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Abstract

The present article is a study of an optimal control problem having a non-differentiable,
but Lipschitz, cost function. It is inspired by the minimisation of the energy consumption
of a car-like vehicle or robot along a road which profile is known. This problem is stated by
means of a simple model of the longitudinal dynamics and a running cost that comprises
both an absolute value function and a function that accounts for the efficiency of the energy
conversion process. A regularity result that excludes chattering phenomena from the set
of solutions is proven. It is valid for the class of control affine systems, which includes the
considered problem. Three case studies are detailed and analysed. The optimal trajectories
are shown to be made of bang-bang, inactivated, singular and backward arcs.

Introduction

This article presents a study of an optimal control problem having a non-differentiable cost for
certain values of the control or of the state. One of the most notable class of such problems is
known as L1-minimisation and consists in the minimisation the L1-norm of the control:∫ Tf

0

|u(t)|dt→ min

As it is well-known, cf. [2, 5, 8, 9, 16, 18, 20], such a cost structure implies inactivations, that is,
non-trivial intervals of time where the control vanishes. As mentioned in [9, 20], this behaviour
seems relevant when considering energy consumption minimisation in the sense that inactivations
act as a selection process that singles out moments when the control variable is the most efficient.

The problem addressed in this paper is an “academic” model of the optimal energy consump-
tion of a car-like vehicle or robot along a road which profile is known. It follows the ideas of [4]
regarding the minimisation of the absolute work of an actuated mechanical system. For instance,
if x(t) is a displacement and u(t) a (external) force, the absolute work of u is just∫ Tf

0

|ẋ(t)u(t)|dt

In the paper, the running cost is derived from this latter expression with the help of a yield
function that translates the efficiency of the energy conversion process. As it is discussed and
highlighted in the rest of the article, optimal strategies are made of classic bang-bang controls
and inactivations, but may also include singular arcs that cannot be obtained from the successive
time derivatives of the switching function (e.g. [3, 11]).
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In Section 1, the problem under consideration is stated through the derivation of both the
model of the vehicle dynamics and the running cost. Section 2 is dedicated to two regularity
issues, namely, a theorem that allows us to exclude chattering phenomena and a lemma that
allows us to restrict the set of candidate trajectories for optimality. Finally, three case studies
are detailed in Section 3.

The first case, for a flat road and without friction, is treated in Section 3.1. It is very simple
since optimal trajectories are always obtained from bang-bang controls and inactivations only.
Although counterintuitive, in this case, the optimal strategy doesn’t depend on the yield function
used. In the second case study, where frictions are now considered, optimal trajectories having
singular arcs are observed. The presence of such arcs depends more on the value of the final
time than on the yield function itself. Still, this function has a noticeable influence on the result,
as it is highlighted in Section 3.2. The third case study is addressed in Section 3.3, where a
non a non-flat road profile and no friction coefficient are considered. On top of all the previous
phenomena, we display optimal trajectories that require the vehicle to travel backward for some
time.

1 Problem statement

In the following, in order to simplify the notations, the time dependency of time varying functions
is omitted as soon as there is no ambiguity. The sign function is denoted by sgn, and Xt is the
transpose of vector X.

1.1 Vehicle dynamics

The vehicle travels on a road represented in a position-height plane as it is sketched in Figure 1
(see [19, 12] for a model that takes into account both the longitudinal and the lateral dynamics).
Its coordinates are denoted by (ξ, h), and θ is the orientation. We assume that only the four
following forces act on the vehicle and that the tyre slip is negligible:

• the gravity G, which norm is equal to the gravitational constant g times the mass of the
car m;

• the reaction of the road R, which norm equals mg cos(θ);

• the propulsion force F, which norm is the control variable u(t);

• the drag force f opposes motion and, in this work, we consider fluid friction only with a

norm proportional to speed: ‖f‖ = α

√
ξ̇2 + ḣ2 where α ≥ 0 is the drag coefficient.

The dynamics is given by Newton’s second law of motion:

m

(
ξ̈

ḧ

)
=

(
u cos(θ)
u sin(θ)

)
−
(

0
mg

)
−

 α sgn(ξ̇)

√
ξ̇2 + ḣ2 cos(θ)

α sgn(ξ̇)

√
ξ̇2 + ḣ2 sin(θ)

+

(
−mg cos(θ) sin(θ)

mg cos2(θ)

)
(1)

We assume that the road profile is given by a C1 function h = ϕ(ξ). Since the angle θ belongs
to the interval ]− π

2 ,
π
2 [, it is uniquely determined by θ(ξ) = arctan(ϕ

′
(ξ)) where ϕ

′
denotes the

derivative with respect to ξ. Thus, system (1) has in fact only one degree of freedom having the
following dynamics:{

mξ̈ = u cos (θ(ξ))− αξ̇
√

1 + (ϕ′(ξ))2 cos (θ(ξ))−mg cos (θ(ξ)) sin (θ(ξ))

θ(ξ) = arctan(ϕ
′
(ξ))

(2)
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Figure 1: Modelling and notations.

Now, let x be the curvilinear abscissa of (ξ, h(ξ)) and y be equal to ẋ—i.e. x =

∫ ξ

0

√
1 + (ϕ′(z))

2
dz

and y = ξ̇

√
1 + (ϕ′(ξ))

2
. Then, system (2) rewrites:{

ẋ = y
mẏ = u− αy −mg sin (θ(x))

(3)

where θ(x) is the C1 function that accounts for the road profile —h = ϕ(ξ) is recovered from
θ(x).

1.2 Cost function

The cost function is the energy consumed to steer the vehicle from a starting position to some
final position in time Tf . Let D(t) be the energy flow rate. The associated cost function is simply∫ Tf

0

D(τ)dτ.

Now, let A be the absolute work of the propulsion force. It is given by

A =

∫ Tf

0

∣∣∣ξ̇u∣∣∣√1 + (ϕ′(ξ))2dτ

The associated absolute instantaneous power writes dA
dt and is connected to the flow rate with

the help of a yield function ρ(.): dA
dt = D(t)ρ(.). We assume that the yield function is as follows

(examples are shown in Figure 2):

• its argument is the speed of the vehicle —i.e. y = ξ̇
√

1 + (ϕ′(ξ))2;

• it takes its values in the interval ]0, 1], for all y ∈ R;

• it has one of the two following behaviours for all y ∈ R+ (respectively R−):

1. ρ(y) is identically constant;

2. ρ(y) admits a maximum at y+, is increasing on ]0, y+[ and decreasing on ]y+,+∞[;
(ρ(y) admits a maximum at y−, is decreasing on ]y−, 0[ and increasing on ]−∞, y−[);

• it is differentiable as many times as needed.
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Finally, the cost function is denoted by J(u) and has the following expression:

J(u) =

∫ Tf

0

∣∣∣ξ̇u∣∣∣
ρ
(
ξ̇
√

1 + (ϕ′(ξ))2
)√1 + (ϕ′(ξ))2dτ =

∫ Tf

0

|yu|
ρ(y)

dτ (4)
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Figure 2: Yield function examples.

Remark 1. The proposed model for the running cost may not feel very realistic since the energy
consumption is the same while accelerating (u > 0) or braking (u < 0). First of all, let us men-
tion that our goal is to capture the influence of the non-differentiability on the optimal strategy.
A such, the energy that a decelerating electric engine would send back to the accumulators is
not considered for simplicity. Also, the considered cost models small robots not equipped with
regenerative braking systems. Moreover, in order to better model an internal combustion engine
where braking costs almost nothing, phases when u < 0 can be discriminated with the help of a
function of the form:

υ(u) =

{
αu for u ≥ 0
−βu for u < 0

with 0 < β ≤ α and J(u) =

∫ Tf

0

|y| υ(u)

ρ(y)
dτ

This new cost function will have an impact on the several calculations and on the switching times,
but not on the qualitative behaviours displayed in the remainder of the article.

1.3 A fixed-time optimal control problem

In the remainder of this paper, we restrict our study to trajectories having a forward destination
and a fixed final time Tf . Also, in order to ease the exposure of the study, we set the parameters
m and g to 1. The optimal control problem under consideration is:

(P1)



Minimise J(u) =

∫ Tf

0

|yu|
ρ(y)

dτ

Subject to (Σ1)

{
ẋ = y
ẏ = u− αy − sin (θ(x))

for t ∈ [0, Tf ]

X(0) =

(
x(0)
y(0)

)
=

(
0
0

)
, X(Tf ) =

(
x(Tf )
y(Tf )

)
=

(
xf
0

)
, with xf > 0

|u(t)| ≤ 1 for t ∈ [0, Tf ]

Tf > 0 is fixed.
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Figure 3: Control strategy of the form uε,∆t(t), and associated trajectory.

Following [15, Thm. 4, P. 259], and also [4, 5], the set of solutions to this problem is non-empty
as soon as Tf is greater or equal to the minimum time problem associated to (P1).

Let us remark that, in order to perform a study in free time, (P1) requires a specific road
profile, a cost that penalises the travel time or a specific yield function ρ(y). This statement is
illustrated in the case of a flat road (i.e. θ ≡ 0) by the following proposition.

Proposition 1. Let us consider problem (P1) with a flat road (that is to say θ ≡ 0). If the final
time Tf is free then the minimum value of the cost function J is not reached.

Proof. We first detail the case when α = 0: system (Σ1) is just a double integrator. Let us now
consider the following family of controls —see Figure 3:

uε,∆t(t) =

 ε for t ∈ [0,∆t[
0 for t ∈ [∆t, Tf −∆t[
−ε for t ∈ [Tf −∆t, Tf ]

(5)

The trajectory of (Σ1) is easily computed —see Figure 3 for an example. For a given xf , we
have:

x(Tf ) = ε∆t(Tf −∆t) ⇒ Tf =
ε∆t2 + xf

ε∆t

The cost of this trajectory is J(u) =

∫ ∆t

0

εy

ρ(y)
dt +

∫ Tf

Tf−∆t

εy

ρ(y)
dt and tends toward 0 either

when ∆t→ 0 or ε→ 0. In both cases, Tf →∞ and the minimum cost is not reached.

