
HAL Id: hal-01384599
https://hal.science/hal-01384599

Submitted on 27 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DaWeS: DataWarehouse fed with Web Services
John Samuel Samuel, Christophe Rey

To cite this version:
John Samuel Samuel, Christophe Rey. DaWeS: DataWarehouse fed with Web Services. INFORSID,
May 2014, Lyon, France. pp.324-344, �10.5281/zenodo.1285279�. �hal-01384599�

https://hal.science/hal-01384599
https://hal.archives-ouvertes.fr


DaWeS:
Data Warehouse fed with Web Services

John Samuel, Christophe Rey

LIMOS, CNRS
Université Blaise Pascal
Aubière, France
samuel@isima.fr, christophe.rey@univ-bpclermont.fr

RÉSUMÉ. Nous présentons un prototype, appelé DaWeS, d’entrepôt de données alimenté par
des services web. La spécificité de DaWeS est son approche médiation (intégration de données
sans matérialisation) comme outil ETL (extraction, transformation et chargement des données).
Cette approche permet d’automatiser une grande partie du processus ETL, tout en facilitant les
interventions humaines par l’emploi exclusif de langages déclaratifs (requêtes datalog, SQL,
XSD, XSLT). Le contexte de cette étude est celui des standards relatifs aux services web les
plus utilisés car les plus simples (HTML, HTTP, REST, XML, JSON), et non des standards plus
élaborés mais moins utilisés (SOAP, UDDI, WSDL, SA-WSDL, OWL-S, hRESTS). En termes
applicatifs, l’ambition est de permettre à l’administrateur de DaWeS de proposer aux petites et
moyennes entreprises un service de stockage et d’interrogation de leurs données métier liées
à l’utilisation de services web tiers, sans avoir elles-mêmes à gérer leur propre entrepôt. En
particulier, DaWeS permet la définition facile d’indicateurs de performance personnalisés.

ABSTRACT. We present a prototype, called DaWeS, which is a Data Warehouse fed with Web
Services. The main feature of DaWeS is to use a mediation approach (data integration without
materialization) as the ETL tool (data extraction, transformation and loading). This approach
enables to automate many steps of the ETL process, while facilitating human interventions by
exclusively relying on declarative languages (datalog queries, SQL, XSD, XSLT). The context
of this work consists of the mostly used (because the simplest) web services standards (HTML,
HTTP, REST, XML, JSON), and not of the more complex but less used ones (SOAP, UDDI,
WSDL, SA-WSDL, OWL-S, hRESTS). In terms of applications, the aim is to allow a DaWeS
administrator to provide to small and medium companies a service to store and query their
business data coming from their usage of third-party services, without having to manage their
own warehouse. In particular, DaWeS enables the easy design of personalized performance
indicators.

MOTS-CLÉS : médiation, entrepôt de données, services web, ETL, intégration de données, réécri-
ture de requêtes

KEYWORDS: mediation, data warehouses, web services, ETL, data integration, query rewriting



1. Introduction

The past two decades have seen the rise of many Web Services (WS) providers
offering a reduced subset of services rather than the traditional bloated software appli-
cations. These services are heterogeneous, autonomous and ever evolving. Enterprises
using WS have no direct control over the underlying data infrastructure and thereby
over their own business data. The only convenient mechanism for enterprises to access
and manipulate their data is through application programming interface (API) exposed
by service providers to allow the clients to build their own internal dashboards. WS
APIs differ among each other significantly with respect to the use of different mes-
sage formats, authentication mechanisms, service level agreements, access patterns,
data types, and the choice of input, output and error parameters. APIs are mostly des-
cribed using human readable (HTML) web pages. Furthermore service providers often
make updates to their services (addition and deprecation of resources, change in the
API or SLA). These changes may lead to the losing of past enterprise data. All the
aforementioned challenges make it difficult for small and medium scale enterprises
with lesser human resources and expertise to easily integrate with numerous WS.

Companies traditionally use a data warehouse to perform business analysis, com-
pute performance measures (aka indicators) and track their growth. The purpose of our
work is to aid enterprises using WS for their day to day business activities with a data
warehouse service. We are building a multi-enterprise Data Warehouse fed with Web
Services (DaWeS) able to fetch interesting data from various WS and expose them in a
manner so that the end users can compute their own interesting performance indicators
without having to manage their own warehouse.

In this paper, we present an experimental study of a prototype which aims at being
a convenient and realistic semi-automated system. Indeed, our goal is not to build a
fully automated WS fed data warehouse, which seems quite impossible, but to ease
as much as possible the coding burden of adding and updating new WS (achievable
by only a couple of developers or administrators). The feeding of the data warehouse
is achieved through the use of mediation techniques associated to a generic wrapper.
Though our experiments focus on REST (like) services given their popularity, it can
be easily extended to SOAP services and the possible future availability of machine
readable standards like WSDL will further reduce the administrators’ tasks.

In section 2, we concretely explore three domains to determine what are the mostly
used WS standards. Section 3 formally presents the mediation approach, coupled with
the generic wrapper, used to feed the data warehouse. Section 4 describes DaWeS
architecture, development and the various experiments. Section 6 describes the various
related works. Finally we conclude by describing current and future works.

2. Data Warehouse and Web Services

This section surveys 12 WS belonging to three business domains to establish the
mostly used WS standards that are effectively used by service providers. The three

2



studied domains are email marketing, project management and helpdesk (support).
Email marketing is a form of direct marketing which uses email campaigns as a means
for communicating to a wide (subscribed) audience about new products and techno-
logies. Project management encompasses many activities : planning and estimation
of projects, decomposing them to several tasks and tracking their progress. Helpdesk
is focused on managing customers’ (intended or current) problems, complaints and
suggestions on an online web portal internally tracked using tickets.

