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Modular Active Curiosity-Driven Discovery of Tool Use

Sébastien Forestier1 and Pierre-Yves Oudeyer2

Abstract— This article studies algorithms used by a learner
to explore high-dimensional structured sensorimotor spaces
such as in tool use discovery. In particular, we consider goal
babbling architectures that were designed to explore and learn
solutions to fields of sensorimotor problems, i.e. to acquire
inverse models mapping a space of parameterized sensorimotor
problems/effects to a corresponding space of parameterized
motor primitives. However, so far these architectures have not
been used in high-dimensional spaces of effects. Here, we show
the limits of existing goal babbling architectures for efficient
exploration in such spaces, and introduce a novel exploration
architecture called Model Babbling (MB). MB exploits effi-
ciently a modular representation of the space of parameterized
problems/effects. We also study an active version of Model
Babbling (the MACOB architecture). These architectures are
compared in a simulated experimental setup with an arm that
can discover and learn how to move objects using two tools with
different properties, embedding structured high-dimensional
continuous motor and sensory spaces.

I. INTRODUCTION

A major challenge in robotics is to learn sensorimotor
models in high-dimensional continuous motor and perceptual
spaces. Of particular interest is the acquisition of inverse
models which map a space of sensorimotor problems to a
space of motor programs that solve them. For example, this
could be a robot learning which movements of the arm and
hand can push or throw an object in each of several target
locations, or which arm movements allow to produce which
displacements of several objects potentially interacting with
each other, e.g. in the case of tool use. Specifically, acquiring
such repertoires of skills through incremental exploration of
the environment has been argued to be a key target for life-
long developmental learning [1], [2], [3].

To approach this challenge, various works have considered
the parameterization of these motor and problem spaces. For
example, motor programs can be encoded through Dynamical
Movement Primitives parameterized by a vector of real
numbers [4]. Similarly, it is possible to embed targeted
sensorimotor problems (also called space of effects or task
space) in a dual parameterized space such as the coordinates
of the target object location [5], [6], [7], potentially combined
with parameters characterizing the position of obstacles [4].

This dual parameterization is useful for several reasons.
First, given a database of experiences associating parame-
ters of motor programs to a set of sensorimotor problems

1Sébastien Forestier is with Inria Bordeaux Sud-Ouest and Univer-
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they solve (e.g. the effects they produce), it is possible
to use optimization and regression techniques to infer the
parameters of motor programs that solve new sensorimotor
problems which parameters were not encountered during
training [4], [5], [6], [7], [8]. Second, it allows efficient data
collection leveraging the interactions among sensorimotor
problems as achieved in goal babbling exploration [7], [9],
[10] and other related approaches [8]: when the learner
is searching for parameters optimizing one sensorimotor
problem (typically using policy search or related stochastic
optimization methods [11]), it will often discover parameters
that are improving other sensorimotor problems - and update
their current best solutions accordingly [7].

Next to approaches that have considered finite sets of
parameterized problems [4], [12], other approaches [7], [8],
[9], [10], [13] have considered the challenge of autonomous
exploration and learning of continuous fields of parameter-
ized problems (e.g. discovering and learning all the feasible
displacements of objects and their motor solutions). Among
them, the technique of goal babbling [7], [9], [10] (which
can be made active [7], [10]) was shown to be highly
efficient for complex tasks such as learning to throw an
object in all direction with a flexible fishing rod [14], learning
omnidirectional legged locomotion on slipping surfaces [7]
or learning to control a robotic pneumatic elephant trunk [9].

However, to our knowledge, results of goal babbling
approaches as well as results of other approaches to learning
inverse models were so far achieved in relatively low-
dimensional spaces of parameterized problems. Furthermore,
they were also experimented in sensorimotor spaces with
little structure, and in particular have not yet been applied to
sensorimotor problems involving tool use.

In this article, the primary question we address is: Can
goal babbling approaches efficiently drive exploration in
high-dimensional structured sensorimotor spaces, such as in
tool use discovery? As we will show, applying them as
they exist does not allow an efficient exploration of the
sensorimotor space. Rather, we will present a novel algo-
rithmic architecture for exploration, called Model Babbling,
that drives sensorimotor data collection by considering a
modular representation of the sensorimotor space: instead of
considering a flat architecture mapping a motor space to a
single high-dimensional space of effects, it considers a set of
submodels mapping the motor space to various subspaces of
the space of effects. When selected, each of these submod-
els is explored using the goal babbling approach, and the
architecture leverages the fact that exploring one submodel
produces data that can improve other submodels.

