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Abstract—The development of tool use in children is a key
question for the understanding of the development of human
cognition. Several authors have studied it to investigate how
children explore, evaluate and select alternative strategies for
solving problems. In particular, Siegler has used this domain
to develop the overlapping waves theory that characterizes how
infants continue to explore alternative strategies to solve a par-
ticular problem, even when one is currently better than others.
In computational models of strategy selection for the problem
of integer addition, Shrager and Siegler proposed a mechanism
that maintains the concurrent exploration of alternative strategies
with use frequencies that are proportional to their performance
for solving a particular problem. This mechanism was also used
by Chen and Siegler to interpret an experiment with 1.5- and
2.5-year-olds that had to retrieve an out-of-reach toy, and where
they could use one of several available strategies that included
leaning forward to grasp a toy with the hand or using a tool
to retrieve the toy. In this paper, we use this domain of tool
use discovery to consider other mechanisms of strategy selection
and evaluation. In particular, we present models of curiosity-
driven exploration, where strategies are explored according to
the learning progress/information gain they provide (as opposed
to their current efficiency to actually solve the problem). In these
models, we define a curiosity-driven agent learning a hierarchy
of different sensorimotor models in a simple 2D setup with a
robotic arm, a stick and a toy. In a first phase, the agent learns
from scratch how to use its robotic arm to control the tool and
to catch the toy, and in a second phase with the same learning
mechanisms, the agent has to solve three problems where the toy
can only be reached with the tool. We show that agents choosing
strategies based on a learning progress measure also display
overlapping waves of behavior compatible with the one observed
in infants, and we suggest that curiosity-driven exploration could
be at play in Chen and Siegler’s experiment, and more generally
in tool use discovery.

I. INTRODUCTION

The development of tool use in children is one of the essen-
tial questions for the understanding of the global development
of human cognition. Indeed, children progressively learn to
interact with multiple objects in varied ways which shows
an understanding of objects’ shapes, relations, the action of
forces, and other physical properties used for mental transfor-
mations and planning: crucial tools to human cognition.

Different theories have been developed to explain child de-
velopment, beginning with a description of successive stages in
development by Piaget [1]. Piaget described the developmental
stages as necessary behaviors that infants should display in
a given order. Related views proposed that in the context

of reasoning, a single child reasons with only one method
at any given age. However, different views were developed
more recently which describe more variability in the possi-
ble developmental paths that children are driving. Siegler’s
overlapping waves theory [2] is describing and modeling the
way infants represent and select a set of currently available
methods to solve a problem. In the overlapping waves theory,
infants maintain their set of methods (also called strategies)
with associated frequencies depending on the past history
of the use of those methods. The frequencies evolve over
time while new strategies are discovered which explain the
observed changes in behavior. For instance, when learning the
mathematical addition, infants use different methods from one
trial to another, and may continue to use non-optimal methods
for a long period of time even if they already know more
efficient methods. Siegler has speculated that such continued
exploration of alternative and sub-optimal methods to solve a
family of problem may be useful to acquire skills that will
later facilitate the resolution of new problems. This cognitive
variability could be an essential mechanism to acquire greater
knowledge, which might be more important for learning in
childhood than just having high quality performances on
specific tasks.

Siegler et al developed several computational models of
strategy selection and evolution to account for how children
learn how to add integer numbers: ASCM (Adaptive Strat-
egy Choice Model [2]), and SCADS (Strategy Choices and
Strategy Discoveries [3]). Those models are argued to closely
parallel the development of addition strategies with the use
of several strategies, with errors in the execution of those
strategies. In SCADS, furthermore, a mechanism allows the
discovery of new strategies and the authors show that the
same strategies are discovered and in the same sequences as
with children. In the two models, the strategies are selected
with frequencies that are directly proportional to (called a
“matching law” on) their success rate in the corresponding
previous problems. This model also included a novelty bias
to explore new strategies more than their success rate would
allow: the value for exploring new strategies was initialized
optimistically (then decreasing in time if success rate did not
rise). The focus of this model has been the mode of strategy
selection (matching law), with a measure of the value of
strategies based on their performance to solve a given task.