For α > 0, we consider the family of controls:

uε(t) =

{
ε t ∈ [0,∆t[
−ε t ∈ [∆t, Tf ]

(6)

Again, the trajectory is easily computed. For a fixed ε > 0, the constraint y(Tf ) = 0 provide
the expression Tf = 1

α ln
(
2eα∆t − 1

)
. This latter expression is used together with the constraint

x(Tf ) = xf to provide the following expression for ∆t:

∆t =
1

α
ln

(
e
α2xf
ε +

√
e
α2xf
ε

(
e
α2xf
ε − 1

))

Since ∆t
ε→0−→∞, the same goes for Tf while J(uε)

ε→0−→ 0. As before, the minimum is not reached.
An example of such a trajectory is shown in Figure 4.
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Figure 4: Control strategy of the form uε(t), and associated trajectory.

2 On the regularity of the problem

In this section, we address two regularity issues:

• a theorem about the regularity of controls that are solution to a class of problems that
includes (P1);

• a lemma showing that for specific road profiles the search for optimal solutions can be
limited to the set of forward trajectories.

2.1 Regularity of the control variable

Let (Σ0) be the following system for all t ∈ [0, T ] with T > 0 fixed:

(Σ0) ẋ = F (x) + uG(x)

The initial state of (Σ0) is denoted by x0 ∈ Rn, n > 0. The vector fields F (.) et G(.) are
assumed real analytic. The control variable is such that |u(t)| ≤ 1. The associated input-output
application is:

Φ : Rn × L1
[0,T ] −→ C0

[0,T ]

(x0, u(t)) 7→ x(.)

where x(.) is the trajectory of (Σ0) with initial state x0 and control u(.). For a given x0, we
denote Φx0(u) = Φ(x0, u). The set L1

[0,T ] is embedded with its natural topology, C0
[0,T ] has the

topology of uniform convergence, and Rn, the Euclidean metric topology.
Let ψ(.) be a continuous function. The cost associated to a trajectory of (Σ0) generated by

u(.) and x0 is:
J : Rn × L1

[0,T ] −→ R+

(x0, u(t)) 7→
∫ T

0

|ψ(x)u|dt

Lemma 1. Φ(.) and J(.) are uniformly continuous functions.

Proof. For the sake of completeness, the proof of this lemma is given in Appendix A.

Theorem 1. Let PA be the L1
[0,T ]-subset made of piecewise algebraic controls —i.e. algebraic

on a finite number of subintervals of [0, T ]. Let us consider an optimal control problem of the
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form:

(P0)



Minimise J(u) =

Tf∫
0

|ψ(x(τ))u(τ)| dτ

Subject to (Σ0) ẋ(t) = F (x(t)) + uG(x(t)) for t ∈ [0, Tf ]

x(0) = x0 and x(Tf ) = xf

|u(t)| ≤ 1 for t ∈ [0, Tf ]

Tf > 0 is fixed

under the hypotheses:

(H0) ψ(.) has a maximum on Rn;

(H1) J(.) has a minimum on PA, which we denote by JM ;

(H2) the minimum time trajectories of (Σ0) are given by controls belonging to PA;

(H3) (Σ0) is small time locally controllable at xf ;

(H4) (xf , uf ) is an equilibrium point of (Σ0) such that ψ(xf )uf ≡ 0.

Then JM is the minimum of J(.) over L1
[0,Tf ].

The theorem is also true when xf is replaced by x0 in hypotheses (H3) and (H4).

Proof. Let us fix an initial state x0 and a final state xf . Assume that there exists a control

u∗ ∈
(
L1

[0,Tf ]\PA
)

steering (Σ0) from x0 to xf such that J(u∗) < JM . We show that it is in

contradiction with (H1).
First of all, let us remark that there exist ε > 0 and an interval Iε of measure ε such that

the trajectory x∗ of (Σ0) generated by u∗ is not the solution to the minimal time problem on
Iε. Indeed, if there is no such ε, then x∗ is the solution to the minimal time problem, which
contradicts (H2) since u∗ /∈ PA.

Let uε be a new control constructed from u∗ as follows.

1. Let t1 and t2 denote the boundaries of Iε, with 0 ≤ t1 < t2 ≤ Tf .

2. For all t ≤ t1, uε(t) = u∗(t).

3. Next, uε(t) equals the solution to the minimum time problem associated to (Σ0) with
starting point x∗(t1) and final point x∗(t2).
The corresponding travel time is denoted by tmin, and of course t1 + tmin < t2.
Let δ denote the time saved in the process —i.e. δ = t2 − t1 − tmin.

4. Since (Σ0) is time invariant, for t ∈]t1 + tmin,≤ Tf − δ], then uε(t) = u∗(t2− t1− tmin + t)
steers x from x(t1 + tmin) = x(t2) to xf .

5. Finally, uε(t) = uf for t ∈]Tf − δ, Tf ].
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The new control variable uε steers x from x0 to xf , and the cost difference between the trajectory
associated to uε (denoted by xε) and the trajectory associated to u∗ is:

J(u∗)− J(uε) =

Tf∫
0

|ψ(x(t))u(t)| dt−
Tf∫
0

|ψ(xε(t))uε(t)| dt

=

t1∫
0

|ψ(x(t))u(t)| dt

︸ ︷︷ ︸
A

+

t2∫
t1

|ψ(x(t))u(t)| dt

︸ ︷︷ ︸
B

+

Tf∫
t2

|ψ(x(t))u(t)| dt

︸ ︷︷ ︸
C

−
t1∫

0

|ψ(xε(t))uε(t)| dt︸ ︷︷ ︸
D

−
t1+tmin∫
t1

|ψ(xε(t))uε(t)| dt

︸ ︷︷ ︸
E

−
Tf−δ∫

t1+tmin

|ψ(xε(t))uε(t)| dt

︸ ︷︷ ︸
F

−
Tf∫

Tf−δ

|ψ(xε(t))uε(t)| dt

︸ ︷︷ ︸
G

1. By definition of uε, we have A = D.

2. The measures of [t1+tmin, Tf−δ] and [t2, Tf ] are the same —i.e. Tf−δ−t1−tmin = Tf−t2.
Furthermore

(a) for t ∈ [0, Tf − t2], uε(t1 + tmin + t) = u∗(t2 + t),

(b) xε(t1 + tmin) = x∗(t2),

(c) (Σ0) is time invariant.

Thus, ∀t ∈ [0, Tf − t2], xε(t1 + tmin + t) = x∗(t2 + t).
And finally, since the function ψ(.) is also time invariant, then C = F .

3. since (xε, uε) = (xf , uf ) over [Tf − δ, Tf ], then G = 0 —cf. hypothesis (H4).

Those considerations lead to:

|J(u∗)− J(uε)| =

∣∣∣∣∣∣
t2∫
t1

|ψ(x(t))u(t)| dt−
t1+tmin∫
t1

|ψ(xε(t))uε(t)| dt

∣∣∣∣∣∣
≤

t2∫
t1

|ψ(x(t))|︸ ︷︷ ︸
≤M

|u(t)|︸ ︷︷ ︸
≤1

dt+

t1+tmin∫
t1

|ψ(xε(t))| |uε(t)| dt

≤ M(t2 − t1) +Mtmin ≤ 2εM

where M > 0 denotes the maximum of ψ(.) —cf. hypothesis (H0).

Henceforth, we fix ε > 0 such that 2εM < J(u∗)−JM
3 , and xε is the trajectory of (Σ0) given

by x0 and uε.
As a consequence, the small time δ > 0 is now fixed. The same goes for the accessibility set

of (−Σ0) starting1 from xf for times less or equal than δ. We denote this set by A−δ (xf ).
Following [13]:

1(−Σ0) denotes system (Σ0) with reversed time.
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1. the small time local controllability of (Σ0), implies the small time local controllability of
(−Σ0);

2. the real analyticity hypothesis for F (x) and G(x) leads to the small time self-reachability
of (−Σ0);

3. since xf is an equilibrium point of (−Σ0), then self-reachability is valid in fixed time.

Therefore, for any point in A−δ (xf ), there exist a control ue ∈ PA steering this point to xf in a
time exactly equal to δ. The cost of such a piece of trajectory is:

Tf∫
Tf−δ

|ψ(xe(t))ue(t)| dt ≤ 2δM < 2εM <
J(u∗)− JM

3
(7)

Let us now construct a L1
[0,Tf ]-perturbation of uε that lives in PA and denoted by uδ. It is

important to point out that the reachable set A−δ (xf ) is now independent from the construction
that follows. This is a crucial point of the proof.

Firstly, following Luzin’s theorem (i.e. [14]), for all m > 0 there is a continuous function Cδ
such that {t : Cδ(t) 6= uε(t)} is of measure at most m. Next, the function Cδ is saturated in ±1
in order to obtain a continuous function C̄δ such that

∥∥uε − C̄δ∥∥L1 < 2m.
Secondly, there is a sequence of polynomials, denoted by {Pn}n∈N, that converges uniformly

to C̄δ. Therefore, for all m̃ > 0, there exists a polynomial Pδ taken from {Pn}n∈N which is
m̃-close to C̄δ in the L1

[0,Tf ]-sense. We consider the control variable uδ(t) ∈ PA obtained from

the polynomial Pδ saturated in ±1, then ‖uε − uδ‖L1 < 2m+ m̃.
The uniform continuity of Φx0(.), and Jx0(.), cf. Lemma 1, guarantees that we can choose m

and m̃ such that:

1. |J(uε)− J(uδ)| < J(u∗)−JM
3 ,

2. xδ(Tf − δ) is close to xf , that is to say xδ(Tf ) ∈ A−δ (xf ).

