − 1)(1 + eαt1(po− 1))

2. For Tf > Tlim, with Tlim as in Lemma 5, then (X(t), p0, q(t)) is not an
extremal trajectory.

3. The solution to the optimal control problem (P1) on a flat road, with drag
coefficient α and constant yield function is:

(a) for Tmin < Tf ≤ Tlim, with Tlim as in Lemma 5, the optimal control
strategy is (21);
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(b) for Tf > Tlim, the optimal control strategy is (20).

Proof. 1. Parameters α, xf , Tf being fixed, the commutation times t1 et t2
of control sequence (21) are given by (22), which allows the computation
of y(t1) and y(t2).

(a) p0 is determined with the help of the expression of q(t) over the
interval [t1, t2]:

q(t) = q(t1)eα(t−t1) − p0

α

(
eα(t−t1) − 1

)
Since q(t1) = y(t1), the equation q(t2) = −y(t2) is solved for p0.

(b) q0 is determined from the expression of q(t) over the interval [0, t1]:

q(t) = q0e
αt +

1

α
(1− p0)

(
eαt − 1

)
.

In both cases, the derived expression is uniquely determined.

2. For a given set of parameters α, xf , Tf , assume that (X(t), p0, q(t)) is
an extremal trajectory. Then, t1, p0 et q0 can be explicitly computed.
Therefore, we can determine the expressions of both y(t) and q(t) over the
interval [0, t1]. A commutation takes place if there is a time t such that
y(t) = q(t). This equation is then solved for t.

We obtain two expressions5. One of them is exactly formula t1 given in
(22). However, the other one is real and lower than t1 as soon as Tf > Tlim.
In other words, for Tf > Tlim a first commutation of the control happens
before time t1 and consequently the control sequence (21) is not extremal.

3. The analysis performed in the present section demonstrated that there are
only two possible extremal strategies. They have the following restrictions:

• the trajectory due to the control sequence (21) is not extremal as
soon as Tf > Tlim;

• the trajectory due to the control sequence (20) doesn’t exist for
Tmin < Tf ≤ Tlim.

Figure 8 illustrates Theorem 2 for xf = 6 and α = 0.5. The quantity
Tlim is determined as explained in Lemma 5. Figures 8a and 8b show the
optimal trajectory for Tf < Tlim, and Figures 8c and 8d correspond to the case
Tf > Tlim. In particular, Figures 8e and 8f illustrate the fact that strategy (21)
is not extremal for Tf > Tlim. Those last two figures are obtained as follows:
t1 and t2 are determined in order to steer X(0) to X(Tf ) using strategy (21).
When we apply this control to the Hamiltonian system, we see that trajectory
q(t) intersects y(t) at some time 0 < t < t1, showing as expected that this
trajectory is not extremal.

5Since they are quite large, those two expressions are not reproduced here. However, the
interested reader can obtain them with the help of a symbolic computation software.
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Figure 8: Optimal and non-optimal trajectories for the second case study with
a constant yield function. Parameters: α = 0.5, xf = 6, Tmin ≈ 5.52 and
Tlim ≈ 5.95.
Figures 8a and 8b correspond to Tf = 5.9. Figures 8c to 8f correspond to
Tf = 6.5.

4.2.2 Non-constant yield function.

In this section, in order to address (P1) on a flat road, with a drag coefficient α >
0 and a non-constant yield function ρ(y), we propose the following methodology
based on fact (3) of Theorem 2.

1. Compute the trajectory of (Σ1) given by control sequence (21).

2. If possible, compute the trajectory of (Σ1) given by control sequence (20).

3. Check which one of those two trajectories is extremal, and compute the
cost explicitly to remove possible ambiguities.

4. It can happen that neither strategy (21) nor strategy (20) yield extremal
trajectories. Indeed, the facts of Lemma 3 don’t hold anymore and there
can be more than one commutation of the control variable between the
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values u = 0 and u = −1. When this situation arises, a new control
strategy is investigated —see (25) below.