However, these models have not considered other forms of
value systems, such as curiosity-driven information seeking,
which could play a key role in child development [4].

In the context of tool use development, Chen and Siegler [5]
conducted an experiment with 1.5- and 2.5-year-olds that had
to retrieve an out-of-reach toy with one of the six available
tools. Children were exposed to a sequence of three similar
problems with different tool shapes and visual features, but for
each problem only one tool was effective to retrieve the toy.
They designed three conditions. In the control condition, the
mother just asked the child to get the toy. In the hint condition,
the experimenter moreover suggested to use the target tool.
Finally, in the modeling condition, the experimenter actively
showed to the infant how to retrieve the toy with the target
tool. First, they show that in the control condition only few
children succeeded to retrieve the toy with the tool even after
three problems (less than 10% of the 1.5-year-olds and less
than 20% of the 2.5-year-olds). However, in the hint condition
and modeling conditions, a large proportion of 1.5-year-olds
and most of the 2.5-year-olds succeeded to use the tool strategy
by the end of the experiment. With respect to the strategic
variability, the authors measured that 74% of toddlers used at
least three strategies. The different strategies observed were
to lean forward and try to retrieve the toy with the hand
(forward strategy), to grab one of the tool and try to catch
the toy with the tool (tool strategy), to ask to the mother if
she could retrieve the toy for them (but she was told not to)
or to walk around the table to look at the toy from different
angles (indirect strategy), and finally some of the children did
not engage in any of those strategies (no strategy).

Firstly, the authors reported the dynamics of strategy choice
as an average over children. They showed that the tool strategy
frequency was on average increasing with the successive trials
and the forward strategy was decreasing in the hint and
modeling conditions, whereas in the control condition the
tool strategy remained stable. This pattern was interpreted by
the authors as a clear overlapping waves pattern besides the
fact that it was a pattern of the average over children. The
overlapping waves theory suggests that this pattern of strategy
change should be visible on a per child basis, meaning that
each child should always use a set of strategies and smoothly
change their frequency use. However, the observed average
pattern does not imply that each child (or most of them)
display an overlapping waves pattern. It could be that in Chen
and Siegler’s experiment, each child begins with the forward
strategy, and at some point in the experiment (different for
each child), switch to the tool strategy and never uses again
the forward one. In that case, an average of the strategy use
would also show a smooth increase in the tool strategy and
decrease in the forward strategy use. Nevertheless, the authors
also reported a measure that could disentangle the different
hypothesis [5, p42]. They measured the average proportion of
trials where children used other strategies than the tool strategy
after the first trial where they used the tool strategy. The
toddlers in the control condition did use the other approaches
than the tool strategy on more than half the trials after the

first time they used the tool strategy (84% of the trials for 1.5-
year-olds, 48% for 2.5-year-olds). In contrast, in the hint and
modeling conditions, the young infants used other approaches
in around 20% of the trials, and older infants in only 4%.
This result showed that strategic variability did continue after
children began to use the tool strategy in the control condition
but not in the hint and modeling conditions. Consequently,
we do not agree with the conclusions of the authors saying
that a clear overlapping waves pattern was visible regarding
the change in forward versus tool strategy use. According
to this analysis, overlapping behaviors were observed in this
experiment only in the control condition where the mother just
asked the infant to retrieve the toy, and the experimenter did
not add further incentive.

In this paper, we consider the problem of the modeling of
overlapping waves of behaviors in the context of tool learning
and use. We will target to model alternative mechanisms that
could be at play in Chen and Siegler’s experiment. In addition
this model will also be used to model learning and strat-
egy selection mechanisms happening before the experiment
(hence modeling learning of tool use taking place “at home”
during the months preceding the lab sessions). These unified
learning mechanisms will be used for both free play explo-
ration/learning of tool use (from scratch) and for exposure
to evaluation in lab sessions with an incentive to solve a
task. Indeed, a source of difficulty to interpret the results of
behavioral experiments in babies is that it is difficult to control
for what happened before the lab sessions. In particular, we
can’t know exactly how much prior experience the toddlers
had playing with objects and tools at home, what kind of tools
were available, and how the caregivers were interacting with
the child or answering its requests to get toys. Furthermore,
understanding how the object saliency and the cues of the
caretaker are interpreted by the children is an open question.
The interpretation of these experiments has implicitly assumed
that the experimental setup was designed so that the children
would “want” to catch the toy (this also applies to similar
experiments such as [6]). However, as we will suggest through
the model below, alternative hypotheses can be considered
(and be non-exclusive). In particular, we will suggest that a
salient object may trigger curiosity-driven exploration, where
the child explores to gain information about which strategy
allows to get it (rather than trying to maximize its probability
to actually catch it).