The 12 surveyed WS are project management (Basecamp : www.basecamp.com,
Liquid Planner : www.liquidplanner.com, Teamwork : www.teamworkpm.net and Zo-
ho Projects : www.zoho.com/projects), email marketing (iContact : www.icontact.com,
CampaignMonitor : www.campaignmonitor.com and MailChimp : mailchimp.com)
and helpdesk (Zendesk : www.zendesk.com, Desk : www.desk.com , Zoho Support :
www.zoho.com/support, Uservoice : www.uservoice.com and FreshDesk : www.fresh
desk.com). Each of the previous service may propose many operations, each of which
has a callable API. The characteristics of these APIs are given in table 2 where WS are
classified according to : the language in which APIs are described (i.e., documented),
their REST compliance (Fielding, 2000), their version of the API, their authentica-
tion method, the resource they deal with (e.g. task or todo in a project management
service, ticket in an helpdesk service), their message format, the used service level
agreement (constraints on the operations usage) their HTTP access method, the used
data types, their handling of dynamic resources (resources which value can evolve),
mandatory constraints during operation invocation (e.g. to get all the tasks, it first re-
quires in Teamwork to get all the projects, following retrieving all the task lists in all
the projects and finally followed by obtaining the tasks from all the task lists), and
their pagination features (i.e., one or many call(s) to retrieve all data).

From these characteristics, an average profile of WS emerges : describing services
with HTML, following the REST architecture, using basic HTTP authentication with
a GET access, XML or JSON as message format, enumeration and date as data types,
dynamic resources and sequence operation invocation. This average profile clearly
focuses on simplicity. The consequence is a low level of service management auto-
mation. For example, none of these services are described using a computer-oriented
language (with or without semantic features) like WSDL (W3C, 2001), SA-WSDL
(Kopecký et al., 2007), DAML-S (Burstein et al., 2002), OWL-S (Martin et al., 2007),
hRESTS (Kopecký et al., 2008). This situation is also confirmed by Programmable-
Web (ProgrammableWeb, 2013), a directory which documentes 10,555 APIs and in
which a vast majority (around 69%) are REST based WS.

So the existing standards aiming at a better automation of WS management are
not really used and widely spread yet. It thus seems important to investigate a semi-
automated approach to build a WS fed data warehouse, keeping the requirement of
reducing the code burden needed to maintain such a system.

Unlike the traditional WS discovery issue, in the DaWeS context, the services dis-
covery does not really need to be automated since it’s up to the user to inform the
system about the services he’s using. So, the real automation problem resides in the

3



Tableau 1. Web Service API Analysis on three domains
Project Management Basecamp LiquidPlanner Teamwork Zoho Projects
1. API Description HTML page HTML page HTML page HTML page
2. Conform to REST REST like REST like REST like Not REST
3. Version v1 3.0.0 N.A. N.A.
4. Authentication Basic HTTP, OAuth 2 Basic HTTP Basic HTTP Basic HTTP
5. Resources Involved Project,Todo List,

Todo
Project, Task Project, Task List,

Task
Project, Task List,
Task

6. Message Formats JSON JSON XML, JSON XML, JSON
7. Service Level
Agreement

Max 500 requests /10s
from same IP address
for same account

Max 30 requests
/15s for same
account

Max 120 requests
/1min

Error code :6403
on exceeding the li-
mit

8. HTTP Access GET GET GET POST
9. Data Types (dt) Enumerated dt (Pro-

ject and Todo Status),
Date

Enumerated dt (Pro-
ject and Task Sta-
tus), Date

Enumerated dt
(Project and Task
Status), Date

Enumerated dt
(Project and Task
Status), Date

10. Dynamic nature of
the resources

Yes (Project and Task
Status)

Yes (Project and
Task Status)

Yes (Project and
Task Status)

Yes(Project and
Task Status)

11. Operation Invoca-
tion

Sequence Required Sequence Not Re-
quired

Sequence Required Sequence Required

12. Pagination No No No Yes
Email Marketing Mailchimp CampaignMonitor iContact

1. API Description HTML page HTML page HTML page
2. Conform to REST Not REST REST like REST like
3. Version 1.3 v3 2.2
4. Authentication Basic HTTP Basic HTTP, OAuth 2 Basic HTTP (with Sandbox)
5. Resources Involved Campaign, Campaign Sta-

tistics
Campaign, Campaign
Statistics

Campaign, Campaign Statis-
tics

6. Message Formats XML, JSON, PHP, Lolcode XML, JSON XML, JSON
7. Service Level Agree-
ment

N.A. N.A. 75,000 requests /24h, with a
max of 10,000 requests /1h

8. HTTP Access GET GET GET
9. Data Types (dt) Enumerated Data types

(Campaign Status), Date
Enumerated Data types
(Campaign Status), Date

Enumerated Data types
(Campaign Status), Date

10. Dynamic nature of
the resources

Yes (Campaign Status) Yes (Campaign Status) Yes (Campaign Status)

11. Operation Invocation Sequence Required Sequence Required Sequence Not Required
12. Pagination Yes No No

Support Zendesk Desk Zoho Support Uservoice Freshdesk
1. API Descrip-
tion

HTML page HTML page HTML page HTML page HTML page

2. Conform to
REST

REST like REST Not REST REST like REST like

3. Version v1 v2 N.A. v1 N.A.
4. Authentication Basic HTTP Basic HTTP,

OAuth 1.0a
Basic HTTP OAuth 1.0 Basic HTTP

5. Resources In-
volved

Forum, Topic,
Ticket

Case Task Forum, Topic,
Ticket

Forum, Topic,
Ticket

6. Message For-
mats

XML, JSON JSON XML, JSON XML, JSON JSON

7. Service Level
Agreement

Limit exists (but
unknown)

60 requests per
minute

250 calls /day
/org (Free)

N.A. N.A.