Finally, the following control ũ ∈ PA steers x0 to xf in a fixed time Tf :

ũ(t) =

{
uδ(t) if 0 ≤ t ≤ Tf − δ
ue(t) otherwise

In particular, we have the relations J(ũ) = J(uδ) + J(ue) and

|J(u∗)− J(ũ)| < |J(u∗)− J(uε)|︸ ︷︷ ︸
<
J(u∗)−JM

3

+ |J(uε)− J(uδ)|︸ ︷︷ ︸
<
J(u∗)−JM

3

+ |J(ue)|︸ ︷︷ ︸
<
J(u∗)−JM

3

< J(u∗)− JM

which contradicts the minimality of JM over the subset PA —i.e. hypothesis (H1)— and con-
cludes the proof.

Now, let us show how this result is preserved when (x0, u0) is the equilibrium point around
which (Σ0) is small time locally controllable.

• The control uε(t) is constructed the same way, except that it equals u0 over [0, δ].

9



• The small time δ being fixed during the previous step, the same goes for the reachable set
of (Σ0) starting from x0, in time less or equal to δ: A+

δ (x0).
As before, the results on small time self-reachability guarantee the existence of a control
on PA that steers x0 to any point of A+

δ (x0) in a time that is exactly equal to δ. The cost

of such a piece of trajectory is less than J(u∗)−JM
3 .

• xε(t) denotes the trajectory starting from x0 when the control uε is applied. We define
x̃ε(τ) = xε(Tf − τ) which dynamics is:

dx̃ε
dτ

= − xε(t)

dt

∣∣∣∣
(Tf−τ)

= −F (x̃ε(τ))− uε(Tf − τ)G(x̃ε(τ))

The control ũε(τ) = uε(Tf − τ), for τ ∈ [0, Tf − δ], applied to (−Σ0) steers x̃(0) = xf to
x̃(Tf − δ) = x0.
Again, we use Luzin’s theorem and the density property of polynomials. Since Lemma 1 also
applies to system (−Σ0), there is therefore a control ũδ ∈ PA such that |J(ũδ)− J(ũε)| <
J(u∗)−JM

3 , such that x̃δ(Tf − δ) ∈ A+
δ (x0).

• With a change of variable similar to the one of the previous step —i.e. xδ(t) = x̃δ(Tf −t)—
the control uδ(t) = ũδ(Tf − t), for t ∈ [δ, Tf ], applied to (Σ0), steers some point xδ(δ) ∈
A+
δ (x0) to xδ(Tf ) = x̃δ(0) = xf .

• Finally, a PA control steering x0 to xf , with an associated cost less than JM is obtained by
firstly joining x0 to xδ(δ) ∈ A+

δ (x0) for t ∈ [0, δ], and secondly using uδ(t) for t ∈ [δ, Tf ].

Remark 2. The small time self-reachability of (Σ0) is a key point of the proof. As it can be
seen in Corollary 4.15 of [13], the property “ F (.) and G(.) are real analytic vector fields” can
be replaced by “F (.) and G(.) are C1 and locally bounded”.

2.2 Trajectories without backward arcs

A backward arc is understood as a piece of trajectory, defined over a non-trivial interval of
time, along which the quantity y is strictly negative.

Lemma 2. Let us consider a road profile such that Problem (P1) is invariant under a translation
along the Ox axis of the phase diagram of (Σ1). Then, trajectories including backward arcs can
be disregarded when looking for solutions to (P1).

Proof. Let Γ(t) = (xΓ(t), yΓ(t))t be a trajectory of (Σ1). According to Theorem 1, in order to
be a candidate for optimality, this trajectory is made of a finite number of arcs. Let us assume
that yΓ(t) has only one backward arc —the following argument remains in the case of multiple
backward arcs.

yΓ(t) =

{
yΓ(t) < 0 over [0, t1[
yΓ(t) ≥ 0 over [t1, Tf ]

Let Γ− denote the arc such that y < 0, and Γ+ the other one. We now construct a new trajectory,
denoted by γ = (xγ , yγ)t, that doesn’t include any backward arc and which associated cost is
less or equal to the one of Γ. The explanations below are illustrated in Figure 5.

Let us translate the arc Γ+ along the Ox axis in order to move A = (xΓ(t1), yΓ(t1))t to (0, 0)t.
This new curve, denoted by Γ+

trans is the dotted curve in Figure 5. The time instants t2 and t3
are defined as follows:

• let B be the intersection point between Γ+ and Γ+
trans, then B = (xΓ(t3), yΓ(t3))t;

10



• let C be the translation ofB when Γ+
trans is translated back to Γ+, then C = (xΓ(t2), yΓ(t2))t.

The trajectory γ is:

γ(t) =

 Γ+
trans(t+ t1) for 0 ≤ t ≤ t2 − t1

Γ+(t+ t3) for t2 − t1 ≤ t ≤ (t2 − t1) + (Tf − t3)
(xf , 0)t for (t2 − t1) + (Tf − t3) ≤ t ≤ Tf

Let uΓ (resp. uγ) denote the control corresponding to Γ (resp. γ), and JΓ(u) (resp. Jγ(u)) the

æ

ææ

æ
-0.5 0.5 1.0 1.5 2.0 2.5 xHtL
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0.5
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yHtL

A

BC

G
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G
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Figure 5: The Γ(t) trajectory.

associated cost:

JΓ(u) =

Tf∫
0

|yΓuΓ|
ρ(yΓ)

dt =

t1∫
0

|yΓuΓ|
ρ(yΓ)

dt+

t2∫
t1

|yΓuΓ|
ρ(yΓ)

dt+

t3∫
t2

|yΓuΓ|
ρ(yΓ)

dt+

Tf∫
t3

|yΓuΓ|
ρ(yΓ)

dt

≥
t2∫
t1

|yΓuΓ|
ρ(yΓ)

dt+

Tf∫
t3

|yΓuΓ|
ρ(yΓ)

dt =

t2−t1∫
0

|yγuγ |
ρ(yγ)

dt+

(t2−t1)+(Tf−t3)∫
t2−t1

|yγuγ |
ρ(yγ)

dt = Jγ(u)

3 Case studies

In this paper, three configurations of Problem (P1) are investigated:

1. a flat road without drag;

2. a flat road with drag;

3. a non-flat road profile, and a null drag coefficient.

System (Σ1) is linear in the two first configurations, and nonlinear in the third. As we deal
with a fixed time control problem, a solution exists only if the final time Tf is larger than the
minimum time (Tmin) needed to reach the prescribed destination. For all those three cases, the
minimum time strategy consists in the following control sequence, and the calculation of Tmin is
straightforward:

umin(t) =

{
1 for 0 ≤ t < ∆t
−1 for ∆t ≤ Tmin

11



Both cases (1) and (2) are elementary examples treated in the first chapter of [17], and the
formulas are respectively

Tmin = 2
√
xf and Tmin = − 1

α

(
ln
(

1−
√

1− e−α2xf

)
− ln

(
1 +

√
1− e−α2xf

))
(8)

The last case is also easily dealt with following the procedure in [17], and the formula is provided
in Section 3.3 below.

The study is performed with the help of Pontryagin’s Maximum Principle [17, 1, 10, 7]. To
this end, we introduce P(t) = (p(t), q(t))t, the adjoint vector of X(t) = (x(t), y(t))t, and form
the Hamiltonian:

H (X,P, u, λ0) = py + q(u− αy − sin(θ(x)))− λ0
|yu|
ρ(y)

with λ0 ∈ {1, 0}

Since (P1) is an autonomous problem, thenH (X,P, u, λ0) is constant along extremal trajectories
and denoted by H. Also, still along extremal trajectories, for almost every t, we have the
maximisation condition:

H = max
|u|≤1

H (X,P, u, λ0)

and the adjoint equations:

ṗ = −∂H
∂x

(X,P, u, λ0) (9)

−q̇ ∈ DyH (X,P, u, λ0) (10)

where DyH denotes the subdifferential of H with respect to y, cf. [10].
As a consequence, following the maximisation condition, the candidate control strategy for

abnormal extremals is given by:

u(t) = argmax
|u|≤1

H (X,P, u, 0) = sgn (q)

For normal extremals the maximisation condition, illustrated in Figure 6, yields:

u(t) = argmax
|u|≤1

H (X,P, u, 1) = argmax
|u|≤1

(
qu− |yu|

ρ(y)

)
=



1 if q > |y|
ρ(y)

u ∈ [0, 1] if q = |y|
ρ(y)

0 if − |y|
ρ(y) < q < |y|

ρ(y)

u ∈ [−1, 0] if q = − |y|ρ(y)

−1 if q < − |y|ρ(y)

(11)

A singular arc is a piece of extremal trajectory such that either q = |y|
ρ(y) or q = − |y|ρ(y) over a

non-trivial interval of time —see for instance [7, 6, 20]. Also, a control u(t) is said extremal if
there exists P(0) = (p0, q0) such that the solution of the Hamiltonian system, formed by (Σ1),
(9) and (10) is extremal.

On the properties of singular arcs

Let us write the Hamiltonian along an extremal singular arc. Following the set of rules (11), we
have:

H = py − q (sin(θ(x)) + αy) where q(t) is either
|y(t)|
ρ(y(t))

or − |y(t)|
ρ(y(t))

12
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Figure 6: The maximisation condition in the normal case.

As a consequence, if the y trajectory of an extremal singular arc crosses y = 0, then H = 0 along
the corresponding extremal.