We build upon a previous model of curiosity-driven de-
velopment of tool use in a simulated 2D environment with
objects and tools [7]. Intrinsic motivations, or “curiosity”, have
been shown to play a fundamental role in driving spontaneous
exploration in infant free play [9]. Intrinsic motivations have
been defined as mechanisms that push infants to explore
activities for their own sake, driven by the search of novelty,
surprise, dissonances or optimal challenge [10]. This model
is learning different sensorimotor models structured in a hi-
erarchy that represents the environmental structure. The use
of an intrinsic motivation for the exploration of sensorimotor
mappings yielding a high learning progress allowed the emer-



gence of a smooth progression between overlapping phases of
behavior similar to the one found in infants [8]. In the model,
the intrinsic motivation self-organized a first phase where the
agents were mainly exploring movements of the arm without
touching objects, then the exploration of the interaction with
a single object, and finally a smooth shift towards behaviors
experimenting the interaction of multiple objects.

In the present paper, we use a similar model and study dif-
ferent mechanisms for adaptively selecting alternative strate-
gies to reach a toy, which were not studied in our previous
work focused on evaluating the impact of hierarchical rep-
resentations of sensorimotor spaces [7]. We hypothesize that
not only do the type of decision mechanism to select an action
(matching law, or greedy: choose the best one) can influence
the resulting behavior and match observations in infants as
explained in Siegler’s models, but also the measure on which
the decision is based, whether it is a competence measure, as
in ASCM and SCADS, or an information-gain based measure
such as learning progress.

To test this hypothesis, we designed an experimental setup
with two phases. In the first one, the agents are autonomously
exploring their environment through three sensory spaces
(representing the hand, stick and toy), and can learn how to
move their hand, how to grab an available stick, and how to
reach a toy with either the hand or the stick. In a second phase,
the agents use the same strategy selection procedure as in the
first phase, but are now only exploring towards retrieving the
toy, which mimics the incentive given by the mother to retrieve
the toy in Siegler’s lab experiment [5]. In Siegler’s experiment,
several tools where available but only one allowed to grab the
toy, and the tool strategy was defined as trying to use any of
the tool to reach for the toy. We simplify this setup and we
place only one tool in the environment so that the tool strategy
only contains one type of actions and is easier to interpret. We
measure the success rates to grab the toy and we study the
evolution of the use of tool and hand strategies in this second
phase depending on the mechanism of strategy selection, for
individual agents.

Together with this paper, we provide open-source Python
code1 with Jupyter notebooks explaining how to reproduce
the experiments and analysis.

II. METHODS

A. Environment

We simulate a 2D robotic arm that can grasp a block or
grasp a stick and use it to move the block. In each trial,
the agent executes a motor trajectory and gets the associated
sensory feedback. At the end of each trial, the arm and the
stick are reset to their initial state, and the block is reset
to a random location every 20 iterations. The next sections
precisely describe the items of the environment and their
interactions. See Fig.1 for an example state of the environment.

1Source code and Jupyter notebooks available as a Github repository at
https://github.com/sebastien-forestier/ICDL2016
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Fig. 1. A state of the environment. The initial position of the arm is vertical
so in this position the first and third joints are rotated to the right and the
second joint to the left. The magnetic stick is at its initial position and is reset
at each iteration. The block can be caught either by the magnetic side of the
stick or directly by the hand as it is reachable here. The block is only reset
every 20 iterations to a random position reachable by the hand.