A secondary issue we study is whether active learning



methods can improve the efficiency of this Model Babbling
approach. In particular, we present the Modular Active
Curiosity-driven mOdel Babbling (MACOB) architecture,
where a measure of empirical learning progress is used
by a multi-armed bandit algorithm to select which model
to explore [2], [7], [10]. This curiosity-driven exploration
algorithm can be related to work using intrinsic motivations
in the Reinforcement Learning literature [2], [15], [16].

The study we present is instantiated in a simulated exper-
imental setup1 with an arm that can discover and learn how
to move objects using two tools with different properties.
Compared to other work that have studied autonomous tool
use learning [17], [18], [19], [20], this study is original
in that it combines 1) considering the problem of how
to design efficient exploration algorithms rather than how
to design efficient exploitation algorithms that can build
compact models from the data collected through exploration;
2) considering a problem of tool use discovery where tools
are objects with initially no special status with respect to
other objects, i.e. the robot does not know they are “tools”.

II. METHODS

The problem settings for the learning agent is to explore
its sensorimotor space and collect data so as to generate
a diversity of effects and that this collected database of
learning exemplars can be used to build inverse models to
be able to reproduce those effects. An agent is described
as two independent components: an exploration algorithm
and an exploitation algorithm (see Fig. 1). The exploration
algorithm decides at each iteration which motor command
m to explore, and gathers a sensory feedback s to update a
database of sensorimotor experiences. We suppose that the
motor space M and the sensory space S are continuous
and high-dimensional, and that a factorization of S as a
product of sensory subspaces that represents the items of the
environment can be given to the agent. As detailed below, the
exploration algorithm can make use of the current database of
sensorimotor experiences to define a coarse but fast surrogate
inverse model to orient the exploration process. On the
other hand, the exploitation algorithm uses the database built
during exploration to generate a potentially more precise
inverse model, i.e. to find motor commands to reach sensory
goals given by the experimenter based on the explored data.
The inverse model of the exploitation algorithm can be
built during exploration as an incremental and asynchronous
process, or built at the end of exploration as a batch process.
Next we describe the exploration architectures, the experi-
mental setup and exploitation architectures.

A. Exploration Architectures

1) Random Motor Babbling: We first define a control
architecture where the agent always chooses random motor
commands to try in the environment (RmB, see Algo. 1).

1Open-source code, notebooks and videos are available on GitHub at
https://github.com/sebastien-forestier/IROS2016

Algorithm 1 Random Motor Babbling (RmB)
Require: Motor space M , Sensory space S

1: database ← VoidDatabase(dim(M), dim(S))
2: loop
3: m ← RandomMotor(M )
4: s ← Environment(m)
5: Add(database, (m, s))
6: return database

2) Random Goal Babbling: In the following exploration
architectures the agent performs Goal Babbling. With this
method, it self-generates goals in the sensory space and tries
to reach them but adds some exploration noise to its motor
commands to discover new effects. To generate those goals,
different strategies have been studied [7]. It was shown that
estimating the learning progress in different regions of the
sensory space and generating the goals where the progress is
high leads to fast learning. However, this cannot be applied
in a high-dimensional sensory space as a learning progress
signal could not be efficiently estimated.

Consequently, we use random goal babbling: goals are
randomly generated in the sensory space. This method was
nevertheless proven to be highly efficient in complex sen-
sorimotor spaces [9]. To perform goal babbling, the agent
uses a sensorimotor model that learns a mapping between
M and S and provide the inverse inference of a probable
motor command m to reach a given sensory goal sg (see
Algo. 2 and 3). The sensorimotor model stores sensorimotor
information of the form (m + η, s) with m + η being
the inferred motor parameters to reach the sensory goal,
plus gaussian exploration noise (of standard deviation σ =
0.01), and s ∈ S the associated sensory feedback in a
sensorimotor database. Section II-A.5 explains in more detail
the two different algorithms that will be used to implement
inverse models. We use the Explauto autonomous exploration
library [21] to implement the sensorimotor models and goal
babbling. In our implementation, the agent first begins by
exploring random motor commands to bootstrap the senso-
rimotor model until at least 2 distinct sensory points have
been reached, and then it starts goal babbling.