8. HTTP Access GET GET GET GET GET
9. Data Types (dt) Enumerated dt

(Ticket Status),
Date

Enumerated dt
(Case Status),
Date

Enumerated dt
(Task Status),
Date

Enumerated dt
(Ticket Status),
Date

Enumerated dt
(Ticket Status),
Date

10. Dynamic re-
sources

Yes (Ticket Sta-
tus)

Yes (Case Sta-
tus)

Yes (Task Sta-
tus)

Yes (Ticket Sta-
tus)

Yes (Ticket Sta-
tus)

11. Operation In-
vocation

Sequence
Required

Sequence
Required

Sequence
Required

Sequence
Required

Sequence
Required

12. Pagination Yes Yes Yes Yes No

4



automated connection between the warehouse and the known web services that will
be its data sources. WSDL is typically a technology that is meant for enabling the au-
tomated generation of a wrapper between the system and a WS. But even if we could
use such standard, it wouldn’t solve the entire problem. Indeed, having a wrapper al-
lows to call the WS. But it does not link the semantics of what the service can do (e.g.
what kind of data it can provide) to the semantics of the system which is the one the
user knows (typically given by the schema of the warehouse).

The solution we describe in the next section is to manually achieve the connection
between DaWeS and WS in a twofold manner : (i) dedicating the greatest part of
the manual effort to establish the semantic connection between data in DaWeS and
data coming from the WS, and (ii) trying to reduce the daily coding effort to deal
with syntactic mismatches. (i) will be obtained via a mediation approach, and (ii) via
the building of a generic wrapper and the use of declarative languages only for each
manual task.

3. Mediation as ETL

In the data integration field, mediation (Wiederhold, 1992) is the main virtual ap-
proach to provide a uniform query interface to multiple heterogeneous and autono-
mous data sources. Every source has its own (local) schema linked via mappings to
the mediated or global schema (i.e., the schema of the mediator) over which the user
queries are formulated. The approach is virtual because the global schema does not
contain any data. After the user has posed her query over the global schema, this query
is reformulated into a set of queries such that each of them can be posed over a spe-
cial source. After each source has given its results, these are merged into the mediator
and presented to the user. Among the different kind of mappings between the local
and the global schema (see (Chawathe et al., 1994 ; Duschka et Genesereth, 1997 ;
Ullman, 2000 ; Friedman et al., 1999)), the Local As View (LAV) mappings are known
to allow easy addition, update and removal of sources (Ullman, 2000). Indeed, adding,
updating and removing a LAV mapping can be done without modifying anything else
than the mapping itself. This is due to the fact that a LAV mapping is defined as a query
over the global schema. Another consequence is that defining a mapping is done using
a declarative query language, and not through the programming of a piece of software,
which is easier, quicker and less constraining.

Thus, the mediation with LAV mappings approach fits particularly well our need
to easily (thus manually) connect to multiple and heterogeneous WS. It becomes the
ETL (extraction-transformation-loading) tool of our data warehouse. This implies WS
are considered as relational data sources. Since the access to WS is constrained by
precise input values, to get output data, then WS must be considered as relational data
sources with access patterns that specify which attributes are inputs and which are
outputs. More precisely, each operation provided by a WS is modeled as a relation
associated to an access pattern (Ullman, 1989) whose size is equal to the number of
attributes in a relation. Syntactically, the access pattern is represented by an adornment

5



Tableau 2. Helpdesk WS and their operations
Service Operation name Inputs Outputs
Desk Deskv2TotalCases (D2TC) None Total nb of tickets : pgno, pgsize
v2 API Deskv2Case (D2C) pgno,

pgsize
One page tickets details : tkid,
tkn, tkcd, tkp, tks

Zendesk Zendeskv1Ticket (ZT) None All ticket id : tkid
v1 API Zendeskv1SolvedTicket (ZST) None All closed tickets id : tkid

Zendeskv1TicketDetails (ZTD) tkid One ticket details : tkn, tkcd,
tkdd, tkcmpd, tkp, tks

Uservoice Uservoicev1TotalTickets (UTT) None Total nb of tickets : pgno, pgsize
v1 API Uservoicev1Ticket (UT) pgn,

pgs
One page tickets details : id, tkn,
tkcd, tkp, tks

being a tuple of b and f letters written besides the relation name. In this tuple, b (for
“bound”) in ith position says the ith attribute is an input ; f (for “free”) says it is an
output.

Example 1. : Let us consider three WS in the helpdesk domain : Zendesk, Uservoice
and Desk. They allow customers to submit their complaints. These are tracked by
tickets. Every ticket has an associated priority and status. Some need immediate atten-
tion and therefore have high priority. When a ticket is created, its status is open and
when resolved, its status is completed (or closed).

Here are attribute names given to ticket related information. A page is an answer
of an API call. pgno is a page number, pgsize is a number of tickets in one page,
limit is a number of results in a page, tkid is a ticket identifier, tkn is a ticket name,
tkcd is a ticket creation date, tkdd is a ticket due date, tkcmpd is a ticket effective
completion date, tkp is a ticket priority and tks is a ticket current status. src is a WS
name, and operation is an operation name.

We want DaWeS to be connected to these services so that customers can get per-
formance indicators about the handling of their complaints. Towards this purpose,
each WS offers at least one operation callable through its API (see table 1). For these
services to be connected to DaWeS, the global schema must contain relations that des-
cribe the domain. Here are the two relations extracted from the global schema that
describe everything linked to the notion of ticket :

Ticket(tkid, src, tkname, tkcdate, tkddate, tkcmpdate, tkpriority, tkstatus)
Page(pgno, src, operation, limit)

Now, the following queries define the LAV mappings between each operation and the
global schema (these are conjunctive queries written in the rule-style syntax) :
D2TCff (pgno, pgsize)← Page(pgno,′ Desk v2 API′,′ Deskv2Case′, pgsize).