A trajectory of (Σ1), given by the control sequence (21), such that X(Tf ) =
(xf , 0)t is still given by relations (22). However, for a trajectory given by control
sequence (20), relation t3−t2 = 1

α ln
(
1 +
√

2
)

of Lemma 5 doesn’t hold anymore,
we have to rely on a numerical scheme.

Computing extremal trajectories given by strategy (20).

First, we need to derive usable expressions for p0 and q0. Along a singular arc,

since ẏ = 0, then q̇ = d
dt

(
y
ρ(y)

)
= 0. Let ys denote the value of y(t) along the

singular arc, then using = αys and:

0 = q̇ = − ∂

∂y
H =

|using|
ρ(ys)

− ys|using|ρ
′
(ys)

ρ2(ys)
+ αqs − p0 where qs =

ys
ρ(ys)

and ρ
′
(y) =

∂ρ

∂y
(y)

⇒ p0 =
2αys
ρ(ys)

− αy2
sρ
′
(ys)

ρ2(ys)
(23)

Now, since u0 = 1, and denoting by Hs the Hamiltonian function computed
along a singular arc, we have:

H|t=0 = q0 = Hs = p0ys + q0(using − ys)−
ys|using|
ρ(ys)

⇒ q0 = p0ys −
αy2

s

ρ(ys)
(24)

In order to compute an extremal trajectory associated to (20), the following
methodology is proposed:

1. set t1 to some arbitrary value, then y(t2) = y(t1) = ys and both p0 and
q0 can be computed;

2. the duration (t3− t2) is the solution to q(t) = − y(t)
ρ(y(t)) where q(t) and y(t)

are the trajectories of the Hamiltonian system associated to (P1) with
u = 0, y(0) = ys and q(0) = ys

ρ(ys)
;

3. the duration (Tf − t3) comes from the constraint y(t) = 0 where y(t) is
the trajectory of (Σ1) with u = −1 and setting y(0) to the value taken by

y in the previous step when we solved equation q(t) = − y(t)
ρ(y(t)) ;

4. t1 is determined in order to solve the equation x(Tf ) = xf , with the
duration of the singular arc (i.e. t2 − t1) given by Tf minus the length of
the three other arcs.

Remark 4. • Each step of this methodology is achieved with a simple di-
chotomy.
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• For a given set of parameters α and xf , the minimum time Tlim for the
existence of a singular strategy (20) is determined with a similar method-
ology: the singular arc is reduced to a point but the constraints are kept.
Time t1 is determined such that x(Tf ) = xf , which yields the value of
Tlim = Tf .

• In practice, if a singular strategy exists, then the basic strategy (21) is not
extremal.

Trajectories having a two-step braking behaviour.

The two control strategies presented so far —i.e. (20) and (21)— are not suf-
ficient to account for all the situations we encountered during the resolution of
this case. Since Lemma 3 doesn’t guarantee anymore that each type of commu-
tation happens at most once, we considered a strategy of the form (25), which
is detailed below.

Let us remember that the running cost is |yu|ρ(y) . On the one hand, the fact that

it tends to zero when y tends to 0 points out the interest of braking at low speed.
On the other hand, a non-null control is expected to take place when the yield
function’s value is the largest. Actually, strategies (20) and (21) both realise a
tradeoff between those two behaviours, and the fact that both strategies aren’t
extremal hints toward a two-step braking strategy. In other words, u = −1 a
first time when the yield function is large enough, and a second time when the
speed is low enough.