Algorithm 2 Random Goal Babbling Step
Require: Sensorimotor model sm model

1: sg ← RandomGoal(S)
2: m ← Inverse(sm model, sg)
3: η ← Gaussian(µ = 0, σ = 0.01)
4: s ← Environment(m+ η)
5: return (m+ η, s)

3) Model Babbling: We call flat exploration architecture
the random goal babbling strategy applied to explore directly
a mapping between the motor space M and the sensory space
S. However, the high-dimensional sensory space (e.g. 93D,
see experimental setup after) can be separated into several
subspaces to reflect the perception of the different items of

https://github.com/sebastien-forestier/IROS2016
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Fig. 1. Agent’s two components: the exploration and exploitation algorithms.

Algorithm 3 Random Goal Babbling Experiment [7], [22]
Require: Motor space M , Sensory space S

1: database ← VoidDatabase(dim(M), dim(S))
2: sm model ← InitializeSensorimotorModel(M, S)
3: loop
4: (m, s) ← RandomGoalBabblingStep(sm model)
5: Update(sm model, (m, s))
6: Add(database, (m, s))
7: return database

the environment (e.g. p = 15 subspaces). We thus define a
modular architecture that explores p sensorimotor models at
the same time (one model for each sensory subspace). Each
of those modules functions in the same way as a random
goal babbling flat architecture, with M as motor space
but a specific sensory subspace. However, at each iteration
the modular architecture first has to choose the module
that will perform goal babbling - pick a random goal in
the corresponding sensory subspace. We call this procedure
Model Babbling. In a first condition, the babbling module is
randomly chosen, which we call Random Model Babbling
(See Algo. 4). Once a model is chosen, the agent generates
a random goal in the sensory subspace corresponding to that
model, infers motor parameters to reach that goal, and adds
exploration noise as in the flat architectures. Finally, when
motor parameters m have been executed and feedback s
received from the environment, the sensorimotor mappings
of all modules are updated with their respective part of s.

Algorithm 4 Modular - Random Model Babbling
Require: Motor space M
Require: Sensory spaces Si for i ∈ {1..p}

1: database ← VoidDatabase(dim(M), dim(S))
2: for i ∈ {1..p} do
3: sm model i ← SMModel(M, Si)
4: loop
5: mod i ← RandomModule({1..p})
6: (m, s) ← RandomGoalBabblingStep(sm model i)
7: for j ∈ {1..p} do
8: Update(sm model j, (m, Projection(s, Sj)))
9: Add(database, (m, s))

10: return database

4) Active Model Babbling: In strategic learning, different
parameterized problems and strategies to solve them are
available and the agent learns which strategies are useful for
which problems. It was shown in [23] that an active choice
of the outcomes and strategies based on the learning progress
on each of them increases learning efficiency compared to a
random choice. Also, in [7], the authors develop the SAGG-
RIAC architecture of algorithms where the sensory space
is automatically splitted into regions where the learning
progress is monitored, and goals are generated in regions
where the progress is high. Here, instead of differentiating
the learning progress in different regions of a single space,
we differentiate it in different sensory spaces.

Algorithm 5 Modular - Active Model Babbling
Require: Motor space M
Require: Sensory spaces Si for i ∈ {1..p}

1: database ← VoidDatabase(dim(M), dim(S))
2: for i ∈ {1..p} do
3: sm model i ← SMModel(M, Si)
4: i model i ← InterestModel(Si)
5: Imodi ← 0

6: loop
7: i← ChooseModule(Imodi for i ∈ {1..p})
8: (m, s) ← RandomGoalBabblingStep(sm model i)
9: Imodi

← UpdateInterestModel(i model i, sg ,
10: Projection(s, Si))
11: for j ∈ {1..p} do
12: Update(sm model j, (m, Projection(s, Sj)))
13: Add(database, (m, s))
14: return database