1) Robotic Arm: The 2D robotic arm has 3 joints. Each
joint can rotate from −π to π (rad) around its resting position,
which is seen by the agent as a standard interval [−1, 1]. The
length of the 3 segments of the arm are 0.5, 0.3 and 0.2 so
the length of the arm is 1 unit. The resting position of the
arm is vertical with all joints at 0 rad and its base is fixed at
position (0, 0). A trajectory of the arm will be represented as
a sequence of vectors in [−1, 1]3.

2) Motor Control: We use Dynamical Movement Primitives
[11] to control the arm’s movement as this framework permits
the production of a diversity of arm’s trajectories with few
parameters. Each of the 3 arm’s degrees-of-freedom (DOF) is
controlled by a DMP starting at the rest position of the joint.
Each DMP is parameterized by one weight on each of 2 basis
functions and one weight specifying the end position of the
movement. The weights are bounded in the interval [−1, 1]
and allow each joint to fairly cover the interval [−1, 1] during
the movement. Each DMP outputs a series of 50 positions that
represents a sampling of the trajectory of one joint during the
movement. The arm’s movement is thus parameterized with 9
weights, represented by the motor space M = [−1, 1]9.

3) Objects: A stick and a toy (block) are available in the
environment. The stick can be grasped by the handle side and
can be used as a tool to catch the block. The stick has length
0.3 and is initially located at position (−0.75, 0.25) as in Fig.
1. If the hand reaches the block (within 0.2), we consider that
the block is grasped until the end of this movement. Similarly,
if the hand reaches the handle side of the stick (within 0.1),
the stick is considered grasped and follows the hand’s position
with the direction of the arm’s last segment until the end of
this movement. If the magnetic side of the stick reaches the
block (within 0.1), then the block follows the stick’s magnet.

4) Sensory Feedback: At the beginning of each trial, the
agent gets the context of the environment: the position of the
block (Context, 2D). At the end of the movement, it gets
sensory feedback from the following items in the environment.

https://github.com/sebastien-forestier/ICDL2016


First, the trajectory of the hand is represented as its x and
y positions at 3 time points: steps 17, 33, 50 during the
movement of 50 steps (SHand, 6D). Similarly, the trajectory
of the magnet of the stick is a 3-point sequence of x and y
positions (SStick, 6D). It also gets the initial and final position
of the block, and the minimal distance during the movement
between the hand and the block, if the stick was not grasped,
or between the magnet and the block, if the stick was grasped
(SBlock, 5D). The total sensory space S has 17 dimensions.

B. Learning Agent

The problem settings for the learning agent is to explore
its sensorimotor space and collect data so as to generate a
diversity of effects in the three available sensory spaces, and
to learn inverse models to be able to reproduce those effects. In
this section we describe the hierarchical learning architecture.

1) Global Architecture of Sensorimotor Models: The agent
learns 4 sensorimotor models at the same time (see Fig. 2).
Model 1 learns a mapping from the motor space M to SHand,
model 2 from SHand to SStick, model 3 from SHand to SBlock

and model 4 from SStick to SBlock. The block is the only item
that can have a different initial position at the beginning of
each iteration. We thus call contextual models the two models
that have to take into account this context (models 3 and
4), and non-contextual models the two others (models 1 and
2). Those two types of models provide the inverse inference
of a probable motor command m (in their motor space) to
reach a given sensory goal s (in their sensory space), but their
implementation is slightly different (see next sections).

In order to get interesting data to build its sensorimotor
model, the agent performs Goal Babbling. It first chooses
one of the three sensory spaces, and then self-generates a
goal in the sensory space and tries to reach it. To generate
those goals, different strategies have been studied [12]. Here
we use a random generation of goals for the exploration of
spaces SHand and SStick (Random Goal Babbling), which was
proven to be highly efficient in complex sensorimotor spaces
[13]. For SBlock, we just define the goal as moving the block
to the origin position (0, 0).