We now consider the case q = |y|
ρ(y) and y > 0, then u ∈ [0, 1] and the Hamiltonian writes

H (X,P, u, λ0) = py − y

ρ(y)
(sin(θ(x)) + αy) (12)

Its time derivative is:

0 = ẏ

[
p− sin(θ(x))

(
1

ρ(y)
− yρ

′
(y)

ρ2(y)

)
− αy

(
2

ρ(y)
− yρ

′
(y)

ρ2(y)

)]
where ρ

′
(y) =

∂ρ(y)

∂y

This last expression is of the form 0 = ẏ [p− sin(θ(x))A−B]. Therefore, one possible behaviour
for singular arcs is to have y constant. Over intervals such that y is not constant, the quantity
[p− sin(θ(x))A−B] must vanish. Following equation (9), the time derivative of p is given by:

ṗ = q cos(θ(x))
∂θ(x)

∂x
=

y

ρ(y)
cos(θ(x))

∂θ(x)

∂x

If ∂θ∂x doesn’t vanish, the time derivative of [p− sin(θ(x))A−B] is of the form: C+ẏD = 0 where2

both C and D are independent from ẏ. At this point one can investigate possible behaviours for
extremal singular arcs by using the differential equation ẏ = −C

D .

If ∂θ∂x vanishes, then both p and sin(θ(x)) are constants. The time derivative of [p− sin(θ(x))A−B]
is of the form (ẏD) where D depends on y, ρ(y), ρ′(y) and ρ′′(y). Since we assumed that ẏ 6= 0,
then D = 0, and the time derivative of D is computed. It is of the form (ẏE) where E depends
on y, ρ(y), and the derivatives of ρ up to order 3. In fact, there is no new information to be
found and an extremal singular arc of this kind exists only if the yield function is of the form
given by the Hamiltonian (12), which is almost never the case.

The same conclusions are drawn for y < 0 and in the case q = − |y|ρ(y) .

3.1 Flat road without drag

In this section, the drag coefficient α is null and the road is flat —i.e. θ(x) ≡ 0. System (Σ1) is
then a simple double integrator and the Hamiltonian associated to Problem (P1) writes:

H (X,P, u, λ0) = py + qu− λ0
|yu|
ρ(y)

2The expressions C and D are rather long, and as such, we do not reproduce them at this point. It is
straightforward to recover them with the help of a symbolic computation software.
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System (Σ1) being linear, they is no abnormal extremal trajectory. Let us write the Hamil-
tonian, along extremal trajectories at times t = 0 and t = Tf :

H|t=0 = H|t=Tf = H ⇒ H = u(0)q(0) = u(Tf )q(Tf ) (13)

From Lemma 2, y ≥ 0 for all t ∈ [0, Tf ]. There exist t1 and t2 in [0, Tf ] such that y(t1) =

y(t2) = 0 and y(t) > 0 for all t ∈]t1, t2[. The quantity κ(t) =
qρ(y)

y
is well defined over ]t1, t2[

and the set of rules (11) translates into:

u(t) =

 1 if κ(1) > 1
0 if − 1 < κ(t) < 1
−1 if κ(t) < −1

(14)

Now, since there is no backward arc, there exists ε > 0 such that u = 1 over an interval of
the form ]t1, t1 + ε[. Remember that (Σ1) is a double integrator and that y(t2) = 0. This means
that the control variable must become negative at some point (or equivalently, κ must be less
than −1), thus there is a time t? ∈]t1, t2[ such that κ(t?) = 0 and κ̇ < 0. Let us now compute
the time derivative of κ(t):

κ̇(t) =

˙̂(
qρ(y)

y

)
=
qẏyρ′(y)

y2
+
q̇ρ(y)y

y2
− qρ(y)ẏ

y2

=
qẏρ′(y)

y
+ ρ(y)

1

y2
(q̇y − qẏ)︸ ︷︷ ︸

−H−
|u|ρ′(y)y2

ρ(y)2

= −ρ(y)
H

y2
+ ρ′(y)

(
qẏ

y
− |u|
ρ(y)

)

=− ρ(y)

y2
H +

ρ′(y)

ρ(y)
(κu− |u|) (15)

Following (14), when κ = 0 then u = 0. Therefore, equation (15) yields κ̇(t?) = −ρ(y)
y2 H and

H must be strictly positive. Now, relation (13) tells us that u(0) = 1 and u(Tf ) = −1.
Indeed, since u(0)q(0) 6= 0 then q(0) 6= 0. If q(0) < 0 then u(0) = −1 which contradicts the

fact that there is no backward arc. A similar argument yields u(Tf ) = −1.
Going back to equation (15), let us consider the case when κ = 1. According to the set of

rules (14), u ≥ 0, therefore (κu − |u|) = 0 and κ̇ = −ρ(y)
y2 H < 0. When κ = −1, u ≤ 0 and κ̇

is also strictly negative. As a consequence, an extremal trajectory contains no singular arc and
has a maximum of 2 commutations. In fact, for a given Tf > Tmin, there is only one possible
extremal trajectory, the one generated by the control sequence:

u(t) =

 1 for t ∈ [0,∆t[
0 for t ∈ [∆t, Tf −∆t[
−1 for t ∈ [Tf −∆t, Tf ]

(16)

The terminal condition xf = ∆tTf −∆t2 allows the explicit computation of ∆t:

∆t =
1

2

(
Tf −

√
T 2
f − 4xf

)
This relation is well defined, since the fact that Tf > Tmin implies (T 2

f − 4xf ) > 0 —cf. equa-
tion (8).
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Figure 7: Optimal trajectory in the double integrator case. Parameters: xf = 2, Tmin ≈ 2.82
and Tf = 3.8.

It is clear from expression (15), that the yield function has no part to play in this specific
problem. Actually, the solution to this problem is exactly the same as the one to the problem

that consists in minimising

∫ Tf

0

|u(t)|dt for a double integrator. The interested reader can refer

to [18] where this problem is solved.
Figure 7 illustrates this optimal strategy. The trajectory is shown in Figure 7a. Fig-

ures 7b and 7d show the switching functions for a constant and a non-constant yield function
respectively. Finally, Figure 7c represents the non-constant yield function: the dotted part shows
the shape of the yield function, while the plain red part shows the visited values of the yield
function.

3.2 Flat road with drag

In this second case study a drag coefficient is introduced. Again, system (Σ1) is linear and writes:{
ẋ = y
ẏ = u− αy

As before, abnormal extremal trajectories are out of the picture, Lemma 2 applies and optimal
trajectories don’t include backward arcs. The normal Hamiltonian H is:

H(X,P, u, 1) = py + q(u− αy)− y|u|
ρ(y)
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As in Section 3.1, we have the relation: H = u(0)q(0) = u(Tf )q(Tf ), and we define the quantity

κ =
qρ(y)

y
. It is defined over some open subinterval ]t1, t2[⊂ [0, Tf ], such that y(t) > 0 and

y(t1) = y(t2) = 0. The time derivative of κ is:

κ̇(t) = −ρ(y(t))

y(t)2
H − ρ′(y)

ρ(y)
|u(t)|+ κ(t)

(
α+

ρ′(y)

ρ(y)
(u− αy(t))

)
(17)

As before, there exists ε > 0 such that u = 1 over an interval of the form ]t1, t1 + ε[, and (Σ1)
is such that the control u must be negative in order to have y(t2) = 0. As a consequence, there

is a time t? such that κ(t?) vanishes, and κ̇(t?) < 0. Following (17): κ̇(t∗) = −ρ(y(t∗))
y(t∗)2 H, and

therefore H > 0, u(0) = 1 and u(Tf ) = −1.
The rest of this section is divided into two parts. In the first one, the yield function ρ(y) is

assumed equal to some constant 0 < ρ̄ ≤ 1. This assumption allows us to completely describe the
solution to problem (P1) with respect to the value of Tf > Tmin. In a second part, we build upon
this basis and propose a methodology to obtain the solution to the problem with a non-constant
yield function.

3.2.1 Constant yield function

First of all, let us remark that the solution to problem (P1) doesn’t depend on the value taken
by ρ̄. We therefore set ρ̄ = 1. Up to now, we know the three following facts:

1. the control variable is equal to 1 over an interval of the form [0, ε[;

2. the control variable equals −1 over an interval of the form [Tf − ε, Tf ];

3. there might be singular arcs and such an arc is characterised by ẏ = 0 with y > 0.

An immediate consequence of the third fact is that there are no singular arc of the form q = −y
—i.e. with u ∈ [−1, 0]. Indeed, ẏ = 0 with y > 0 can only be achieved with a strictly positive
control. In the following, using ∈]0, 1[ denotes a singular control. The following lemma states
several facts allowing us to narrow down the list of candidate strategies.

Lemma 3.

1. If the control variable switches to u = 0 then it cannot be strictly positive again.

2. If the control variable switches to u = −1 then it cannot switch back to 0.

3. There can be at most one singular arc.

4. For extremal trajectories comprising a singular arc:

(a) y =
√

q0
α along the singular arc;

(b) the corresponding control is using =
√
αq0;

(c) the following relation holds: p = 2
√
αq0.

Proof. 1. We use the quantity κ(t). A commutation of the control from u > 0 to u = 0 means
that, at some time t?, κ(t?) = 1 and κ̇(t?) < 0. Let us write the expression of κ̇(t?) —cf.
equation (17):

κ̇(t?) = ακ(t?)− H

y(t?)2
< 0
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Therefore, κ(t) < κ(t?) over a small interval of the form [t?, t? + ε[. Also, since the control
switched to 0, then the same goes for the variable y(t). As a consequence, over [t?, t? + ε[,
we have:

κ̇(t) = ακ(t)− H

y(t)2
< κ̇(t?) < 0

As a consequence, κ(t) remains less than 1 and the control cannot switch back to a positive
value.