To implement an active choice of model to explore (Active
Model Babbling, see Algo. 5), we first define a measure
of interest based on the learning progress of each of the p
modules (see Algo. 6). When a module has been chosen to
babble, it draws a random goal sg and finds motor parameters
m to reach this goal. The actually reached outcome s in
its sensory subspace might be very different from sg . To
measure the progress made to reach sg , we compare the
reached point s with the point s′ that was reached for the
most similar previous goal s′g . We define a distance DSi

between two points s and s′ in a sensory subspace Si as the



L2 distance divided by the maximal distance in this sensory
subspace, in order to scale this measure across subspaces:

DSi
(s, s′) =

||s− s′||
maxs1,s2 ||s1 − s2||

(1)

We define the interest I(sg) associated to the goal sg ∈ Si:

I(sg) = |DSi
(sg, s

′)−DSi
(sg, s)| (2)

where sg and s are the current goal and reached sensory
points, and s′g and s′ are the previous goal of that module
that is the closest to sg , and its associated reached sensory
point. The interest of a module is initialized at 0 and updated
to follow the progress of its goals (with rate n = 1000):

Imod(t) =
n− 1

n
Imod(t− 1) +

1

n
I(sg) (3)

where t is the current iteration: t ∈ [1..100000].

Algorithm 6 Update Interest Model
Require: Interest model i model
Require: Sensory goal sg , outcome s

1: (s′g, s
′) ← NearestNeighbor(goal database, sg)

2: I(sg) = |DSi
(sg, s

′)−DSi
(sg, s)|

3: Imodi ← n−1
n Imodi +

1
n I(sg)

4: Add(goal database, (sg, s))
5: return Imodi

Finally, we implement a multi-armed bandit algorithm
to choose the babbling module at each iteration [7], [10].
The choice of module is probabilistic and proportional to
their interest, with ε = 10% of random choice to set up
an exploration/exploitation tradeoff. We call MACOB those
modular active exploration architectures (Modular Active
Curiosity-driven mOdel Babbling).

5) Sensorimotor models: Here we describe two algo-
rithms to provide fast, incremental and online forward and
inverse model based on a sensorimotor database of motor
commands and associated sensory feedback. The first algo-
rithm is the Nearest Neighbor (NN) algorithm, which finds
the nearest neighbor of a given point in a database based on
a kd-tree search. The forward model is implemented by the
following: given a motor command m, the NN algorithm
finds the nearest motor command m′ in the motor part of
the database, and returns the sensory point associated to m′.
Also, the inverse of a sensory goal sg is computed as the
motor part m′ of the nearest neighbor s′ of sg in the sensory
part of the sensorimotor database (see Algo. 7).

The second algorithm allows to interpolate and extrapolate
the forward model around explored points with the Locally
Weighted Linear Regression (LWLR, [24]). Given a motor
command m, LWLR computes a linear regression of the
forward model based on the k = 10 nearest neighbors of
m in the motor part of the database, weighted locally. The
weights of the k nearest neighbors of m depends on the
distance to m with a gaussian decreasing function of standard
deviation σ = 0.1, and LWLR then computes the prediction

Algorithm 7 NN Sensorimotor Model
1: function INITIALIZE(M , S)
2: sm database← VoidDatabase(dim(M), dim(S))

3: function UPDATE((m, s))
4: Add(sm database, (m, s))
5: function FORWARD(m)
6: (m′, s′) ← NearestNeighbor(sm database, m)
7: return s′

8: function INVERSE(sg)
9: (m′, s′) ← NearestNeighbor(sm database, sg)

10: return m′

sp of m with this local regression (see Algo. 8). On the
other hand, the inverse m∗ of a sensory goal sg is found
by the minimization of the predicted distance between the
reached and goal sensory points as the error function e(m) =
||Forward(m) − sg||2 with an optimization algorithm (we
use the L-BFGS-B algorithm [25]). We limit the number of
forward model evaluations (which uses LWLR) to 200.