Actually, the following strategy produces extremal trajectories when (20)
and (21) fail to do so. Those trajectories are calculated with a methodology
adapted from the one used for strategy (20).

u(t) =



1 when t ∈ [0, t1[
αy1 when t ∈ [t1, t2[
0 when t ∈ [t2, t3[
−1 when t ∈ [t3, t4[
0 when t ∈ [t4, t5[
−1 when t ∈ [t5, Tf ]

(25)

Figures 9, 10 and 11 illustrate the optimal trajectories calculated following
the above methodology for fixed parameters xf = 6 and α = 0.5. Figure 9
corresponds to the case Tmin < Tf < Tlim, and Figures 10 and 11 to Tf > Tlim.
For Tf = 10, neither (21) nor (20) produce extremal trajectories, but the new
strategy (25) does. It is illustrated in Figure 11. In fact, this situation happens
only for Tf within a rather small interval of time. In Figures 9c, 10c and 11c
the visited values of the yield function are displayed in red. The blue sections
in Figure 11c correspond to the two braking periods.

Remark 5. Extremal trajectories such as the one displayed in Figure 11f don’t
exist for all type of non-constant yield function. Indeed, in the case of the yield

28



1 2 3 4 5 6 xHtL

0.5

1.0

1.5

yHtL

(a)

1 2 3 4 5 t

-150

-100

-50

50

100

150

qHtL y HtL
Ρ Hy HtLL

-
y HtL

Ρ Hy HtLL

(b)

0.5 1.0 1.5 2.0 yHtL

0.2

0.4

0.6

0.8

1.0

ΡHyHtLL

(c)

Figure 9: Optimal trajectory for the second case study with a non-constant
yield function.
Parameters: α = 0.5, xf = 6, Tmin ≈ 5.52, Tlim ≈ 5.8 and Tf = 5.75.

function shown in Figure 7c, where ρ(0) = 0.2, there is no such extremal. This
can be understood as a translation of the fact that, since the ratio between the
maximum and the minimum of the yield is not significant, it is more interesting
to brake at low speed only.

4.3 Non-flat road

In this third case study, we consider a non-flat road and no drag coefficient. Sys-
tem (Σ1), and the behaviour of the road profile under consideration (represented
in Figure 12) are:

(Σ1)

{
ẋ = y
ẏ = u− sin (θ(x))

where

 θ(x) is decreasing for x ∈ [−10,−6.5[
θ(x) is increasing for x ∈]− 6.5,−1[
θ(x) is constant for x ≥ −1

In order to simplify notations when there is no ambiguity, we denote K =

sin (θ(x)) for x ≥ −1. The minimum time is Tmin =
2
√
xf√

1−K2
, and we set xf = 2.

As before, abnormal extremals are out of the picture. First, let T 1,0
f be the

time needed in order to reach X = (xf , 0)t with the strategy

u(t) =

{
1 for t ∈ [0, tc[

0 for t ∈
[
tc, T

1,0
f

]
(26)

Lemma 6. 1. If the control sequence (26) is extremal, then the Hamiltonian
H is null along the corresponding trajectory of (Σ1);

2. we have the following equivalence:

ρ
′
(y(tc)) ≥ 0 ⇐⇒ (26) is an extremal strategy

3. for all Tf > T 1,0
f the following strategy is also extremal:

u(t) =


K for t ∈ [0, t1[
1 for t ∈ [t1, t1 + tc[
0 for t ∈ [t1 + tc, Tf − t2[
K for t ∈ [Tf − t2, Tf [

(27)
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Figure 10: Optimal trajectory for the second case study with a non-constant
yield function.
Parameters: α = 0.5, xf = 6, Tmin ≈ 5.52, Tlim ≈ 5.8 and Tf = 8.

where t1 ≥ 0, t2 ≥ 0 and t1 + t2 = Tf − T 1,0
f .

Proof. 1. The normal Hamiltonian, with x ≥ −1, isH (X,P, u, 1) = − |yu|
ρ(y)

+

py + q (u−K). For an extremal trajectory given by (26), u(Tf ) = 0 and
y(Tf )
ρ(y(Tf )) ≤ q(Tf ) ≤ − y(Tf )

ρ(y(Tf )) . Since y(Tf ) = 0 then q(Tf ) = 0, and the

Hamiltonian expressed at time Tf yields H = 0.