D2Cbbfffff (pgno, pgsize, tkid, tkn, tkcd, tkp, tks)←
Page(pgno,′ Desk v2 API′,′ Deskv2Case′, pgsize),
Ticket(tkid,′ Desk v2 API′, tkn, tkcd, tkdd, tkcmpd, tkp, tks).

ZTf (tkid)← Ticket(tkid,′ Zendesk v1 API′, tkn, tkcd, tkdd, tkcmpd, tkp, tks).

6



ZSTf (tkid)← Ticket(tkid,′ Zendesk v1 API′, tkn, tkcd, tkdd, tkcmpd, tkp,′ Closed′).

ZTDbffffff (tkid, tkn, tkcd, tkdd, tkcmpd, tkp, tks)←
Ticket(tkid,′ Zendesk v1 API′, tkn, tkcd, tkdd, tkcmpd, tkp, tks).

UTTff (pgno, pgsize)← Page(pgno,′ Uservoice v1 API′,′ Uservoicev1Ticket′, pgsize).

UTbbfffff (pgn, pgs, id, tkn, tkcd, tks, tkp)←
Page(pgn,′ Uservoice v1 API′,′ Uservoicev1Ticket′, pgs),
Ticket(id,′ Uservoice v1 API′, tkn, tkcd, tkdd, tkcmpd, tkp, tks).

Once the global schema and the LAV mappings are built, the user is able to pose
her query over the global schema without dealing with the source relations intricacies.
The query will then be automatically transformed by a query rewriting algorithm into
a query plan, which describes the sequence of API operation calls (from potentially
different WS) needed to answer the user query.

The classical query rewriting algorithms include bucket algorithm (Levy et al.,
1996), inverse rules algorithm (Duschka et Genesereth, 1997 ; Duschka et al., 2000)
and minicon algorithm (Pottinger et Levy, 2000). They compute the so-called maxi-
mally contained rewritings which allow to obtain the certain answers of a query. Infor-
mally, this means that the computed answers are not false, at the computation time, in
every source. So, for example, if two services deliver different status for the same ti-
cket id, these status does not belong to the certain answers and will not be presented in
the query result. In DaWeS, we chose inverse rules algorithm (Duschka et Genesereth,
1997 ; Duschka et al., 2000) since it can handle access patterns in the data sources
description and is the only algorithm (up to our knowledge) being able to rewrite da-
talog recursive queries posed to the global schema (for conjunctive queries as LAV
mappings). Moreover it is shown in (Abiteboul et Duschka, 1998) that generating a
query plan can be done in polynomial time with respect to the data complexity (i.e.,
in the sizes of the query and the mappings). This ensures, at least theoretically, quite
good performances. Besides, various integrity constraints on the global schema like
full and functional dependencies can also be handled by this algorithm.

Example 2. In the context of example 1, we now consider a record definition. Note
that we use a special function here called yesterday(), which is executed before the
query evaluation, to obtain yesterday’s date. The record we define is called Daily New
Tickets (DNT) : it is the number of tickets that were created yesterday.
DNT(tkid, src, tkn, tkp, tks)←

Ticket(tkid, src, tkn,′ yesterday()′, tkdd, tkcmpd, tkp, tks).

The following program is the query plan which is the rewriting of query DNT .
Page(pgno,′ Desk v2 API′,′ Deskv2Case′, pgsize)← D2TCff (pgno, pgsize).

DPgNo(pgno)← D2TCff (pgno, pgsize).

DPgSize(pgsize)← D2TCff (pgno, pgsize).

Page(pgno,′ Desk v2 API′,′ Deskv2Case′, pgsize)←
DPgNo(pgno),DPgNo(pgsize),D2Cbbfffff (pgno, pgsize, tkid, tkn, tkcd, tkp, tks)

Ticket(tkid,′ Desk v2 API′, tkn, tkcd, fD2C,5(pgno, pgsize, tkid, tkn, tkcd, tkp, tks),

fD2C,6(pgno, pgsize, tkid, tkn, tkcd, tkp, tks), tkp, tks)←

7



DPgNo(pgno),DPgSize(pgsize),D2Cbbfffff (pgno, pgsize, tkid, tkn, tkcd, tkp, tks)

Ticket(tkid,′ Zendesk v1 API′, fZT,3(tkid), fZT,4(tkid), fZT,5(tkid),

fZT,6(tkid), fZT,7(tkid), fZT,8(tkid))← ZTf (tkid).

Ticket(tkid,′ Zendesk v1 API′, fZST,3(tkid), fZST,4(tkid), fZST,5(tkid), fZST,6(tkid),

fZST,7(tkid),Closed′)← ZSTf (tkid).

ZTID(tkid)← ZSTf (tkid).

Ticket(tkid,′ Zendesk v1 API′, tkn, tkcd, tkdd, tkcmpd, tkp, tks)←
ZTID(tkid),ZTDbffffff (tkid, tkn, tkcd, tkdd, tkcmpd, tkp, tks).

Page(pgno,′ Uservoice v1 API′,′ Uservoicev1Ticket′, pgsize)← UTTff (pgno, pgsize).

UPgNo(pgno)← UTTff (pgno, pgsize).

UPgSize(pgsize)← UTTff (pgno, pgsize).

Page(pgn,′ Uservoice v1 API′,′ Uservoicev1Ticket′, pgs)←
UPgNo(pgno),UPgSize(pgsize),UTbbfffff (pgn, pgs, id, tkn, tkcd, tks, tkp)

Ticket(id,′ Uservoice v1 API′, tkn, tkcd, fUT,5(pgn, pgs, id, tkn, tkcd, tks, tkp),

tkcmpd, tkp, tks)←
UPgNo(pgno),UPgSize(pgsize),UTbbfffff (pgn, pgs, id, tkn, tkcd, tks, tkp).