Algorithm 8 LWLR-BFGS Sensorimotor Model
1: function INITIALIZE(M , S)
2: sm database← VoidDatabase(dim(M), dim(S))

3: function UPDATE((m, s))
4: Add(sm database, (m, s))
5: function FORWARD(m)
6: knns ← KNearestNeighbors(sm database, m)
7: weights← GaussianWeights(Distance(knns, m))
8: R ← LWLRegression(knns, weights)
9: sp ← R(m)

10: return sp

11: function INVERSE(sg)
12: error(m) = ||FORWARD(m) −sg||2
13: m∗ ← L-BFGS-B-Minimize(error)
14: return m∗

6) Summary of Exploration Architectures:
• RmB: Random motor Babbling control (Algo. 1),
• F-NN-RGB: Flat, Nearest Neighbor forward and inverse

models, Random Goal Babbling (Algo. 2, 3, 7),
• F-LWLR-RGB: Flat, Locally Weighted Linear Regres-

sion forward model and optimization-based inverse
model, Random Goal Babbling (Algo. 2, 3, 8),

• M-NN-RMB: Modular, Nearest Neighbor forward and
inverse models, Random Model Babbling (Algo. 2, 3,
4, 7),

• M-NN-AMB: Modular, Nearest Neighbor forward and
inverse models, Learning Progress based Active Model
Babbling (Algo. 2, 3, 5, 6, 7),

• M-LWLR-RMB: Modular, Locally Weighted Linear
Regression forward model, optimization-based inverse
model, Random Model Babbling (Algo. 2, 3, 4, 8),

• M-LWLR-AMB: Modular, Locally Weighted Linear
Regression forward model, optimization-based inverse
model, Active Model Babbling (Algo. 2, 3, 5, 6, 8).



B. Experimental setup
We designed a robotic setup where a 2D simulated arm

can grasp two sticks that can be used to move some of the
out-of-reach objects (see Fig.2). The different items in the
scene and their interactions are described in the next sections.
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Fig. 2. A possible state of the environment.

1) Robotic Arm: The 2D robotic arm has 3 joints plus a
gripper located at the end of the arm. Each joint can rotate
from −π rad to π rad around its resting position, mapped to
a standard interval of [−1, 1]. The length of the 3 segments
of the arm are 0.5, 0.3 and 0.2 so the length of the arm is
1 unit. The resting position of the arm is vertical with joints
at 0 rad and its base is fixed at position (0, 0). The gripper
g has 2 possible positions: open (g ≥ 0) and closed (g < 0)
and its resting position is open (with g = 0). The robotic arm
has 4 degrees of freedom represented by a vector in [−1, 1]4.
A trajectory of the arm is represented as a sequence vectors.

2) Motor Control: We use Dynamical Movement Primi-
tives [26] to control the arm’s movement as this framework
allows the production of a diversity of arm’s trajectories
with few parameters. Each of the 4 arm’s degrees-of-freedom
(DOF) is controlled by a DMP starting at the resting position
of the joint. Each DMP is parameterized by one weight on
each of 2 basis functions and one weight specifying the
end position of the movement. The weights are bounded in
the interval [−1, 1] and allow each joint to fairly cover the
interval [−1, 1] during the movement. Each DMP outputs
a series of 50 positions that represents a sampling of the
trajectory of one joint during the movement. The arm’s
movement is thus parameterized with 12 weights, represented
by the motor space M = [−1, 1]12.

3) Objects and Tools: Two sticks can be grasped by
the handle side (orange side) in order to catch an out-of-
reach object. The sticks have length 0.5 and are located at
positions (−0.75, 0.25) and (0.75, 0.25) as in Fig. 2. One
stick has a magnet on the end and can catch magnetic objects
(represented in blue), and the other stick has a hook-and-loop
tape to catch another type of objects (objects represented
in green). If the gripper is closed near the handle of one
stick (closer than 0.25), this stick is considered grasped and
follows the gripper’s position and the orientation of the arm’s

last segment until the gripper opens. In some conditions,
we add environmental noise as a gaussian noise of standard
deviation 0.1 added to the (normally equal to 0) angle
between the stick and the arm’s last segment, different at
each of the 50 movement’s steps. If the other side of one stick
reaches (within 0.25) a matching object (magnetic or hook-
and-loop), the object will then follow the end of the stick.
Three magnetic objects are located at positions (−0.3, 1.1),
(−1.2, 1.5) and (−1., 1.5), so that only one is reachable
with the magnetic stick. Three hook-and-loop objects are
located at positions (0.3, 1.1), (1., 1.5) and (1.2, 1.5), so that
only one is reachable with the hook-and-loop stick. Also,
two animals walk randomly following a gaussian noise of
standard deviation 0.01 on X and Y dimensions added at
each of the 50 steps of a trial. Finally, four static black
squares have also no interaction with other objects. The arm,
tools and other objects are reset to their initial state at the
end of each iteration.