2. Let us assume ρ′(yc) ≥ 0, with yc = y(tc). Since u = 1 over [0, Tc[,
then y ≥ 0 over ]0, tc]. Let p = p0 be a constant, and q(t) be the solution
to

q̇ = − ∂

∂y

(
− y

ρ(y)
+ py + q (1−K)

)
with q(0) = 0

We compute the time derivative of H (X,P, u, 1) over ]0, tc[. Recall that
y > 0 and u is constant, which yields Ḣ = 0. Therefore, H is constant
over [0, tc] by continuity. Now, since we’ve set q0 = 0, then H|t=0 = 0,
and therefore H|t=tc = 0.
The commutation at time tc happens if q(tc) = yc

ρ(yc)
, which is true if

p0 = K
ρ(yc)

. In order to show that (26) is an extremal strategy, we still

have to show that:

(a) q(t) > y
ρ(y) over ]0, tc[;
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(b) − y
ρ(y) < q(t) < y

ρ(y) over ]tc, T
1,0
f [.

• Over ]0, tc[:

− y

ρ(y)
+ p0y + q (1−K) = 0 ⇐⇒ q =

y

1−K

(
1

ρ(y)
− p0

)
After a few manipulations, and replacing p0 by K

ρ(yc)
, we obtain the

expression:

q − y

ρ(y)
=

K

1−K
y

(
1

ρ(y)
− 1

ρ(yc)

)
Since ρ

′
(yc) ≥ 0 and 0 < y(t) < yc over ]0, tc[, then

(
1

ρ(y) −
1

ρ(yc)

)
>

0 and q > y
ρ(y) .

• Over ]tc, T
1,0
f [:

we have u = 0. Let t̄ = t − tc, then y(t̄) = −Kt̄ + yc and q(t̄) =
−p0t̄+ q(tc) = − K

ρ(yc)
t̄+ yc

ρ(yc)
. Hence T 1,0

f − tc = yc
K , q(T 1,0

f ) = 0 and

trivially − y
ρ(y) < q over ]tc, T

1,0
f [.

Let us now determine the sign of q − y

ρ(y)
:

q − y

ρ(y)
=

yc
ρ(yc)

− K

ρ(yc)
t̄− y

ρ(y)

=
yc
ρ(yc)

− K

ρ(yc)
t̄− yc −Kt̄

ρ(y)

<
yc
ρ(yc)

− K

ρ(yc)
t̄− yc −Kt̄

ρ(yc)
= 0 ( since y < yc) and (yc −Kt̄ > 0)

This proves the result, and strategy (26) is extremal.

Let us assume ρ′(yc) < 0, with yc = y(tc). As we’ve done before, we

consider the quantity κ(t) =
qρ(y)

y
over an interval of time that contains

tc and such that y > 0. We assume that (26) is an extremal strategy and
compute the time derivative of κ(t) over this interval:

κ̇(t) = −Hρ(y)

y2
− |u|ρ

′
(y)

ρ(y)
+ κ(t)

ρ
′
(y)

ρ(y)
ẏ (28)

When t = tc, κ(tc) = 1 and u ≥ 0, which yields κ̇(tc) = −ρ
′
(y(tc))

ρ(y(tc))
K since

H = 0. As a consequence, a commutation of the control cannot take place
since κ̇(tc) > 0. This contradicts the fact that (26) is extremal.

3. This item comes from the two following facts.
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(a) An extremal trajectory having a singular arc of the form y = 0, ẏ = 0
implies H = 0.

(b) If (26) is an extremal strategy, then H = 0.