This rewriting is a bit long, but we emphasize the fact that it is a real case which is des-
cribed here. Now, from the previous records DNT , we can define with SQL queries
the following performance indicators : Total New Tickets Registered in a month, Total
High Priority Tickets Registered in a month and Percentage of High Priority Tickets
Registered in a month. For example the performance indicator Total High Priority Ti-
ckets Registered in a month definition will be :
SELECT count(tkid) FROM DNT WHERE tkcdate < sysdate and tkcate > sysdate -
interval ’30’ day AND tkpriority=’High’ ;

In DaWeS, user queries are performance indicators definitions. We have chosen
to distinguish two kinds of performance indicators : basic ones, called records, and
complex ones, called performance indicators. Indeed, even if the inverse-rules algo-
rithm enables the user to pose recursive datalog queries, the rewriting process is not
able to deal with any aggregation function, which are mandatory to define interesting
performance indicators. So the idea is first to use mediation with the rewriting process
to get data from WS, then to materialize these data in the database of DaWeS, and at
last to query these data to generate performance indicators. Records are user queries
posed over the virtual global schema, that are rewritten during mediation to query WS
and to fetch their data. Performance indicators are user queries posed over the ma-
terialized schema built with the record relations. Record queries are datalog queries.
Performance queries are full SQL queries, extensible to all possible OLAP operators.
Since records are materialized and business performance are computed from them,
these can be updated easily when new data for the underlying records are fetched.
This two layers query architecture is really interesting since it allows a user to easily
change a service provider while still being able to compute her performance indicators
with her full dataset (including the old data from the previous providers).

8



4. DaWeS architecture

The basic underlying architecture of DaWeS is shown in Figure 1. The ETL part of
DaWeS is made up with three components : the query rewriter, the answer builder and
the generic HTTP WS wrapper. The storage of DaWeS is organized in four schemas :
the global schema (virtual), the API schema (virtual), the record schema (materiali-
zed) and the performance indicator schema (materialized). The last part is the query
evaluator which is given by the underlying DBMS.

LAV mappings
(conjunctive queries

 with access pattern)

Global schema

Record data
Record schema

Record DB

P.I. data
P.I. schema

Perf. indicator DB

API schema

built using

built using

built using

defined by

defined by

defined by

Generic HTTP Web Services Wrapper

Answer builder

Query rewriter

(inverse rules 

algorithm)

Query evaluator

(from the DBMS)

Performance 

indicators values

Performance 

indicators
(SQL queries)

Records
(datalog queries)

APIs cloud

built using

Query plans
(datalog queries)

API calls
(http format)

Answers/Errors
(http format)

API calls
(internal format)

Answers
(internal format)

Answer format
(XSD/XSLT file)

Query response

(records values)

HTTP information
(XML file)

Caption: ... Component
B is an input of C

A is an output of C AAB C
A is manually 

obtained A
A is automatically 

computed

Figure 1. DaWeS : Basic Architecture
When a DaWeS administrator wants to add a new WS API operation, he manually

gathers all HTTP information (url, authentication, ...) and all operation response for-
mats details (to make the link with DaWeS data formats). Then he manually defines
the LAV mapping and the record the operation will provide, both as queries over the
global schema. The name and query of each LAV mapping (resp. record) are stored in
the API schema (resp. record schema). After this, a DaWeS user can define her own
performance indicator by a query over the record and/or the performance indicator
schemas. The name and query of the indicator are stored in the performance indicator
schema. Here, we emphasize the fact that no human intervention is devoted to pro-
gramming in a high level (procedural) language (e.g. Java). Instead, only declarative
languages are used here.

The automated process can then be executed. First, the query plan is computed
by the inverse rule algorithm in the query rewriter from the record definition and the
LAV mappings. Then the answer builder, which consists of a datalog query engine,

9



executes the query plan. It sends to the generic wrapper the API calls in an internal
format, which consists of the atoms of the query plan, along with the authentication
and input parameters. The generic HTTP WS wrapper is then used to make the WS
API operation calls and transform the response in a manner understood by the answer
builder. The answer builder combine these answers to get the record values which are
stored in the record database. The performance indicator can at last be computed by
the underlying DBMS.

The generic HTTP WS wrapper is the component dedicated to effectively execute
the query plan. It is generic in the sense that it can call any API operation, provided
that some parameter values are given. These values are the HTTP information (URL,
method, header and body contents, authentication mechanism) and the answer format
(the XSD schema of the response and XSLT translation to transform the API data for-
mats to DaWeS desired data formats). In case of JSON message format, we translate
it first to XML and then get its XSD and XSLT. As seen before, all these informations
must be manually gathered when the service operations are modeled with respect to
the global schema. But after this, the wrapper is able to automatically perform the right
API operation call, and get back the results to DaWeS. Internally the wrapper consists
of a response validator (using XSD) and a response tranformator (using XSLT). We
also used cache in the wrapper in order to reduce the number of calls (the recently
made operation response is cached for future use). When the answer builder requests
for making an API call to the generic wrapper, the wrapper checks the cache whether
the response is available and if available returns this cached response. Else the wrap-
per frames the HTTP header, method, body and URL for framing the API call with the
input parameter values given by the answer builder. Once the response is obtained, the
response validator ensures that the response schema is the same as that was registered
before (else, it’s a sign of possible API/operation level change). If the response is va-
lid, the transformator makes use of the XSLT to transform the response to the desired
format. This response is cached and then returned to the answer builder.

A special feature of DaWeS is that the warehouse schema, made up with the record
and performance indicator schemas, is dynamic : the set of its relations will evolve in
course of time, since we can add or delete new records or indicators. To handle this, we
have followed a simple approach which consists of making use of only two big tables
to store both the warehouse schema and its associated record and performance indi-
cator data. This can be viewed as an extra logical layer between the schema exposed
to the user and the implementation of the DBMS. It implies some small computation
overhead, but ensures our warehouse schema can evolve transparently for the user.