2. The second assertion is derived from similar arguments;

3. Assume that there exists an extremal trajectory that includes two singular arcs. Since this
cannot happen as soon as u = 0, then, the control sequence is of the following form —with
t4 < Tf : 

u = 1 for t ∈ [0, t1[
using for t ∈ [t1, t2[
u = 1 for t ∈ [t2, t3[
using for t ∈ [t3, t4[

Along a singular arc, we have κ = 1 and κ̇ = 0, and equation (17) rewrites:

0 = − H

y(t)2
+ α ⇒ y2 =

H

α
=
q0

α

Since y is constant along a singular arc, then y2(t1) = q0
α and y2(t3) = q0

α . Those two
equalities contradict the existence of two singular arcs. Indeed, ẏ 6= 0 over [t2, t3[, there-
fore, y(t1) and y(t3) are not equal while having the same sign.

4. Items (a) and (b) come directly from the relation y2 = q0
α used in the proof of fact (3). In

order to prove item (c) we simply need to remark that, since both κ̇ and ẏ are null along
a singular arc, the same is true for q̇:

0 = q̇ = −∂H
∂y

(X,P, u, 1) = −p+ αq + |u|

= −p+ αy + using

= −p+ 2using

Remark 3. According to the informations gathered so far, control sequences candidate for opti-
mality are:

1. u = 1, then u = 0 and finally u = −1;

2. u = 1, then u = using, u = 0 and finally u = −1;

3. u = 1, then u = using, u = 1, u = 0 and finally u = −1.

Lemma 4. The following control sequence, with
√
αq0 6= 1, is not extremal

u(t) =


1 for t ∈ [0, t1[√
αq0 for t ∈ [t1, t2[
1 for t ∈ [t2, t3[
0 for t ∈ [t3, t4[
−1 for t ∈ [t4, Tf ]
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Proof. Let us focus on the subinterval [t2, t3[ and show that time t3 actually doesn’t exist. Let
t̄ be the quantity t− t2 and solve (Σ1) for t > t2 with u = 1:

y(t) =

(
y(t2)− 1

α

)
e−αt̄ +

1

α
and q(t) =

(
q(t2)− p0 − 1

α

)
eαt̄ +

p0 − 1

α

The commutation of the control variable at time t2 implies y(t2) = q(t2), and the commutation
at time t3 implies y(t3) = q(t3). Therefore, t3 − t2 is the solution to the following equation:(

y(t2)− 1

α

)
e−αt̄ +

1

α
=

(
q(t2)− p0 − 1

α

)
eαt̄ +

p0 − 1

α

which rewrites, denoting q2 = q(t2):(
q2 −

1

α

)
e−αt̄ +

1

α
=

(
q2 −

p0 − 1

α

)
eαt̄ +

p0 − 1

α

After a few simplifications, and denoting X = eαt̄, we obtain:

(αq2 − p0 + 1)X2 + (p0 − 2)X − αq2 + 1 = 0 (18)

We have, y(t2) = y(t1), which implies q2 =
√

q0
α —cf. Lemma 3. Also, the Hamiltonian is

written at time t = t2 —i.e. H|t=t2 = H|t=0 = q0. We obtain the relations:

q0 = αq2
2 and q0 = p0q2 − αq2

2 ===⇒
q2 6=0

p0 = 2αq2 (19)

Therefore, the equation given in (18) becomes:

(1− αq2) (X − 1)
2

= 0

• If (1− αq2) =0, then q0 = αq2
2 = 1

α , and
√
αq0 = 1 which is a contradiction.

• If (X − 1) = 0, then X = 1 and t̄ = 0, which means that t3 > t2 doesn’t exist.

As a consequence, the control strategy under consideration is not an extremal trajectory.

Lemma 5. Consider the control sequence:

u(t) =


1 for t ∈ [0, t1[√
αq0 for t ∈ [t1, t2[
0 for t ∈ [t2, t3[
−1 for t ∈ [t3, Tf ]

(20)

1. If strategy (20) is extremal, then t3 − t2 = 1
α ln

(
1 +
√

2
)
.

2. For given values of parameters α and xf , there is a time Tlim > 0 such that for all Tf >
Tlim, (20) is a candidate control sequence for optimality.

Proof. 1. Using the notation y1 = y(t1), since the second arc is singular, we know that
y(t2) = q(t2) = y1. Let t̄ be defined by t̄ = t − t2, the expressions of q and y over the
interval [t2, t3] are:

q(t̄) = y1e
αt̄ − p0

α
(eαt̄ − 1) et y(t̄) = y1e

−αt̄
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At time t3, the control commutes from 0 to −1, which corresponds to the relation q(t3) =
−y(t3). We now combine the relation p0 = 2

√
αq0 = 2using from Lemma 3, fact (4), with

the fact that y is constant and equals y1 along the singular arc: using = αy1 and p0 = 2αy1.

Let us now compute t̄ such that −y(t̄) = q(t̄) :

−y1e
−αt̄ = y1e

αt̄ − p0

α
(eαt̄ − 1)

−y1e
−αt̄ = y1e

αt̄ − 2αy1

α
(eαt̄ − 1)

−e−αt̄ = eαt̄ − 2(eαt̄ − 1) (since y1 > 0)

−1 = e2αt̄ − 2(e2αt̄ − eαt̄)
0 =X2 − 2X − 1 ( with X = eαt̄)

Therefore X = 1±
√

2, which yields t3 − t2 = 1
α ln

(
1 +
√

2
)
.

2. Consider the following procedure.

• Let t1 = t2.

• Let t3− t2 = 1
α ln

(
1 +
√

2
)
, set Tf − t3 = Tf − 1

α ln
(
1 +
√

2
)
− t1 and solve y(Tf ) = 0

for t1. It is the following function of α and Tf :

t1 =
1

α
ln

[(
1−
√

2

2

)(
1 + eαTf

)]

• For a given final time Tf , the control strategy (20) leads to:

xf = −Tf
α

+
ln
(
1 +
√

2
)

α2
+

2

α2
ln

((
1−
√

2

2

)(
1 + eαTf

))

• The above relation is reversed in order to express Tf , as a function of α and xf . We
obtain the following relations, and Tlim is the latter one:

1

α
ln

(
(1 +

√
2)eα

2xf − 1−
√(

(1 +
√

2)eα
2xf − 1

)2

− 1

)
≤ 0

and

1

α
ln

(
(1 +

√
2)eα

2xf − 1 +

√(
(1 +

√
2)eα

2xf − 1
)2

− 1

)
> 0

The only strategy left to investigate is the following one:

u(t) =

 1 for t ∈ [0, t1[
0 for t ∈ [t1, t2[
−1 for t ∈ [t2, Tf ]

(21)

For given values of α, xf , Tf > Tmin, there always exists a control of the form (21) joining (0, 0)t

to (xf , 0)t. From the two constraints y(Tf ) = 0 and x(Tf ) = xf , we compute the expressions of
t1 et t2 : {

t1 = 1
α ln

[
1
2

(
1 + eαTf −

√
1 + 2eαTf + e2αTf − 4eα

2xf+αTf

)]
t2 = Tf + 1

α ln
[
e−αTf (1− eαt1 + eαTf )

] (22)
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The trajectory generated by control (21) is clearly optimal when Tmin < Tf < Tlim. Indeed,
there is no other extremal trajectory.

Theorem 2 (Optimal strategy for a constant yield function).
For a given set of parameters α, xf and Tf , let X(t) : t 7→ (x(t), y(t))t denote the trajectory of
(Σ1) steering (0, 0)t to (xf , 0)t under a control sequence of the form (21).

1. If (X(t), p0, q(t)) is an extremal trajectory of Pontryagin’s maximum principle, then p0 and
q0 are given by the following expressions:

p0 =
e−αt2(eαt1 − 1)(1 + e2α(t2−t1))

eα(t2−t1) − 1

q0 =
e−2αt1

α
(eαt1 − 1)(1 + eαt1(po− 1))

2. For Tf > Tlim, with Tlim as in Lemma 5, then (X(t), p0, q(t)) is not an extremal trajectory.

3. The solution to the optimal control problem (P1) on a flat road, with drag coefficient α and
constant yield function is:

(a) for Tmin < Tf ≤ Tlim, with Tlim as in Lemma 5, the optimal control strategy is (21);

(b) for Tf > Tlim, the optimal control strategy is (20).

Proof. 1. Parameters α, xf , Tf being fixed, the commutation times t1 et t2 of control se-
quence (21) are given by (22), which allows the computation of y(t1) and y(t2).

(a) p0 is determined with the help of the expression of q(t) over the interval [t1, t2]:

q(t) = q(t1)eα(t−t1) − p0

α

(
eα(t−t1) − 1

)
Since q(t1) = y(t1), the equation q(t2) = −y(t2) is solved for p0.

(b) q0 is determined from the expression of q(t) over the interval [0, t1]:

q(t) = q0e
αt +

1

α
(1− p0)

(
eαt − 1

)
.

In both cases, the derived expression is uniquely determined.

2. For a given set of parameters α, xf , Tf , assume that (X(t), p0, q(t)) is an extremal tra-
jectory. Then, t1, p0 et q0 can be explicitly computed. Therefore, we can determine the
expressions of both y(t) and q(t) over the interval [0, t1]. A commutation takes place if
there is a time t such that y(t) = q(t). This equation is then solved for t.

We obtain two expressions3. One of them is exactly formula t1 given in (22). However, the
other one is real and lower than t1 as soon as Tf > Tlim. In other words, for Tf > Tlim
a first commutation of the control happens before time t1 and consequently the control
sequence (21) is not extremal.

3. The analysis performed in the present section showed that there are only two possible
extremal strategies. They have the following restrictions:

• the trajectory due to the control sequence (21) is not extremal as soon as Tf > Tlim;

• the trajectory due to the control sequence (20) doesn’t exist for Tmin < Tf ≤ Tlim.
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Figure 8: Optimal and non-optimal trajectories for the second case study with a constant yield
function. Parameters: α = 0.5, xf = 6, Tmin ≈ 5.52 and Tlim ≈ 5.95.
Figures 8a,and 8b correspond to Tf = 5.9. Figures 8c to 8f correspond to Tf = 6.5.