4) Sensory Feedback: At the end of the movement, the
robot gets sensory feedback representing the trajectory of
the different items of the environment during the arm’s
movement. This feedback is composed by the position of
each item at 3 time points: at steps 17, 33, and 50 during
the movement of 50 steps. First, the trajectory of the gripper
is represented as a sequence of X and Y positions and
aperture (1 or −1) of the gripper (SHand, 9D). Similarly,
the trajectories of the end points of the sticks are sequences
of X and Y positions (SStick1 and SStick2 , 6D each). Also,
the trajectory of each object is a sequence of X and Y po-
sitions: SObject with Object ∈ { Magnetic1, Magnetic2,
Magnetic3, HookLoop1, HookLoop2, HookLoop3, Cat,
Dog, Static1, Static2, Static3, Static4}. Those spaces are
all in 6 dimensions ([−1.5, 1.5]6). The total sensory space S
has 93 dimensions and corresponds to 15 items.

C. Exploitation Architectures

An exploitation architecture generates an inverse model of
the environment based on a database of previously explored
motor commands and their associated sensory feedback. In
this paper, we are both interested in the quality of the
exploration databases and in comparing the inverse models
built by different combinations of exploration database and
exploitation architectures. We evaluate the accuracy of the
resulting inverse models to reach points in two spaces of
interest, SMagnetic1 and SHookLoop1

. Indeed, those spaces
represent the only objects that can be moved by one of the
sticks as they are not static and not out-of-reach. One set of
goals is randomly drawn in the 2D subspace corresponding
to the final position of each of the two interesting objects
(1000 goals in each).

We define two exploitation architectures generating in-
verse models: one based on the Nearest Neighbor algorithm
(NN, Algo. 7), and one based on the Locally Weighted
Linear Regression forward model and an optimization-based
inverse model (LWLR, Algo. 8). Given a goal sg (e.g.
sg = (0.5, 0.5), the final position of the reachable magnetic
object), the NN algorithm looks into the explored database,



finds the nearest sensory reached point s along the dimen-
sions of the target effect space, and returns its associated
motor command m. On the other hand, the LWLR algorithm
builds a forward model based on a locally weighted linear
regression, and an optimization algorithm (L-BFGS-B) finds
the motor command m that minimizes the distance between
the prediction of the sensory feedback and the sensory goal.

III. RESULTS

We run 100 trials of 100000 iterations with environmental
noise and 100 trials without noise, for each of the 7 explo-
ration architectures (thus 14 conditions). We first measure
the total exploration of 6D spaces of interest SMagnetic1

and SHookLoop1
after 100000 iterations, and provide results

depending on the exploration architecture and environmental
noise on the orientations of the sticks. Then, for each of
the 1400 exploration databases, we test the inverse models
generated by the two exploitation architectures in the 2D
subspaces of the final position of the two objects of interests,
with the same 1000 random goals for each space. We chose
those 2D spaces as they represent an interesting effect space
from the point of view of the experimenter (as in Fig. 3),
but the actually learnt skills are higher-dimensional (9D
for the hand, 6D for each tool and object). We provide a
measure of competence of each combination of exploration
and exploitation architectures as the median reaching error
(the median distance between the goals and actually reached
sensory points), both when environmental noise was present
and when the environment was deterministic.

A. Exploration

1) Examples of Object Exploration: Figure 3 shows qual-
itatively the exploration of the two reachable and movable
objects (corresponding to sensory spaces SMagnetic1 and
SHookLoop1 ) for one trial of some exploration architectures,
without environmental noise. The blue points are the 2D end
positions of the reachable magnetic object, and green points
are the end positions of the reachable hook-and-loop object,
for the 100000 iterations of an exploration trial. First, the
random motor babbling architecture managed to grab the
sticks to move one of the object only for a small proportion
of the 100000 iterations. Also, only the modular architectures
could explore a large proportion of the 2D spaces.