We are now left with the following question: what happens when ρ′(yc) < 0
? We know from Lemma 6 that this strategy cannot be extremal. From the
experience gained with the preceding case study, searching for singular arcs
comes to mind. As we have seen at the beginning of Section 4: since θ(x) is
constant, then singular arcs are of the form ẏ = 0. A possible strategy is:

u(t) =


1 for t ∈ [0, tc[
K for t ∈ [tc, tc + tsing[

0 for t ∈ [tc + tsing, T
1,s,0
f ]

(29)

The associated trajectory of (Σ1) has a singular arc over the time interval [tc, tc+
tsing[ which can be as large as needed in order to meet the constraint x(Tf ) = xf .
In fact, if we assume that strategy (29) is extremal, we have the following facts:

1. H = 0 since u(t) = 0 for t ∈ [tc + tsing, Tf ];

2. the time derivative of the quantity κ =
qρ(y)

y
, computed at time tc is

κ̇(tc) = −ρ
′
(y(tc))

ρ(y(tc))
K —see formula (28)— which shows that a singular arc

can happen only if ρ
′
(y(tc)) = 0.

The final time T 1,s,0
f is uniquely determined by the following procedure, and the

corresponding trajectory is proven extremal by using the same arguments as in
Lemma 6:

• tc is such that ρ(.) reaches its maximum over R+,? at y(tc);

• tsing and T 1,s,0
f are such that X

(
T 1,s,0
f

)
= (xf , 0)

t
.

As before, if (29) is an extremal strategy, then for all Tf > T 1,s,0
f the following

strategy is also extremal:

u(t) =


K for t ∈ [0, t1[
1 for t ∈ [t1, t1 + tc[
K for t ∈ [t1 + tc, t1 + tc + tsing[
0 for t ∈ [t1 + tc + tsing, Tf − t2[
K for t ∈ [Tf − t2, Tf ]

(30)

where t1 ≥ 0, t2 ≥ 0 and t1 + t2 = Tf − T 1,s,0
f . This strategy is illustrated in

Figure 13.

Let us now define Tback as follows:

Tback = max
R+∗

{
Tf such that ∀u ∈ L∞[0, Tf ]

{
X(0) = X0, X(Tf ) = Xf

θ(x(t)) = θ(0)
∀t ∈ [0, Tf ]

}
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We call small time trajectory a trajectory having a final time Tf within the

interval ]Tmin, Tsmall], where Tsmall = min
(
Tback, T

1,0
f

)
.

Lemma 7 (Small time trajectories). 1. An optimal small time trajectory
of (P1) has no backward arc.

2. Small time extremals of (P1) do not contain singular arcs of the form
y = 0.

3. Let ys be the constant speed of the singular arc of a small time extremal,

then
∂ρ

∂y
(ys) < 0.

4. Consider a small time extremal trajectory containing a singular arc, and
denote ys the constant speed, then:

q0 =
Ky2

sρ
′(ys)

(K − 1)ρ(ys)2
and p0 = K

ρ(ys)− ysρ′(ys)
ρ(ys)2

Proof. 1. Since Tf < Tback, trajectories (x(t), y(t))t of (P1) starting from
(0, 0)t can reach (xf , 0)t only by staying on portions of road such that
θ(x(t)) ≡ constant. Then, (P1) can be viewed as invariant with respect
to translations along the x−axis. According to Lemma 2, an optimal
trajectory has no backward arc.

2. In the problem under consideration, Tback < T 1,0
f . As a consequence, for a

small time extremal, y(Tf ) = 0 cannot be achieved with a strategy of the
form (26), and u must be negative over some time interval. Hence, there
exists a non-trivial interval of the form ]t̃, t̄[ such that:

• y > 0 for all t ∈]t̃, t̄[ and the the quantity κ(t) =
qρ(y)

y
exists for all

t ∈]t̃, t̄[;

• κ(t̃) = 1 and κ(t̄) = −1

• there is a t? ∈]t̃, t̄[ such that κ(t?) = 0 and κ̇(t?) < 0.

The time derivative of κ(t), over this interval is, again, equation (28).

When κ(t) = 0, then u = 0 and κ̇(t?) = −Hρ(y)
y2 which implies that H

must be strictly positive in order to achieve κ̇(t?) < 0. A singular arc with
y = 0 cannot exist since it implies H = 0.