DaWeS was tested with Intel(R) Pentium(R) Dual CPU @ 2.16GHz processor, a
system memory of 3GiB and Ubuntu 13.04 (32 bits) operating system. We used Oracle
11g (11.2.0.1.0) as the database. DaWeS was developed and run using Java 1.7.0_25.
We chose IRIS (Integrated Rule Inference System) (IRIS, 2008) as the datalog engine
to perform query evaluation and configured it to make use of the generic HTTP WS
wrapper during query evaluation in the answer builder. We chose IRIS considering
its capability to handle adornments (to specify access patterns in the relations), func-

10



Tableau 3. Characteristics of the Qualitative Tests
Characteristics Description

1. Nb of domain of WS 3
2. Nb of Web services considered 12
3. Nb of API operations considered 35 (Operations, so 35 LAV Mappings)
4. Nb of Global Schema Relations 12
5. Nb of Test Organizations 100 (homogeneous test organizations)
6. Message Formats XML, JSON
7. Authentication Mechanisms HTTP basic authentication, OAuth 1.0
8. Operation details No, one or more input parameters ; pagination
9. Nb of Record Definitions 17
10. Nb of Perf. Indicator Queries 20
11. Data types Strings, Integers, Dates, Enumerated data types

Tableau 4. Record Definitions
Project Management Support (Helpdesk) Email Marketing
Daily New Projects(1), Daily Active Pro-
jects(2), Daily OnHold Projects(3), Daily
OnHold or Archived Projects(4), Daily
New Tasks(5), Daily Open Tasks(6), Daily
Closed Tasks(7), Daily TodoLists(8), Daily
Same Status Projects(9)

Daily New Forums(10),
Daily All Forums(11),
Daily New Topics(12),
Daily New Tickets(13),
Daily Open Tickets(14),
Daily Closed Tickets(15)

Daily New Cam-
paigns(16) and
Daily Campaign
Statistics(17)

tional symbols (generated with the inverse rules query rewriting), built-in predicates
(like equality predicate EQUAL, useful to handle functional dependencies) and the
capability to refer external sources during query evaluation.

5. Experiments

We performed various qualitative and quantitative tests on DaWeS. The first step
was to create realistic business-like data : we used the web interfaces of each tested
service as if we were a company using it. Then we run qualitative test followed by
quantitative ones. Qualitative tests aim at checking if the process computes what it
is expected to. The characteristics of the tests undertaken by us is summarized in
the table 5. We considered the record definitions in Table 5 created similarly as in
example 2. The performance indicators considered by us are given in the Table 5.

Grounding our tests on data we had given to the WS via their associated web sites
enabled us to easily check if the records and performance indicators computations
were right, which was the case. Moreover, the generic wrapper was able to make API
calls to any web service. Of course, these results heavily depend on the precise mo-
deling of LAV mappings, HTTP information and answer formats. For example, if the
domains of attributes, in predicates with access patterns, are not distinguished accor-

11



Tableau 5. Performance Indicator Queries
Project Management Support (Helpdesk) Email Marketing
Total Monthly New Projects,
Total Monthly Active Projects,
Total Monthly OnHold Pro-
jects, Total Monthly Comple-
ted Tasks, Average Tasks Com-
pleted Daily in a month, Total
Monthly New Tasks, Total Todo
Lists, Percentage of tasks com-
pleted to tasks created in a day

Daily Average Resolution
Time, Total New Tickets Re-
gistered in a month, Total New
Forums Registered in a month,
All Forums in a month, Total
New Topics Registered in a
month, Total High Priority
Tickets Registered in a month,
Percentage of High Priority
Tickets Registered in a month

Total Monthly New
Campaigns, Monthly
Click Throughs of
Campaign, Monthly
Forwards of Campaign,
Monthly Bounces
of Campaign, To-
tal Monthly Solved
Tickets

ding to the WS they refer to, then the query plan may imply uninteresting answers.
This is the case when output data from operation 1 from service 1 are taken as input
for operation 2 from service 2, just because they have the same domain of values. In
example 2, if we used only the domains (PgNo, PgSize) instead of (DPgNo, DPgSize,
UPgNo, UPgSize), the output page numbers and page sizes from UTT may become
input to D2C resulting in unexpected answers. Secondly, the output of UTT and D2C
is actually the total number of tickets and cases respectively, these have been transfor-
med to (pgno, pgsize) combination using XSLT. Therefore it requires certain human
effort to deal with such cases, where direct composition may not work. Thirdly XSD
aren’t usually provided in the service documentation and only example XML (JSON)
responses are available for reference. It takes additional effort to create and validate
XSD from the examples since often there may be discrepancies (extra or missing
XML elements or attributes) in the results obtained by actual API calls and the given
XML examples. Overall, the time taken to manually read the HTML documentation
to declaratively describe the API is 3-4 hours.

Concerning the quantitative tests, figure 2 shows the time taken to compute the
records given in table 5. Since our performance results highly depend on network
communication times, the computation times were each measured 100 times so as
to obtain an average time where the influence of network traffic peaks is limited.
In figure 2, the total (average) time of fetching the 17 records was 104.82 seconds.
Each of the 17 times are also average times. We can see that the cache implemen-
ted in the generic wrapper has a real impact on performances. Indeed, some records
(2,3,4,6,7,8,9,11,14,15,17) can use the cached data from other ones (1,5,10,13,16).
For example, record 14 can used the cached data of record 13 because the ticket de-
tails have already been fetched from the various services during the query evaluation
of 13, transformed and cached, the transformed WS responses can as well be used for
record 14. That’s why we observe on the first chart in figure 2 high values for records
1, 5, 10, 12, 13, 16, and low values for the others. This point is checked also in the
second chart which shows the number of API operation calls made during the query
evaluation for every record definition. It shows how cache performs optimization by

12



avoiding the repetition of calls.