If the goal is in SBlock, the agent also has to decide which
method to use in order to try to retrieve the block: either
the forward method, with model 3, or the tool method with
model 4. In the other cases, if the goal is chosen in SHand

or SStick, then model 2 or respectively 3 is used. Once the
babbling model is chosen, it performs inverse inference and
uses lower-level models to decide which motor command m
will be experimented in the environment.

Finally, when motor parameters m have been tested in the
environment and feedback s received, the mappings of models
1 and 2 are updated, and if the agent grasped the tool, then
model 4 is updated, otherwise model 3 is updated. Also, a
measure of success to reach the goal and of learning progress
are computed and will be used to help choosing the space to
explore. We use the Explauto autonomous exploration library
[14] to define those sensorimotor models and the learning
progress measure.

Fig. 2. Architecture of models. The green circle is the motor space and the
blue ones are sensory spaces. The gray squares are the 4 models.

2) Non-Contextual Models: Each non-contextual model has
a motor space (e.g. motor space of model 2 is SHand) and a
sensory space (respectively SStick). They learn a mapping and
provide the inverse inference of a probable motor command
m (in its motor space) to reach a given sensory goal s (in its
sensory space). They store new information of the form (m, s)
with m ∈ M being the experimented motor parameters and
s ∈ Si the associated sensory feedback in their sensory space.
They compute the inverse inference with the nearest neighbor
algorithm: they look at the nearest neighbor in the database of
a given s in the sensory space, and return its associated motor
parameters. Model 1 also adds exploration noise (gaussian
with σ = 0.01) to explore new motor parameters.

3) Contextual Models: The inverse inference is computed
differently for contextual models (models 3 and 4). Whatever
the position of the block (context), the agent tries to grasp it
(with the hand for model 3 and with the tool for model 4) and
to put it at the origin location (0, 0). To do so, if the context
is new (not within 0.05 of any previously seen context), then
the agent chooses the motor command that in the past led to
the grasping of the block in the closest context. If the context
is not new, then the model chooses the sensory point in the
database with the smallest cost among the points that had a
similar context (context within 0.05 of the current one), and a
gaussian noise (σ = 0.01) is added to the motor position. The
cost of a sensory point sblock with context c is

cost(c, sblock) = DSb
(traj, c) +DSb

(origin, pfinal) (1)

where DSblock
(traj, c) was the minimal distance between the

hand (for model 3) or tool (model 4) and the toy during the
trajectory. Also, origin is the position (0, 0) and pfinal is the
final position of the toy. Finally, DSi

is a normalized distance
in a sensory space Si,

DSi
(s, s′) =

||s− s′||
maxs1,s2 ||s1 − s2||

(2)

4) Active Space Babbling: At each iteration, the architec-
ture first has to choose the sensory space Si to explore. This
choice is probabilistic and proportional to the interest of each
space (but with ε = 5% of random choice). We call this
procedure Active Space Babbling.

When space SHand is chosen to be explored, a random
goal sg (hand trajectory) is sampled and then sensorimotor
model 1 is used to infer a motor command m to realize this
hand trajectory. When space SStick is chosen, a random goal
sg (stick trajectory) is sampled and model 2 is used to infer a



hand trajectory to make this stick trajectory (and model 1 used
to realize the hand trajectory). When space SBlock is explored,
then model 3 or 4 (hand or tool strategy) has to be chosen (see
next section) to reach for the toy and the goal sg is to catch
the toy and put it at position (0, 0).

We now define the learning progress and interest of a
sensorimotor model mod that tries to reach the goal sg (e.g.
model 1 if SHand was chosen, or model 4 if SBlock and the
stick were chosen). Once the motor command m is executed,
the agent observes the current sensory feedback s in the chosen
sensory space Si. This outcome s might be very different from
sg as this goal can be unreachable, or because lower-level
models are not mature enough for that goal. We define the
progress P (sg) associated to the goal sg ∈ Si:

P (sg) = DSi
(sg, s

′)−DSi
(sg, s) (3)

where sg and s are the current goal and reached sensory points,
and s′g and s′ are the previous goal of the model mod that is
the closest to sg , and its associated reached sensory point.
The progress of model mod is initialized at 0 and updated to
follow the progress of its goals (with rate n = 1000):

Pmod(t) =
n− 1

n
Pmod(t− 1) +

1

n
P (sg) (4)

where t is the current iteration. The interest of model mod is
its absolute progress, meaning that a negative progress is also
interesting:

Imod(t) = |Pmod(t)| (5)

Now we define the interest of space SHand and SStick as
the interest of models 1 and 2 respectively. The interest of
space SBlock is the sum of the interest of models 3 and 4.