Figure 8 illustrates the claims of Theorem 2 for fixed parameters xf = 6 and α = 0.5. The
quantity Tlim is determined as explained in Lemma 5. Figures 8a and 8b show the optimal
trajectory for Tf < Tlim, and Figures 8c and 8d correspond to the case Tf > Tlim. In particular,
Figures 8e and 8f illustrate the fact that strategy (21) is not extremal for Tf > Tlim. Those last
two figures are obtained as follows: t1 and t2 are determined in order to steer X(0) to X(Tf ) using
strategy (21). When we apply this control to the Hamiltonian system, we see that trajectory
q(t) intersects y(t) at some time 0 < t < t1, as expected this trajectory is not extremal.

3.2.2 Non-constant yield function

In this section, in order to solve (P1) on a flat road, with drag coefficient α > 0 and a non-constant
yield function ρ(y), we propose a methodology based on fact (3) of Theorem 2.

1. Compute a trajectory of (Σ1) given by control sequence (21).

2. If possible, compute a trajectory of (Σ1) given by control sequence (20).

3Since they are quite large, those two expressions are not reproduced here. However, the interested reader can
obtain them with the help of a symbolic computation software.
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3. Check which trajectory is extremal, and compute the cost explicitly to remove possible
ambiguities.

4. It can happen that neither strategy (21) nor strategy (20) yield extremal trajectories.
Indeed, the facts of Lemma 3 don’t hold anymore and there can be more than one commu-
tation of the control variable between the values u = 0 and u = −1. When this situation
arises, a new control strategy is investigated —see (25) below.

A trajectory of (Σ1), given by the control sequence (21), such that X(Tf ) = (xf , 0)t is given
by relations (22), as before. However, for a trajectory given by control sequence (20), relation
t3 − t2 = 1

α ln
(
1 +
√

2
)

of Lemma 5 doesn’t hold anymore, and we have to rely on a numerical
scheme.

Computing extremal trajectories given by strategy (20)

First, we need to derive usable expressions for p0 and q0. Along a singular arc, since ẏ = 0, then

q̇ = d
dt

(
y
ρ(y)

)
= 0. Let ys denote the value of y(t) along the singular arc, then using = αys and:

0 = q̇ = − ∂

∂y
H =

|using|
ρ(ys)

− ys|using|ρ
′
(ys)

ρ2(ys)
+ αqs − p0 where qs =

ys
ρ(ys)

and ρ
′
(y) =

∂ρ

∂y
(y)

⇒ p0 =
2αys
ρ(ys)

− αy2
sρ
′
(ys)

ρ2(ys)
(23)

Now, since u0 = 1, and denoting by Hs the Hamiltonian function computed along a singular arc,
we have:

H|t=0 = q0 = Hs = p0ys + q0(using − ys)−
ys|using|
ρ(ys)

⇒ q0 = p0ys −
αy2

s

ρ(ys)
(24)

In order to compute an extremal trajectory associated to (20), the following methodology is
proposed:

1. set t1 to some arbitrary value, then y(t2) = y(t1) = ys and both p0 and q0 can be computed;

2. the duration (t3− t2) is the solution of q(t) = − y(t)
ρ(y(t)) where q(t) and y(t) are the solutions

of the Hamiltonian system associated to (P1) with u = 0, y(0) = ys and q(0) = ys
ρ(ys)

;

3. the duration (Tf − t3) comes from the constraint y(t) = 0 where y(t) is the solution of (Σ1)
with u = −1 and setting y(0) to the value taken by y in the previous step when we solved

equation q(t) = − y(t)
ρ(y(t)) ;

4. t1 is determined in order to solve the equation x(Tf ) = xf , with the duration of the singular
arc (i.e. t2 − t1) given by Tf minus the length of the three other arcs.

Remark 4. • Each step of this methodology is achieved with a simple dichotomy.

• For a given set of parameters α and xf , the minimum time Tlim for the existence of a
singular strategy (20) is determined with a similar methodology: the singular arc is reduced
to a point but the constraints are kept. Time t1 is determined such that x(Tf ) = xf , which
yields the value of Tlim = Tf .

• In practice, if a singular strategy exists, then the basic strategy (21) is not extremal.
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Trajectories having a two-step braking behaviour

The two control strategies presented so far —i.e. (20) and (21)— are not sufficient to account for
all the situations we encountered during the resolution of this case. Since Lemma 3 doesn’t guar-
antee anymore that each type of commutation happens at most once, we considered a strategy
of the form (25) below.

Let us remember that the running cost is |yu|ρ(y) . On the one hand, the fact that it tends to

zero when y tends to 0 points out the interest of braking at low speed. On the other hand, a
non-null control is expected to take place when the yield function’s value is the largest. Actually,
strategies (20) and (21) both realise a tradeoff between those two behaviour, and the fact that
both strategies aren’t extremal hints toward a two-step braking strategy. In other words, u = −1
a first time when the yield function is large enough, and a second time when the speed is low
enough.

Strategy (25) below actually produces extremal trajectories when (20) and (21) don’t. Those
trajectories are calculated with a methodology adapted from the one used for strategy (20).

u(t) =



1 when t ∈ [0, t1[
αy1 when t ∈ [t1, t2[
0 when t ∈ [t2, t3[
−1 when t ∈ [t3, t4[
0 when t ∈ [t4, t5[
−1 when t ∈ [t5, Tf ]

(25)

Figures 9, 10 and 11 illustrate the optimal trajectories calculated following the above method-
ology for fixed parameters xf = 6 and α = 0.5. Figure 9 corresponds to the case Tmin < Tf <
Tlim, and Figures 10 and 11 to Tf > Tlim. For Tf = 10, neither (21) nor (20) produce extremal
trajectories, but the new strategy (25) does. It is illustrated in Figure 11. In fact, this situation
happens only for Tf within a rather small interval of time. In Figures 9c, 10c and 11c the visited
values of the yield function are displayed in red. The blue sections in Figure 11c correspond to
the two braking periods.

Remark 5. Let us remark that extremal trajectories such as the one displayed in Figure 11f
don’t exist for all type of non-constant yield functions. Indeed, in the case of the yield function
shown in Figure 7c, that is with ρ(0) = 0.2, there is no such extremal. This can be understood
as a translation of the fact that because the ratio between the maximum and the minimum of the
yield is not significant, it is much more interesting to only brake at low speed.

3.3 Non-flat road

In this third case study, we consider a non-flat road and no drag coefficient. System (Σ1) writes:

(Σ1)

{
ẋ = y
ẏ = u− sin (θ(x))

The road profile under consideration, represented in Figure 12, has the following behaviour: θ(x) is constant for x ≥ −1
θ(x) is increasing for x ∈]− 6.5,−1[
θ(x) is decreasing for x ∈ [−10,−6.5[
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Figure 9: Optimal trajectory for the second case study with a non-constant yield function.
Parameters: α = 0.5, xf = 6, Tmin ≈ 5.52, Tlim ≈ 5.8 and Tf = 5.75.
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Figure 10: Optimal trajectory for the second case study with a non-constant yield function.
Parameters: α = 0.5, xf = 6, Tmin ≈ 5.52, Tlim ≈ 5.8 and Tf = 8.
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Figure 11: Optimal trajectory for the second case study with a non-constant yield function.
Parameters: α = 0.5, xf = 6, Tmin ≈ 5.52, Tlim ≈ 5.8 and Tf = 10.
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Figure 12: Derivative of θ with respect to x, and road profile in the (ξ, h)t coordinates. The red
dots appearing on the road profile correspond to x = −1, x = 0 and x = xf .

Tmin ≈ 2.885, (Tmin + Tback) ≈ 4.177 and T 1,0
f ≈ 5.01.

In order to simplify notations when there is no ambiguity, we denote K = sin (θ(x)) for x ≥ −1.

The minimum time is Tmin =
2
√
xf√

1−K2
, and we set xf = 2.

As before, abnormal extremals are out of the picture. First, let T 1,0
f be the time needed in

order to reach X = (xf , 0)t with the strategy

u(t) =

{
1 for t ∈ [0, tc[

0 for t ∈
[
tc, T

1,0
f

]
(26)

Lemma 6. 1. If the control sequence (26) is extremal, then the Hamiltonian H is null along
the corresponding trajectory of (Σ1);

2. we have the following equivalence:

ρ
′
(y(tc)) ≥ 0 ⇐⇒ (26) is an extremal strategy

3. for all Tf > T 1,0
f the following strategy is also extremal:

u(t) =


K for t ∈ [0, t1[
1 for t ∈ [t1, t1 + tc[
0 for t ∈ [t1 + tc, Tf − t2[
K for t ∈ [Tf − t2, Tf [

(27)

where t1 ≥ 0, t2 ≥ 0 and t1 + t2 = Tf − T 1,0
f .

Proof. 1. The normal Hamiltonian, with x ≥ −1, writes H (X,P, u, 1) = − |yu|
ρ(y)

+ py +

q (u−K). For an extremal trajectory given by (26), u(Tf ) = 0 and
y(Tf )
ρ(y(Tf )) ≤ q(Tf ) ≤

− y(Tf )
ρ(y(Tf )) . Since y(Tf ) = 0 then q(Tf ) = 0, and the Hamiltonian expressed at time Tf

yields H = 0.