Figure 2. DaWeS : average times to fetch record data and number of API calls.

6. Related Works

In DaWeS, 3 important issues are handled : (i) mediation with WS as sources, (ii)
generic wrapping to WS, and, (iii) mediation as an ETL tool to feed a data warehouse.

Considering (i), an important approach for performing data integration using WS is
ActiveXML (Abiteboul et al., 2002 ; Salem et al., 2013), a language that extends XML
to allow the embedding of WS calls. We think that ActiveXML could be a possible
extension to DaWeS. The generic wrapper could be extended to create ActiveXML
documents so that we can connect to ActiveXML services. In such an extension, we
would just use the intentional part of ActiveXML documents, since using the exten-
sional part means storing data besides calls, what we do not need (nor want) to do. So
using ActiveXML in this way would be somehow contradictory with one of its main
objectives which is to develop a dynamic and powerful data oriented scheme for distri-
buted computation (e.g. peer-to-peer data integration). Indeed, DaWeS is a centralized
system, since it is in fine a data warehouse. Other approaches related to (i) and closer
to DaWeS than ActiveXML are surveyed in table 6.

About (ii), (Benatallah et al., 2005 ; van den Heuvel et al., 2007) have discussed
configurable adapters (wrappers) before to deal with WS replacement and evolution.
Compared to DaWeS, their main drawback is they are dependent on (so restricted
to) the use of various business standards like BPEL. DaWeS is aimed at working with
what is actually used to expose WS API. So focusing on one particular standard, at the
exclusion of the others, is not the aim of DaWeS. DaWeS requires manual intervention
for translating human readable (HTML web pages) interface description to a desired
internal format (LAV Mapping, XSD and XSLT for every WS API operation). Seve-
ral machine readable interface descriptions to syntactically and semantic describe the
WS API operations like WSDL (W3C, 2001), WADL (Hadley, 2006) and hRESTS
(Kopecký et al., 2008) are useful for automatic code generation of the wrapper. An
industry wide acceptance of these standards is a major concern. A generic wrapper
in our context of integrating with numerous WS is easier to manage than having a
wrapper for every web service. Also the generic wrapper takes as input a declarative
approach to WS, making it furthermore easier to manage.

13



Tableau 6. Data Integration and Web Services : State of the Art
Characteristics a. DaWeS b. (Zhu et al.,

2004)
c. (Benslimane et
al., 2008)

d. (Thakkar et al.,
2003)

e. (Barhamgi et
al., 2008)

1. Primary
aim

Building
Data ware-
house fed
with WS

Large scale data
integration from
autonomous or-
ganizations

Mashups or Com-
position of two or
more WS to gene-
rate new service

Mediator As a
Web Service
Generator

Automatic com-
position of data
providing WS

2. Primary
Targeted
audience

Business
enterprises
using WS

Health services Internet users Service providers
and internet users

Bioinformatics
and healthcare
systems

3. Un-
derlying
mechanism

Mediation
approach
(query
rewriting)

Federated Data-
base System

Web service com-
position using auto-
mated or graphical
composition tools

Mediation ap-
proach (query
rewriting)

Mediation ap-
proach (query
rewriting)

4. Use of
standards

HTTP,
XML,
JSON, XSD
and XSLT

WSDL, UDDI,
XML, DAML-S

XML, JSON, HTTP XML, SOAP RDF, SPARQL

5. API
Operations
Handled

Resource
access

Resource access Resource access and
manipulation

Resource access Resource Access

6. Algo-
rithms
used

Inverse
Rules
algorithm

Federated
Query Services
(query decom-
poser and query
integrator)

Usually manual in-
tervention to create
the composition of
services

Modified Inverse
Rules algorithm

RDF query rewri-
ting algorithm

7. User
Schema

Dynamic
warehouse
schema

Schema genera-
ted on the fly

No schema (not nee-
ded)

Global schema Mediated Onto-
logy

Concerning (iii), we recall from (Trujillo et Luján-Mora, 2003) the main tasks cha-
racterizing the conceptual UML model of the ETL process : selection of the sources,
transformation of the data from the sources, joining the sources to load the data for a
target, finding the target, mapping the data source attributes to the target attributes and
loading the data in the target. Clearly, DaWeS closely follows these requirements : the
query rewriting algorithm ensures the selection and joining of the sources, the wrapper
joins the sources to load the data and uses the XSLT files to perform data transforma-
tion in accordance to the target (record) schema, and the query response constitutes
the data for the target. As a special feature, DaWeS enables the handling of a dyna-
mic schema, which is transparent for the user (cf section 4). On one side, this is very
convenient for the user to be able to quickly define new performance indicator. On
the other side, it is less straightforward to applying popular data warehouses storage
approaches, like the Inmon approach (Inmon, 1992), based on the use of normalized
3NF tables and the Kimball approach (Kimball, 1996), defining the star schema sto-
rage organization. For example, it is not clear yet what is the impact of our dynamic
schema on the handling of advanced performance indicators like the CUBE operators
(used along with the star schema).

7. Conclusion

The growing use of WS among the enterprises cannot be undermined. Our pro-
totype shows it is possible to build a data warehouse fed with web services which is

14



aimed towards scalability and adaptability and which can be managed using declara-
tive languages only. Mediation as an ETL approach used along with the generic HTTP
WS wrapper demonstrates that the extraction of data from WS is not as complex com-
pared to the various web scraping techniques and wrappers for textual sources and
legacy databases, even with basic WS standards.