3. As before, we define the quantity κ(t) = qρ(y)
y over intervals where y 6= 0,

and we derive an expression for κ̇(t) —see equation (28) above. Along a
singular arc, we have κ(t) = 1 and κ̇(t) = 0, following expression (28) we
obtain equality:

0 = −Hρ(y)

y2
− |u|ρ

′
(y)

ρ(y)

which can only be true if ρ
′
(y) is negative.
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4. The two expressions are easily obtained as follows:

• solve the equation 0 = −Hρ(ys)y2s
− |u|ρ

′
(ys)

ρ(ys)
for H and set u = K since

ẏ = 0 along a singular arc;

• the relation H = q0 (u(0)−K) = q0 (1−K) yields the expression of
q0;

• finally, writing H along a singular arc, H = p0ys − ys
ρ(ys)

K, provides

the expression of p0.

Based on the informations gathered in Lemma 7, small time optimal trajec-
tories are searched following the methodology exposed in Section 4.2.2. This is
illustrated in Figure 14.

Finally, we propose the following methodology in order to address the opti-
mal control problem (P1) in the case of the road profile displayed in Figure 12.

1. Consider strategy (26). The sign of ∂ρ
∂y (y(tc)) determines which strategy

between (26) and (29) is relevant. We denote by T̄f the corresponding
final time.

2. For Tf > T̄f , either strategies of the form (27) or strategies of the form (30)
are extremal and therefore candidate to optimality. Items (1) and (2) are
illustrated in Figure 13.

3. For Tmin < Tf < Tback, compute a forward extremal trajectory as in
Section 4.2.2. As explained in Lemma 7, such trajectories are optimal
extremals. This is illustrated in Figure 14 with a small time trajectory
having no singular arc.

4. For Tmin < Tf < T̄f , as in the preceding item, forward extremal trajectory
as in Section 4.2.2 can be searched. This is illustrated in Figure 15 with
an extremal trajectory having a two-step braking behaviour.

5. Finally, with the help of a numerical study, extremal trajectories having
backward arcs are searched for. For instance, for Tf = 4.48, we didn’t find
any extremal having a backward arc and as such, the trajectory displayed
in Figure 15 is considered optimal. Extremal trajectories having backward
arcs are shown in Figures 16 and 17.

In order to better understand this last step, numerical exploration was per-
formed via the manipulation of the values of p0 and q0. As expected, extremal
trajectories having backward arcs do exist. An interesting fact being that such
extremals are not necessarily optimal. In Figure 16, an example of an optimal
trajectory with backward arcs is displayed. The yield function is the same as
the one used to determine the trajectory of Figure 13. In this case, the back-
ward strategy of Figure 16 costs less than the forward strategy of the form (30)
—since the arcs with y = 0 have a null running cost, strategy (30) costs the
same regardless of the value of Tf > T 1,s,0

f .
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On the other hand, Figure 17 shows an extremal trajectory having backward
arcs obtained for a yield function such that ρ(0) is 20 times larger than the one
used in Figure 16 —this is the only parameter that is changed in the design of ρ.
The maximums of the two cost functions are the same, and are reached for the
same values of y. In this case, the cost associated to the strategy (30) is equal
to 0.73, and the strategy of Figure 17 is not optimal. In Figures 16d and Fig-
ures 17d, the values of the yield function that are visited when u = −1 are
highlighted. In Figures 16e and 17e the values of the yield functions that are
visited when u = 1 are highlighted. The different colours used correspond to
the ones also used in Figures 16c and 17c.

Conclusion

This energy consumption optimisation problem allowed us to study an optimal
control problem with a running cost that includes an absolute value function
and a yield function. This problem has been addressed in fixed time and decom-
posed into several case studies, three of which were considered in the present
article. For each one of them, the influence of the yield function upon optimal
trajectories have been discussed. In particular, in the case of a flat road and
a null drag coefficient, the yield function plays no role. Then, when the drag
coefficient isn’t null anymore, singular arcs may appear even in the case of a
constant yield function. We also noticed that for some yield functions two-
step braking strategies are optimal. In the last case study, involving a non-flat
road profile, the yield function plays a role since the occurrence of singular arcs
heavily depends on the sign of the function’s derivative.