2. Let us assume ρ′(yc) ≥ 0, with yc = y(tc). Since u = 1 over [0, Tc[, then y ≥ 0 over
]0, tc]. Let p = p0 be a constant, and q(t) be the solution of

q̇ = − ∂

∂y

(
− y

ρ(y)
+ py + q (1−K)

)
with q(0) = 0
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We now compute the time derivative of H (X,P, u, 1) over ]0, tc[. Recall that y > 0 and u
is constant, which yields Ḣ = 0. Therefore, H is constant over [0, tc] by continuity. Now,
since we’ve set q0 = 0, then H|t=0 = 0, and therefore H|t=tc = 0.

The commutation at time tc happens if q(tc) = yc
ρ(yc)

= 0. This is true if p0 = K
ρ(yc)

. In

order to show that (26) is an extremal strategy, we still have to show that:

(a) q(t) > y
ρ(y) over ]0, tc[;

(b) − y
ρ(y) < q(t) < y

ρ(y) over ]tc, T
1,0
f [.

• Over ]0, tc[:

− y

ρ(y)
+ p0y + q (1−K) = 0 ⇐⇒ q =

y

1−K

(
1

ρ(y)
− p0

)
After few manipulations, and replacing p0 by K

ρ(yc)
, we obtain the expression:

q − y

ρ(y)
=

K

1−K
y

(
1

ρ(y)
− 1

ρ(yc)

)
Since ρ

′
(yc) ≥ 0 and 0 < y(t) < yc over ]0, tc[, then

(
1

ρ(y) −
1

ρ(yc)

)
> 0 and q > y

ρ(y) .

• Over ]tc, T
1,0
f [:

we have u = 0. Let t̄ = t − tc, then y(t̄) = −Kt̄ + yc and q(t̄) = −p0t̄ + q(tc) =
− K
ρ(yc)

t̄ + yc
ρ(yc)

. Hence T 1,0
f − tc = K

yc
, q(T 1,0

f ) = 0 and trivially − y
ρ(y) < q over

]tc, T
1,0
f [.

Let us now determine the sign of q − y

ρ(y)
:

q − y

ρ(y)
=

yc
ρ(yc)

− K

ρ(yc)
t̄− y

ρ(y)

=
yc
ρ(yc)

− K

ρ(yc)
t̄− yc −Kt̄

ρ(y)

<
yc
ρ(yc)

− K

ρ(yc)
t̄− yc −Kt̄

ρ(yc)
= 0 ( since y < yc) and (yc −Kt̄ > 0)

This proves the result, and strategy (26) is extremal.

Let us assume ρ′(yc) < 0, with yc = y(tc). As we’ve done before, we consider the

quantity κ(t) =
qρ(y)

y
over an interval of time that contains tc and such that y > 0. We

assume that(26) is an extremal strategy and compute the time derivative of κ(t) over this
interval:

κ̇(t) = −Hρ(y)

y2
− |u|ρ

′
(y)

ρ(y)
+ κ(t)

ρ
′
(y)

ρ(y)
ẏ (28)

When t = tc, κ(tc) = 1 and u ≥ 0, which yields κ̇(tc) = −ρ
′
(y(tc))

ρ(y(tc))
K since H = 0. As

a consequence, a commutation of the control cannot take place since κ̇(tc) > 0. This
contradicts the fact that (26) is extremal.
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3. This item comes from the two following facts.

(a) An extremal trajectory having a singular arc of the form y = 0, ẏ = 0 implies H = 0.

(b) If (26) is an extremal strategy, then H = 0.

We are now left with the following question: what happens when ρ′(yc) < 0 ? We know from
Lemma 6 that this strategy cannot be extremal. From the experience gained with the preceding
case study, searching for singular arcs comes to mind. As we have seen at the beginning of
Section 3: since θ(x) is constant then singular arcs are of the form ẏ = 0. A possible strategy is:

u(t) =


1 for t ∈ [0, tc[
K for t ∈ [tc, tc + tsing[

0 for t ∈ [tc + tsing, T
1,s,0
f ]

(29)

The associated trajectory of (Σ1) has a singular arc over the time interval [tc, tc + tsing[ which
can be as large as needed in order to meet the constraint x(Tf ) = xf . In fact, if we assume that
strategy (29) is extremal, we have the following facts:

1. H = 0 since u(t) = 0 for t ∈ [tc + tsing, Tf ];

2. the time derivative of the quantity κ =
qρ(y)

y
, computed at time tc is κ̇(tc) = −ρ

′
(y(tc))

ρ(y(tc))
K

—see formula (28)— which shows that a singular arc can happen only if ρ
′
(y(tc)) = 0.

The final time T 1,s,0
f is uniquely determined by the following procedure, and the corresponding

trajectory is proven extremal by using the same arguments as in Lemma 6:

• tc is such that ρ(.) reaches its maximum over R+,? at y(tc);

• tsing and T 1,s,0
f are such that X

(
T 1,s,0
f

)
= (xf , 0)

t
.

As before, if (29) is an extremal strategy, then for all Tf > T 1,s,0
f the following strategy is

also extremal:

u(t) =


K for t ∈ [0, t1[
1 for t ∈ [t1, t1 + tc[
K for t ∈ [t1 + tc, t1 + tc + tsing[
0 for t ∈ [t1 + tc + tsing, Tf − t2[
K for t ∈ [Tf − t2, Tf ]

(30)

where t1 ≥ 0, t2 ≥ 0 and t1 + t2 = Tf − T 1,s,0
f . This strategy is illustrated in Figure 13.

Let us now define Tback as the the minimum time needed for system (Σ1) to reach the abscissa
x = −1. We call small time trajectory a trajectory having a final time Tf within the interval
]Tmin, Tmin + Tback].

Lemma 7 (Small time trajectories). 1. An optimal small time trajectory of (P1) has no
backward arc.

2. Small time extremals of (P1) do not contain singular arcs of the form y = 0.

3. Let ys be the constant speed of the singular arc of a small time extremal, then
∂ρ

∂y
(ys) < 0.
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Figure 13: Optimal trajectory for the third case study. Parameters: T 1,s,0
f ≈ 5.21 and Tf = 6.

The associated cost equals 3.605.

4. Consider a small time extremal trajectory containing a singular arc, and denote ys the
constant speed, then:

q0 =
Ky2

sρ
′(ys)

(K − 1)ρ(ys)2
and p0 = K

ρ(ys)− ysρ′(ys)
ρ(ys)2

Proof. 1. Since Tf < Tmin + Tback, trajectories (x(t), y(t))t of (P1) starting from (0, 0)t can
reach (xf , 0)t only by staying on portions of road such that θ(x(t)) ≡ constant. Then, (P1)
can be viewed as invariant with respect to translations along the Ox axis. According to
Lemma 2, an optimal trajectory has no backward arc.

2. In the problem under consideration, Tmin + Tback < T 1,0
f . As a consequence, for a small

time extremal, y(Tf ) = 0 cannot be achieved with a strategy of the form (26), and u must
be negative over some time interval. Hence, there exists a non-trivial interval of the form
]t̃, t̄[ such that:

• y > 0 for all t ∈]t̃, t̄[ and the the quantity κ(t) =
qρ(y)

y
exists for all t ∈]t̃, t̄[;

• κ(t̃) = 1 and κ(t̄) = −1

• there is a t? ∈]t̃, t̄[ such that κ(t?) = 0 and κ̇(t?) < 0.

The time derivative of κ(t), over this interval is, again, equation (28). When κ(t) = 0,

then u = 0 and κ̇(t?) = −Hρ(y)
y2 which implies that H must be strictly positive in order to

achieve κ̇(t?) < 0. A singular arc with y = 0 cannot exist since it implies H = 0.
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3. As before, we define the quantity κ(t) = qρ(y)
y over intervals where y 6= 0, and we derive an

expression for κ̇(t) —see equation (28) above. Along a singular arc, we have κ(t) = 1 and
κ̇(t) = 0, following expression (28) we obtain equality:

0 = −Hρ(y)

y2
− |u|ρ

′
(y)

ρ(y)

which can only be true if ρ
′
(y) is negative.

4. The two expressions are easily obtained as follows:

• solve the equation 0 = −Hρ(ys)y2s
− |u|ρ

′
(ys)

ρ(ys)
for H and set u = K since ẏ = 0 along a

singular arc;

• the relation H = q0 (u(0)−K) = q0 (1−K) yields the expression of q0;

• finally, writing H along a singular arc, H = p0ys − ys
ρ(ys)

K, provides the expression of
p0.

Based on the informations gathered in Lemma 7, small time optimal trajectories are searched
following the methodology exposed in Section 3.2.2. This is illustrated in Figure 14.

Finally, we propose the following methodology in order to address the optimal control problem
(P1) in the case of the road profile displayed in Figure 12.

1. Consider strategy (26), check the sign of ∂ρ
∂y (y(tc)) and decide which strategy between (26)

and (29) is relevant. We denote by T̄f the corresponding final time.

2. For Tf > T̄f , either strategies of the form (27) or strategies of the form (30) are extremal
and therefore candidate to optimality. Items (1) and (2) are illustrated in Figure 13.

3. For Tmin < Tf < Tmin + Tback, compute a forward extremal trajectory as in Section 3.2.2.
As explained in Lemma 7, such trajectories are optimal extremals. This is illustrated in
Figure 14 with a small time trajectory having no singular arc.

4. For Tmin + Tback < Tf < T̄f , as in the preceding item, forward extremal trajectory as in
Section 3.2.2 can be searched. This is illustrated in Figure 15 with an extremal trajectory
having a two-step braking behaviour.

5. Finally, with the help of a numerical study, extremal trajectories having backward arcs
are searched. For instance, for Tf = 4.48, we didn’t find any extremal having a backward
arc and as such, the trajectory displayed in Figure 15 is considered optimal. Extremal
trajectories having backward arcs are shown in Figures 16 and 17.