DaWeS has several other components like calibration and error handling that have
not been described here due to space limitations. Records and performance indica-
tors are periodically calibrated using various test data and WS data so as to ensure
their accuracy. Calibration is used in conjunction with the error handling (errors like
unexpected response format) to detect any (unannounced API change) and to trigger a
manual intervention (update LAV Mapping, XSD, XSLT...). We are currently working
towards a static optimization on the domain rules to reduce the API operation calls
for operations that have functional dependencies on their input attributes . We want to
extend DaWeS with additional set of constraints in the form of more tuple generating
dependencies (TGD) than just functional dependencies. It will be further extended to
a cloud infrastructure reaping the benefits of just two tables for the enterprise data.

Remerciements

We thank the Conseil General of the Region of Auvergne (France) and FEDER for
funding our research project. We would also like to thank Franck Martin and Lionel
Peyron of Rootsystem for their feedback during the development of DaWeS.

8. Bibliographie

Abiteboul S., Benjelloun O., Manolescu I., Milo T., Weber R., « Active XML Peer-to-Peer
Data and Web Services Integration », VLDB, 2002, p. 1087-1090.

Abiteboul S., Duschka O. M., « Complexity of Answering Queries Using Materialized
Views », PODS, 1998, p. 254-263.

Barhamgi M., Benslimane D., Ouksel A. M., « Composing and optimizing data providing web
services », WWW, ACM, 2008, p. 1141-1142.

Benatallah B., Casati F., Grigori D., Nezhad H. R. M., Toumani F., « Developing Adapters for
Web Services Integration », CAiSE, vol. 3520, 2005, p. 415-429.

Benslimane D., Dustdar S., Sheth A. P., « Services Mashups : The New Generation of Web
Applications », IEEE Internet Computing, vol. 12, no 5, 2008.

Burstein M. H., Hobbs J. R., Lassila O., Martin D., McDermott D. V., McIlraith S. A., Na-
rayanan S., Paolucci M., Payne T. R., Sycara K. P., « DAML-S : Web Service Description
for the Semantic Web », Proceedings of ISWC, 2002, p. 348–363.

Chawathe S., Garcia-Molina H., Hammer J., Ireland K., Papakonstantinou Y., Ullman J., Wi-
dom J., « The TSIMMIS Project Integration of Heterogeneous Information Sources », Pro-
ceedings of IPSJ Conference, 1994, p. 7–18.

Duschka O. M., Genesereth M. R., Levy A. Y., « Recursive Query Plans for Data Integration »,

15



J. Log. Program., vol. 43, no 1, 2000, p. 49-73.

Duschka O. M., Genesereth M. R., « Answering Recursive Queries Using Views », PODS,
1997.

Fielding R. T., « Architectural Styles and the Design of Network-based Software Architec-
tures », 2000.

Friedman M., Levy A. Y., Millstein T. D., « Navigational Plans For Data Integration »,
AAAI/IAAI, AAAI Press / The MIT Press, 1999.

Hadley M. J., « Web Application Description Language (WADL) », rapport, 2006, Sun Mi-
crosystems, Inc., Mountain View, CA, USA.

Inmon W. H., Building the Data Warehouse, John Wiley & Sons., New York, NY, USA, 1992.

IRIS, « Integrated Rule Inference System - API and User Guide », 2008.

Kimball R., The Data Warehouse Toolkit Practical Techniques for Building Dimensional Data
Warehouses, John Wiley, 1996.

Kopecký J., Vitvar T., Bournez C., Farrell J., « SAWSDL Semantic Annotations for WSDL
and XML Schema », IEEE Internet Computing, vol. 11, no 6, 2007.

Kopecký J., Gomadam K., Vitvar T., « hRESTS An HTML Microformat for Describing RES-
Tful Web Services », Proceedings of the IEEE/WIC/ACM, WI-IAT ’08, IEEE Computer
Society, 2008, p. 619–625.

Levy A. Y., Rajaraman A., Ordille J. J., « Query-Answering Algorithms for Information
Agents », AAAI/IAAI, Vol. 1, AAAI Press / The MIT Press, 1996, p. 40-47.

Martin D., Paolucci M., Wagner M., « Bringing Semantic Annotations to Web Services OWL-
S from the SAWSDL Perspective », ISWC/ASWC, 2007, p. 340–352.

Pottinger R., Levy A. Y., « A Scalable Algorithm for Answering Queries Using Views »,
VLDB, 2000, p. 484-495.

ProgrammableWeb, « http//www.programmableweb.com », December 2013.

Salem R., Boussaïd O., Darmont J., « Active XML-based Web Data Integration », Information
Systems Frontiers, vol. 15, no 3, 2013, p. 371–398.

Thakkar S., Knoblock C. A., Ambite J. L., « A View Integration Approach to Dynamic Com-
position of Web Services », ICAPS Workshop on Planning for Web Services, 2003.

Trujillo J., Luján-Mora S., « A UML Based Approach for Modeling ETL Processes in Data
Warehouses », ER, vol. 2813, 2003, p. 307-320, Springer.

Ullman J. D., Principles of Database and Knowledge-Base Systems, Volume II, Computer
Science Press, 1989.

Ullman J. D., « Information integration using logical views », Theor. Comput. Sci., vol. 239,
no 2, 2000, p. 189-210.

van den Heuvel W.-J., Weigand H., Hiel M., « Configurable adapters the substrate of self-
adaptive web services », Proceedings of ICEC, ACM, 2007.

W3C, « Web Service Description Language 1.1 », 2001.

Wiederhold G., « Mediators in the Architecture of Future Information Systems », Computer,
vol. 25, no 3, 1992, p. 38–49, IEEE Computer Society Press.

Zhu F., Turner M., Kotsiopoulos I. A., Bennett K. H., Russell M., Budgen D., Brereton P.,
Keane J. A., Layzell P. J., Rigby M., Xu J., « Dynamic Data Integration Using Web Ser-
vices », ICWS, IEEE Computer Society, 2004, p. 262-269.

16