Finally, subsequent works on this topic should include investigations on ex-
tremal trajectories having both backward and singular arcs, especially arcs such
that y is not constant. The introduction of the drag coefficient in the case of a
non-flat road, and different road profiles should also be covered.

A Proof of Lemma 1

First of all, let us remark that both Rn × L1
[0,T ] and C0

[0,T ] are metrisable sets,
and as such sequential continuity implies uniform continuity.

1. Let (un(t))n∈N be a sequence of controls that converges to u(t) in L1
[0,T ],

and x
(n)
0 be a Rn sequence converging to x0. We denote by xn(t) the

trajectory of (Σ0) given by x
(n)
0 and un(t), and x(t) the trajectory given

by x0 and u(t). In other words, we have:

xn(t) = x
(n)
0 +

∫ t

0

F (xn(τ)) + un(t)G(xn(τ))dτ, and x(t) = x0+

∫ t

0

F (x(τ)) + u(t)G(x(τ))dτ.
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Let us now write down the expression of En(t) = x(t)− xn(t):

En(t) =
(
x0 − x(n)

0

)
︸ ︷︷ ︸

A

+

∫ t

0

F (x)− F (xn)dτ︸ ︷︷ ︸
B

+

∫ t

0

uG(x)− unG(xn)dτ︸ ︷︷ ︸
C

.

Expression C is rewritten:

C =

∫ t

0

(u− un)G(x)dτ︸ ︷︷ ︸
C1

+

∫ t

0

un(G(x)−G(xn))dτ︸ ︷︷ ︸
C2

Next
‖En(t)‖ ≤ ‖A‖+ ‖B‖+ ‖C1‖+ ‖C2‖ (31)

When restricted to a compact subset, X et Y are both Lipschitz with
constants K1 and K2 respectively, and we have the inequalities:

(a) for all ε̄ > 0, there exists N̄ ∈ N such that ∀n > N̄ , ‖A‖ < ε̄;

(b) sinceX is Lipschitz: ‖B‖ ≤
∫ t

0

‖F (x)− F (xn)‖ dτ ≤ K1

∫ t

0

‖En(τ)‖dτ ;

(c) on [0, T ], Y is bounded from above (by some constant K̃), which
yields:

‖C1‖ ≤ K̃
∫ t

0

‖un(τ)− u(τ)‖dτ ;

(d) finally, for all n, |un| ≤ 1, and since Y is Lipschitz, we have ‖C2‖ ≤

K2

∫ t

0

‖En(τ)‖dτ .

Therefore, inequality (31) becomes:

‖En(t)‖ ≤
∥∥∥x0 − x(n)

0

∥∥∥+K1

∫ t

0

‖En(τ)‖dτ+K̃

∫ t

0

‖un(τ)− u(τ)‖dτ+K2

∫ t

0

‖En(τ)‖dτ

(32)
Since (un) converges in L1

[0,T ] : for all ε̃ > 0, there is a Ñ such that

∀n > Ñ : K̃

∫ t

0

‖un − u‖dτ < ε̃. Thus, for n > max(N̄ , Ñ), inequality

(32) is rewritten:

‖En(t)‖ ≤ (ε̄+ε̃)+(K1+K2)

∫ t

0

‖En(τ)‖ dτ ≤ (ε̄+ε̃)+(K1+K2)

∫ T

0

‖En(τ)‖ dτ.

Gronwall’s lemma, for t ∈ [0, T ] gives:

‖En(t)‖ ≤ (ε̄+ ε̃)e(K1+K2)T ∀n > Ñ.