2) Evolution of Interests in Active Model Babbling:
Figure 4 shows one example of the evolution of the interest
of some of the 15 modules of exploration architecture M-
NN-AMB. The first module to make progress is the module
learning to move the hand, and its exploration finds the
magnetic stick and thus allows the module corresponding
to this stick to make more progress (after 10000 iteration),
which exploration finally allows the discovery that this stick
can be used to move one of the magnetic objects and
make progress on that task (after 20000 iteration). Notably,
modules corresponding to unreachable or static objects have
an interest strictly equal to 0.

TABLE I
EXPLORATION OF SPACES OF INTEREST

Exploration
architectures

Env.
Noise

Min Q1 Median Q3 Max

RmB
No 57 67 73 78 93

Yes 62 75 80 85 100

F-NN-RGB
No 1 1 14 89 380

Yes 1 1 16 116 746

F-LWLR-RGB
No 98 203 245 294 442

Yes 182 319 387 486 818

M-NN-RMB
No 285 374 415 456 682

Yes 356 455 508 563 763

M-NN-AMB
No 88 452 536 668 1380

Yes 156 431 517 721 1453

M-LWLR-RMB
No 368 512 555 607 801

Yes 449 574 623 691 906

M-LWLR-AMB
No 456 743 870 1046 1440

Yes 522 811 987 1153 1752

3) Exploration Measure: The total exploration is mea-
sured in SMagnetic1 and SHookLoop1

as the number of cells
reached in a discretized grid of 106 cells (10 cells on each
of the 6 dimensions). For each exploration architecture, we
provide in Table I the median, extrema and quartiles of the
number of reached cells (median on 2 spaces times 100
trials). In the following, we give results of non-parametric
statistical Mann-Whitney U tests for pairs of conditions.

First of all, the comparison of any of the flat explo-
ration architectures (using NN or LWLR, with or without
environmental noise) with any of the modular exploration
architectures shows that flat architectures have explored less
than modular architectures (p < 0.05). The effect is small
for example if we compare condition F-LWLR-RGB with
environmental noise (median 387 reached cells) with con-
dition M-NN-RMB without noise (median 415). However,
the difference is large between this flat architecture and the
best exploring modular architecture, M-LWLR-AMB with
environmental noise (median 987).

Secondly, the comparison of the conditions where only
the model babbling choice differs shows that without envi-
ronmental noise, active model babbling increases exploration
with respect to random model babbling. Indeed, architecture
M-NN-RMB has explored less (median 415) than architec-
ture M-NN-AMB (median 536, p < 10−23), and architecture
M-LWLR-RMB also has explored less (median 555) than
architecture M-LWLR-AMB (median 870, p < 10−55). If we
consider environmental noise, the random model babbling
architecture using LWLR (median 623) has explored less
than the active one (median 987, p < 10−39).

B. Exploitation

The quality of the different inverse models is assessed at
the end of the 100000 exploration iterations, by giving ran-
dom goals in SMagnetic1 and SHookLoop1

and measuring the
distance between goals and reached sensory points (without
environmental noise). We draw 1000 random sensory goals in
each of two spaces of interest, SMagnetic1 and SHookLoop1 ,
and use those same goals for the evaluation of each com-



(a) RmB (b) F-NN-RGB (c) M-NN-RMB (d) M-NN-AMB

Fig. 3. Position of the two reachable and movable objects at the end of each of the 100000 iterations, for one trial of some exploration architecture.
Blue points: position of reachable magnetic object. Green points: reachable hook-and-loop object.

Fig. 4. Interest of modules along the 100000 iterations, with exploration
architecture M-NN-AMB. We show the interest of modules exploring the
spaces of the hand, magnetic stick, reachable magnetic object and the cat.

bination of exploration and exploitation architectures. Table
II provides the median distance between goals and reached
sensory points for each condition (for 2000 points times 100
trials). In the following, we give results of non-parametric
statistical Mann-Whitney U tests for pairs of conditions.