5) Choice of Method to Reach the Block: When the agent
has chosen to explore SBlock, and given a block position
(context), it has to choose one of its two available methods to
reach the block: the hand method (model 3) or the tool method
(model 4). We define 4 conditions with different choices, based
on two measures; competence and interest. The competence
measure estimates for each method if the agent will be able
to grasp the block. It is computed as follows: if the block
was never grasped with the method, then it is −1, otherwise
it is the distance of the closest context where the block was
grasped. The interest measure estimates the learning progress
of each method to reach the current block position. If the
context is strictly new, then the interest is the inverse distance
of the closest context where the block was grasped (or 1 if
there was no such context). If the context is not new, which
means that the block was not grasped in the previous attempts,
then the interest is computed as a derivative of the costs of
the previous attempts for this context. If there were n previous
attempts ai, then the interest is∣∣ meann

2 +1..n [cost(ai)]−mean1..n2 [cost(ai)]
∣∣ (6)

where the cost of an attempt is the one of Section II-B3.
Finally, for each of those two measures, we define two types
of choice for both measures. The ε-greedy choice is a random

choice with probability ε = 5%, and the choice of the highest
with probability (1 − ε). In the matching law choice, the
probability of choosing each method is proportional to the
measure, but also with ε = 5% probability of a random choice.
This results in 4 possible conditions:
• GC: greedy on competence
• MC: matching law on competence
• GI: greedy on interest
• MI: matching law on interest

C. Experiments

The experimental procedure is composed of two phases.
In phase 1, the agents are autonomously learning for 1000,
2000, 5000 or 10000 iterations where we reset the toy to
a random position (but reachable directly with the hand)
each 20 iterations. In phase 2, the agents are successively
exposed to 3 new problems (or contexts) while they keep
updating their sensorimotor models, for 200 iterations allowed
per new problem. In those 3 problems, the toy is set at
a location reachable with the tool but not reachable with
the hand (problem A: (−0.1, 1.2), B:(0, 1.25), C:(0.1, 1.2)).
Those locations are distinct enough so that given the solution
to one of them, solving another one requires some exploration,
but close enough so that the previous one helps. Finally, we
simulate 100 independent trials for each condition.

III. RESULTS

Fig. 4 shows an example of the evolution of the interests
to explore the sensory spaces during phase 1 for an agent
of condition MI. After some iterations, the interest of SBlock

becomes greater than the interest of SHand and SStick and thus
is more often chosen to be explored. Fig. 3 shows in each con-
dition and for each of the 3 problems of phase 2, the proportion
of the 100 agents that succeeded to reach the toy, depending on
experience (the number of iterations performed in phase 1, i.e.
the number of sensorimotor experiments/movements already
achieved by each agent). We see that in all conditions and
for all problems, the success rate increases with experience.
For instance, for problem A in condition MI, the success rate
goes from 25% when agents have experimented 1000 iterations
to 50% when they have experimented 10000. Also, for all
conditions and experiences, the success rate increases from
problem A to B and from problem B to C. For example,
the success rate is 21% for problem A of condition MC at
experience 1000 and it goes to 27% for problem B and 33%
for problem C. Finally, the success rates of all problems in
condition GC are smaller by 5 to 20% than the success rates
of the three other conditions, and the success rates of condition
MI are slightly higher than those of condition MC.