In other words, for a given ε > 0, we can choose (ε̄+ ε̃) such that, for all
n > N = max(N̄ , Ñ), ‖En(t)‖ < ε for all t ∈ [0, T ].
Which proves the continuity of Φ(., .).
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2. In this second part, we use the preceding continuity result and the conti-
nuity of u 7→ |u| for the L1

[0,T ] topology.

As before, un(t) is a L1
[0,T ]-sequence of controls converging to u(t), x

(n)
0

converges to x0, and xn (resp. x) is the trajectory generated by x
(n)
0 and

un (resp. x0 et u). Let us now write the difference:

|J(un)− J(u)| =

∣∣∣∣∣
∫ T

0

|ψ(xn)un|dt−
∫ T

0

|ψ(x)u|dt

∣∣∣∣∣
=

∣∣∣∣∣
∫ T

0

|ψ(xn)| (|un| − |u|) dt−
∫ T

0

|u| (|ψ(xn)| − |ψ(x)|) dt

∣∣∣∣∣
Since xn(t) tends uniformly to x(t) in C0

[0,T ], there are a constant M > 0,

and an integer N(M) such that for all n > N(M), we have |ψ(xn)| < M .
For a given ε > 0, there are a rank N

(
ε

2MT

)
and a rank N

(
ε

2T

)
such

that;

(a)

∣∣∣∣ |un| − |u| ∣∣∣∣ < ε
2MT for all n > N

(
ε

2MT

)
,

(b)

∣∣∣∣|ψ(xn)| − |ψ(x)|
∣∣∣∣ < ε

2T for all n > N
(
ε

2T

)
.

Consequently, there exists a rank N(ε) such that for all n > N(ε)

|J(un)− J(u)| < M

∫ T

0

ε

2MT
dt+

∫ T

0

ε

2T
dt = ε

which gives us the sequential continuity of J(.).
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Figure 11: Optimal trajectory for the second case study with a non-constant
yield function.
Parameters: α = 0.5, xf = 6, Tmin ≈ 5.52, Tlim ≈ 5.8 and Tf = 10.
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Figure 12: Derivative of θ with respect to x, and road profile in the (ξ, h)t

coordinates. The red dots appearing on the road profile correspond to x = −1,
x = 0 and x = xf in this order. Tmin ≈ 2.885, T 1,0

f ≈ 5.01.
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Figure 13: Optimal trajectory for the third case study. Parameters: T 1,s,0
f ≈

5.21 and Tf = 6.
The associated cost equals 3.605.
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Figure 14: Optimal trajectory in the third case case study in small time. Pa-
rameters: Tmin ≈ 2.885, Tf = 3.

42



ææ

0.5 1.0 1.5 2.0 xHtL
0.1

0.2

0.3

0.4

0.5

0.6

0.7

yHtL

(a)

0.2 0.4 0.6 0.8 1.0 yHtL

0.2

0.4

0.6

0.8

1.0

ΡHyHtLL

(b)

1 2 3 4 t

-1.0

-0.5

0.5

1.0

uHtL

(c)

0.2 0.4 0.6 0.8 1.0

-10

-5

5

10

15

qHtL

-
y HtL

Ρ Hy HtLL

(d)

1 2 3 4

-10

-5

5

10

15 qHtL
y HtL

Ρ Hy HtLL

-
y HtL

Ρ Hy HtLL

(e)

3.0 3.5 4.0 4.5

-10

-5

5

10

qHtL

(f)

Figure 15: Optimal trajectory for the third case study for Tf = 4.48. Figure 15b:
the blue parts of the graph corresponds to the moments when u = −1.
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Figure 16: Optimal trajectory for the third case study for Tf ≈ 17.75. The
associated cost equals ≈ 1.61 while it equals 3.605 for strategy (30) —cf. Fig-
ure 13.
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Figure 17: Extremal trajectory for the third case study for Tf ≈ 17.75. The
associated cost equals ≈ 1.02 while it equals 0.73 for strategy (30) with the yield
function of Figures 17d and 17e.
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