Firstly, both if we consider conditions with environmental
noise or not, all databases generated by flat exploration
architectures and tested by any of the two exploitation
architectures show a larger competence error than any of
the databases explored with modular architectures and tested
with both exploitation architecture (p < 10−100). For in-
stance, without environmental noise, the best performing flat
condition is F-LWLR-RGB exploited with the NN algorithm,
with a median competence error of 0.123, whereas the worst
performing modular condition is M-NN-RMB, exploited
with the LWLR algorithm, with an error of 0.050.

Secondly, considering only exploration conditions without
environmental noise, all databases generated with RMB
architectures and tested with any of the two exploitation
architectures show a larger competence error than any of
the databases generated with AMB and tested with both ex-
ploitation architectures (p < 0.05). For instance, the median
competence error using RMB and the NN algorithm both in

TABLE II
COMPETENCE ERROR IN SPACES OF INTEREST

Exploration
architecture

Env.
Noise

NN LWLR

RmB
No 0.185 0.711
Yes 0.307 0.871

F-NN-RGB
No 0.745 1.018
Yes 1.174 1.253

F-LWLR-RGB
No 0.123 0.171
Yes 0.376 0.422

M-NN-RMB
No 0.046 0.050
Yes 0.248 0.261

M-NN-AMB
No 0.035 0.037
Yes 0.285 0.300

M-LWLR-RMB
No 0.038 0.039
Yes 0.216 0.227

M-LWLR-AMB
No 0.026 0.026
Yes 0.215 0.226

exploration and exploitation is 0.046 whereas with AMB it
is 0.035. Using LWLR, those errors are 0.039 and 0.026.

IV. DISCUSSION

We have introduced two new algorithmic architectures for
incremental exploration of sensorimotor spaces, exploiting
a modular representation of these spaces. Random Model
Babbling selects randomly which model to explore (which
is itself explored through goal babbling) and Active Model
Babbling (MACOB) uses a multi-armed bandit algorithm to
maximize empirical learning progress. In a simulation in-
volving structured continuous high-dimensional motor (12D)
and sensory (93D) spaces, we showed that these modular
architectures were vastly more efficient than goal babbling
methods used with flat representations, for all combinations
of inverse models in the exploration and exploitation archi-
tectures. In particular, by focusing exploration on relevant
parts of the space, modular architectures allowed the learner
to discover efficiently how to move various objects using
various tools, while flat architectures were not able to dis-
cover large parts of the space of effects. We also showed that
active model babbling was significantly more efficient than
random model babbling, yet the difference was smaller than
between modular and flat architectures.



To extend the scope of these results, further work is needed
to study other experimental setups involving real physical
robots, tools and objects, and setups with more motor and
sensory dimensions. Also, in our experiment, the objects are
reset to their initial position at each iteration. In a setup where
we reset the object to a random position [27], we showed
that similar agents could transfer the knowledge about tool
manipulation to reach the object in one position in order to
bootstrap exploration to reach the object in a new position.

Given the potential importance of modular representations
to address the challenge of incremental learning of skills
in high-dimensional spaces, and within a life-long devel-
opmental perspective, this work also points to the need
for algorithmic mechanisms that can generate automatically
such representations. However, from a cognitive point of
view regarding human tool use learning, it is reasonable
to suppose that the brain has sufficient knowledge about
the concept of objects and their properties at the time of
understanding object interactions and tool use, and it makes
sense to build upon those representations in order to model
tool use learning [28]. The modular representation we give
to the learning agent thus seems natural as each sensory sub-
space corresponds to the behavior of one object in the scene.

Finally, also from the perspective of modeling tool use
discovery, an interesting feature of our setup was that “tool”
objects did not have a special status: they were represented in
the same way as any other object. Yet, the active model bab-
bling architecture converged to explore preferentially these
objects and discovered their actual use as tools. In [29], the
learning agents had a hierarchical organization of modules
which was imposed and not built autonomously. Further
algorithms could be developed to transform the modular ar-
chitecture into a hierarchical one where causal dependencies
between objects could be represented and leveraged, with
the discovery of explicit object categories such as “tools”. A
possible approach could be to differentiate “tools” using a
relative measure of learning progress, following the approach
presented in [30, sec. VIII. B. 2] to differentiate the self/body,
physical objects and “others”.
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