In order to better understand this last step, numerical exploration was performed via the
manipulation of the values of p0 and q0. As expected, extremal trajectories having backward
arcs do exist. An interesting fact being that such extremals are not necessarily optimal. In
Figure 16, an example of an optimal trajectory with backward arcs is displayed. The yield
function is the same as the one used to determine the trajectory of Figure 13. In this case, the
backward strategy of Figure 16 costs less than the forward strategy of the form (30)—since the
arcs with y = 0 have a null running cost, strategy (30) costs the same regardless of the value of
Tf > T 1,s,0

f .
On the other hand, Figure 17 shows an extremal trajectory having backward arcs obtained for

a yield function such that ρ(0) is 20 times larger than the one used in Figure 16 —this is the only
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Figure 14: Optimal trajectory in the third case case study in small time. Parameters:
Tmin ≈ 2.885, (Tmin + Tback) ≈ 4.177 and Tf = 3.

parameter that is changed in the design of ρ. The two maximums of the cost function are the
same, and are reached for the same value of y. In this case, the cost associated to the strategy (30)
is equal to 0.73, and the strategy of Figure 17 is not optimal. In Figures 16d and Figures 17d
values of the yield functions visited when u = −1 are highlighted. In Figures 16e and 17e values
of the yield functions visited when u = 1 are highlighted. The different colours used can be
related to Figures 16c and 17c.

A Proof of Lemma 1

First of all, let us remark that both Rn × L1
[0,T ] and C0

[0,T ] are metrisable sets, and as such
sequential continuity implies uniform continuity.

1. Let (un(t))n∈N be a sequence of controls that converges to u(t) in L1
[0,T ], and x

(n)
0 be a Rn

sequence converging to x0. We denote by xn(t) the trajectory of (Σ0) given by x
(n)
0 and

un(t), and x(t) the trajectory given by x0 and u(t). In other words, we have:

xn(t) = x
(n)
0 +

∫ t

0

F (xn(τ)) + un(t)G(xn(τ))dτ, and x(t) = x0+

∫ t

0

F (x(τ)) + u(t)G(x(τ))dτ.

Let us now write down the expression of En(t) = x(t)− xn(t):

En(t) =
(
x0 − x(n)

0

)
︸ ︷︷ ︸

A

+

∫ t

0

F (x)− F (xn)dτ︸ ︷︷ ︸
B

+

∫ t

0

uG(x)− unG(xn)dτ︸ ︷︷ ︸
C

.

Expression C is rewritten:

C =

∫ t

0

(u− un)G(x)dτ︸ ︷︷ ︸
C1

+

∫ t

0

un(G(x)−G(xn))dτ︸ ︷︷ ︸
C2

Next
‖En(t)‖ ≤ ‖A‖+ ‖B‖+ ‖C1‖+ ‖C2‖ (31)

When restricted to a compact subset, X et Y are both Lipschitz with constants K1 and
K2 respectively, and we have the inequalities:
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Figure 15: Optimal trajectory for the third case study. Parameters: (Tmin + Tback) ≈ 4.177
and Tf = 4.48. Figure 15b: the blue parts of the graph corresponds to moments when u = −1.
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Figure 16: Optimal trajectory for the third case study for Tf ≈ 17.75. The associated cost equals
≈ 1.61 while it equals 3.605 for strategy (30) —cf. Figure 13.
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Figure 17: Extremal trajectory for the third case study for Tf ≈ 17.75. The associated cost equals
≈ 1.02 while it equals 0.73 for strategy (30) with the yield function of Figures 17d and 17e.
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(a) for all ε̄ > 0, there exists N̄ ∈ N such that ∀n > N̄ , ‖A‖ < ε̄;

(b) since X is Lipschitz: ‖B‖ ≤
∫ t

0

‖F (x)− F (xn)‖ dτ ≤ K1

∫ t

0

‖En(τ)‖dτ ;

(c) on [0, T ], Y is bounded from above (by some constant K̃), which yields:

‖C1‖ ≤ K̃
∫ t

0

‖un(τ)− u(τ)‖dτ ;

(d) finally, for all n, |un| ≤ 1, and since Y is Lipschitz, we have ‖C2‖ ≤ K2

∫ t

0

‖En(τ)‖dτ .

Therefore, inequality (31) becomes:

‖En(t)‖ ≤
∥∥∥x0 − x(n)

0

∥∥∥+K1

∫ t

0

‖En(τ)‖dτ + K̃

∫ t

0

‖un(τ)− u(τ)‖dτ +K2

∫ t

0

‖En(τ)‖dτ

(32)

Since (un) converges in L1
[0,T ] : for all ε̃ > 0, there is a Ñ such that ∀n > Ñ : K̃

∫ t

0

‖un − u‖dτ <

ε̃. Thus, for n > max(N̄ , Ñ), inequality (32) rewrites:

‖En(t)‖ ≤ (ε̄+ ε̃) + (K1 +K2)

∫ t

0

‖En(τ)‖ dτ ≤ (ε̄+ ε̃) + (K1 +K2)

∫ T

0

‖En(τ)‖ dτ.

Gronwall’s lemma, for t ∈ [0, T ] gives:

‖En(t)‖ ≤ (ε̄+ ε̃)e(K1+K2)T ∀n > Ñ.

In other words, for a given ε > 0, we can choose (ε̄ + ε̃) such that, for all n > N =
max(N̄ , Ñ), ‖En(t)‖ < ε for all t ∈ [0, T ].
Which proves the continuity of Φ(., .).

2. In this second part, we use the preceding continuity result and the continuity of u 7→ |u|
for the L1

[0,T ] topology.

As before, un(t) is a L1
[0,T ]-sequence of controls converging to u(t), x

(n)
0 converges to x0,

and xn (resp. x) is the trajectory generated by x
(n)
0 and un (resp. x0 et u). Let us now

write the difference:

|J(un)− J(u)| =

∣∣∣∣∣
∫ T

0

|ψ(xn)un|dt−
∫ T

0

|ψ(x)u|dt

∣∣∣∣∣
=

∣∣∣∣∣
∫ T

0

|ψ(xn)| (|un| − |u|) dt−
∫ T

0

|u| (|ψ(xn)| − |ψ(x)|) dt

∣∣∣∣∣
Since xn(t) tends uniformly to x(t) in C0

[0,T ], there are a constant M > 0, and an integer

N(M) such that for all n > N(M), we have |ψ(xn)| < M . For a given ε > 0, there are a
rank N

(
ε

2MT

)
and a rank N

(
ε

2T

)
such that;

(a)

∣∣∣∣ |un| − |u| ∣∣∣∣ < ε
2MT for all n > N

(
ε

2MT

)
,
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(b)

∣∣∣∣|ψ(xn)| − |ψ(x)|
∣∣∣∣ < ε

2T for all n > N
(
ε

2T

)
.

Consequently, there exists a rank N(ε) such that for all n > N(ε)

|J(un)− J(u)| < M

∫ T

0

ε

2MT
dt+

∫ T

0

ε

2T
dt = ε

which gives us the sequential continuity of J(.).

Conclusion

The energy consumption optimisation problem allowed us to study an optimal control problem
with a running cost including an absolute value function and a yield function. This problem
has been addressed in fixed time and decomposed into several case studies, three of which were
considered in the present article. For each one of them, the influence of the yield function upon
optimal trajectories have been discussed. In particular, in the case of a flat road and a null drag
coefficient, the yield function plays no role. Then, when the drag coefficient isn’t null anymore,
singular arcs may appear even in the case of a constant yield function. We also noticed that for
some yield functions two-step braking strategies are optimal. In the last case study, involving a
non-flat road profile, the yield function plays a role with respect to singular arcs, since singular
arcs heavily depend on the sign of the yield function’s derivative.

Finally, subsequent works on this topic should include investigations on extremal trajectories
having both backward and singular arcs, especially arcs such that y is not constant. The intro-
duction of the drag coefficient in the case of a non-flat road, and different road profiles should
also be covered.
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ume 43 of Mathématiques & Applications. Springer-Verlag Berlin Heidelberg New-York,
2004.

36



[8] Z. Chen. L1-optimality conditions for circular restricted three-body problems. Celest. Mech.
Dyn. Astr., doi:10.1007/s10569-016-9703-2, 2016.

[9] Z. Chen, J.-B. Caillau, and Y. Chitour. L1-minimization for mechanical systems. SIAM
Journal on Control and Optimization, 54(3):1245–1265, 2016.

[10] F. Clarke. Functional Analysis, Calculus of Variations and Optimal Control. Springer-Verlag
London, 2013.

[11] G. Fraser-Andrews. Finding candidate singular optimal controls: a state of the art survey.
Journal of Optimization Theory and Applications, 60(2):25–57, 1989.

[12] T. D. Gillespie. Fundamentals of vehicle dynamics. Premiere Series Books. Society of
Automotive Engineers Inc., 1992.

[13] K. A. Grasse. On the relation between small-time local controllability and normal self-
reachability. Mathematics of Control, Signal and Systems, 1992.

[14] A. N. Kolmogorov and S. V. Fomin. Elements of the Theory of Functions and Functional
Analysis, Vol. 2. Graylock Press, Rochester, New-York, 1961.

[15] E. B. Lee and L. Markus. Foundations of optimal control theory. The SIAM series in Applied
Mathematics. John Wiley and Sons, New York-London-Sydney, 1967.

[16] H. Maurer and MR. De Pinho. Optimal control of epidemiological seir models with L1-
objectives and control-state constraints. <hal- 01101291>, Submitted on 8 Jan 2015.

[17] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko. The Math-
ematical Theory of Optimal Processes. John Wiley and Sons, New York-London-Sydney,
1962.

[18] I. M. Ross. Modern Astrodynamics, chapter Space Trajectory Optimization and L1-Optimal
Control Problems, pages 155–188. Elsevier, 2006.

[19] K. D. Sebesta. Optimal observers and optimal control : improving car efficiency with Kalman
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