Fig. 5 shows 2D maps of the preference between the hand
and tool strategies to reach the block depending on its 2D
position (on a 100 × 100 grid), for one agent of experience
10000 iterations of each condition that succeeded to catch the
block on the three problems. Also, the maps are computed at
different times of phase 2 for each condition: at the beginning
of phase 2 before problem A, after problem A, after problem



Fig. 3. Proportion of 100 agents that succeeded to reach the toy in each of the 3 problems of phase 2, depending on condition and experience (the number
of iterations experimented). Success rate increases with experience and with the problems encountered, and are better in conditions MC, GI and MI than GC.

Fig. 4. Evolution of the interest of spaces for one agent of condition MI
during 10000 iterations of phase 1.

B and after problem C. The preference is computed as the
probability of choosing the hand strategy, and is reported on
a two color scale. A completely blue region means that if the
block is located in that region, then the corresponding agent
would certainly (with probability 1) choose the hand strategy.
This is almost the case in conditions GC and GI where the
choice is ε-greedy with ε = 5%. Similarly, in green regions
of those conditions, the choice is almost always for the tool
strategy. However, a whiter region (in conditions MC and MI)
means that the choice is more balanced, and in completely
white regions the choice is equiprobable. It should be noted
that the arm is located at position (0, 0), has length 1, and can
catch the block within 0.2 so it could theoretically reach the
block within a circle of radius 1.2. However, in the 3 problems
of phase 2, the block is unreachable directly with the hand. In
those problems, the block is located at positions (−0.1, 1.2),
(0, 1.25) and (0.1, 1.2) (black dots).

In all conditions (from top to bottom) we can see modifi-
cations of the preference around those points across exposure
to problems (from left to right), from a hand (blue) to a tool
(green) preference. For instance, in condition GC (first row),
before phase 2 (first column), this agent already preferred the
tool. This is indeed possible because even if during phase

1 we reset the position of the block every 20 iterations to
a random position reachable by the hand, this agent could
have the time to move the block out-of-reach for the hand and
then learn that it could catch it with the tool at that position.
This is also part of the reason why success rate increases with
experience in all conditions for problem A. Then, after the
success to retrieve the toy in problem A (second column), the
preference around problem A has changed in a small region
around A, but towards the completely different choice: almost
always choosing the tool strategy instead of always choosing
the hand strategy. The results for the agent in condition GI
are similar. However, the results for the agents of conditions
MC and MI are different. In condition MC, the agent has no
preference in problem A before phase 2, which means that for
the first trial to retrieve the toy in problem A, it will choose the
strategy randomly, and then the preference might change as the
competence value depends on how far from the toy the strategy
allowed to reach for. After problem A (second column), the
preference changed in a large region around problem A, but
this time the change is more gradual, with a high probability
to choose the tool strategy only very close to A. The results
for the agent in condition MI is similar, but here the preference
before phase 2 was for the hand strategy (slightly: 60%, but
for other agents it could have been for the tool strategy).

IV. DISCUSSION

We designed an experimental setup where an agent con-
troling a 2D robotic arm could learn two strategies to grab a
toy depending on its position: grabbing the toy directly with
the hand or first grab a tool to reach for the toy. We defined
two dimensions of strategy choice: the type of decision, with a
matching law or a greedy choice, and the measure on which to
make this choice: the performance of the strategies to retrieve
the toy in its current position, or the progress made with each
strategy to get the toy. The decision based on the performance
measure means that the learner is interested to get the toy,
and the decision based on the learning progress means that
the toy raises the curiosity of the learner about its affordances
or relation with the hand and the stick. The agents have unified
learning mechanisms for both free play exploration/learning of
tool use from scratch (phase 1) and for exposure to evaluation
in lab sessions with an incentive to solve the task (phase 2).
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Fig. 5. Strategy preference maps. Each row corresponds to one condition, plotting the preferences of an agent that succeeded to catch the block on the
three problems after having experimented 10000 exploration iterations. Each column shows the map at different times of phase 2: at the beginning of phase
2 before problem A, after problem A, after problem B and after problem C. In those problems, the block is located at positions (−0.1, 1.2), (0, 1.25) and
(0.1, 1.2) (black dots). Each 2D map represent the preference between the hand and tool strategies to reach the block depending on its 2D position. In those
2D maps, the arm is located at position (0, 0), has length 1, and can catch the block within 0.2 so it could theoretically reach the block within a circle of
radius 1.2 without the tool. The colors reads as follows: a completely blue region (respectively green) means that if the block is located in that region, then
the corresponding agent would certainly (with probability 1) choose the hand strategy (respectively tool strategy), and a whiter color means a more balanced
probabilistic choice, a pure white being the equiprobable choice. In all conditions (from top to bottom) we can see changes in the preference around those
points (from left to right), from a hand (blue) to a tool (green) preference.



First, the success rates in our setup are compatible with the
ones of 1.5- and 2.5-year-olds in the experiment of [5], where
the success rates increase with experience and also across the
successive problems. In this experiment, the toddlers in the
control condition did use the other approaches than the tool
strategy on more than half the trials after the first time they
used the tool strategy in the lab experiment (84% of the trials
for 1.5-year-olds, 48% for 2.5-year-olds). However, in the hint
and modeling conditions, where the experimenter moreover
suggested to use one of the available tools, or actively showed
to the infant how to retrieve the toy with the tool, younger
infants used other approaches in around 20% of the trials,
and older ones in only 4%. In our setup, at each iteration in
phase 1 the agents have the choice to explore one of the three
available sensory spaces. In phase 2, to model the incentive
to get the toy given by the mother in the lab sessions of [5],
the agents could only explore the space of the toy, SBlock,
but could choose either the hand or tool strategy. However,
we did not model the hints given by the experimenter in
the hint and modeling conditions. Our setup is thus more
similar to the control condition of [5] and we observe that
only our two conditions using a matching law, MC and MI
display a concurrent use of the tool and hand strategies,
with smooth evolution to new sensorimotor experience. The
behavior of agents in conditions MC and MI are compatible
with the overlapping pattern observed with children in the
control condition of [5] where the mother just asked the child
to get the toy. The fact that the average use of the tool strategy
in the control condition did not increase across problems might
be because children did not have enough time to discover by
themselves that the tool can help to get the toy, without the
hint given by the experimenter.

Siegler [2] suggests that the cognitive variability observed in
infants could be essential to learning in childhood, and model
it as matching law on the competence of the strategies. Our
results suggests that an alternative mechanism that was not
proposed in Siegler’s model could be at play in [5]: strategy
selection mechanisms could be based on a measure of learning
progress instead of performance.

More generally, a matching law on performance could
waste too much experimental trials on high-performing but
not improving strategies, even with a novelty bias (that would
expire irrespective of progress). On the contrary, a matching
law on the monitored learning progress of each strategy
could focus the training on low-performing but improving
strategies and avoid wasting trials training high-performing
but not improving strategies. Indeed, our results also suggests
that condition MI could be more beneficial for learning in
our setup than condition MC as success rates are slightly
better in condition MI. Also, a currently bad strategy could
turn out later to be interesting for other related tasks and
thus benefit from training. On the other hand, an emphasis
on learning progress might too often lead to the choice of
an improving strategy that will turn to be sub-optimal. A
particular situation with respect to this exploration/exploitation

tradeoff is when social feedback is available. In the hint
and modeling conditions of [5], the experimenter respectively
suggests to use the target tool or actively shows how to retrieve
the toy with the tool. The strategic variability is much lower
in those conditions, e.g. the 2.5-year-olds used other strategies
than the tool one in only 4% of the trials after the first time
they use it. We interpret this decrease in variability as the
result of the incentive given by the experimenter, supposed to
focus attention towards the target tool and to trigger the tool
strategy. In our model, the hint condition could be integrated as
social bias to select the tool strategy. Also, the demonstration
provided by the experimenter in the modeling condition could
be added to the sensorimotor models as examples to reach the
toy given the trajectory of the tool and the hand, the agent
only having to finding motor parameters to realize the hand
trajectory (with sensorimotor model 1).

Finally, several strategy selection mechanisms (e.g. based on
competence or interest) could be available across all situations,
and children could switch between them or combine them
depending on the estimated interest of exploration, the desire
to actually get the toy, or social cues as the mother or
experimenter incentive in Chen & Siegler’s experiment.
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