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ABSTRACT

This study investigates the effect of uncertainissociated with pollutant wash-off dynamics in
the context of stormwater management practices InogleA formal Bayesian approach is adopted
for the calibration and the uncertainty analysieaommonly used wash-off model, under (1) the
unverified assumption of homoscedastic, independeant normally distributed residuals and (2)
using a more correct heteroscedastic and autosegeesrror model. The results obtained for each
of these approaches are compared and the uncgresisbciated with water quality modelling is
later propagated through a conceptual Best Managemeactices (BMP) model, for various
stormwater management scenarios, so as to assesfdtt of this uncertainty for BMP modelling
and clarify the benefits of a robust descriptioneofor structure. This study indicates that the
violation of the statistical asumptions about tesiduals may result in unreliable estimation of
model parameters and total predictive uncertaifbe effect of the uncertainty in the intra-event
variability of concentations in runoff is howeveuhd to have only a limited effect on the outputs

of the BMP model, regadless of the error model &tbfor calibration.

Keywords: Best Management Practices; Calibration; Propagat®ource-control; Suspended

solids;



INTRODUCTION

In recent years, on-site runoff pollution contral small vegetated systems (referred to as
Sustainable Urban Drainage Systems, Best Managdpnaatices or Green Infrastructure) has been
shown to be a relevant option to limit the advesffects of stormwater discharge to receiving
waters (Ahiablame et al. 2012). Recent literatiesults suggest that the performance of such
source-control systems is mostly related to theuwa reduction induced by infiltration and
evaporation (Bressy et al. 2014) and hydrologicatetling therefore offers opportunities for the
development of efficient stormwater control strageg Nonetheless, because pollutant
concentrations in runoff exhibit large temporaliggons during rain events (Kanso et al. 2006;
Schriewer et al. 2008; Shaw et al. 2010; VezzabMikkelsen 2012), volume reduction generally
differs from pollutant load reduction and it is yaclear whether accounting for this temporal

variability is needed to assess the performan®&est Management Practices (BMP).

Various water quality models have been introducethe past to simulate pollutant concentrations
in runoff. Correct replication of the wash-off pess on urban surfaces (which dictates the
variability of concentrations) however remains allgnge and several findings indicate that the
performance of these models has generally beerestwmated and that simulated concentrations
are thus subject to very large uncertainties (Dettal. 2010; Freni et al. 2009a; Kanso et al. 2006
Sage et al. 2015; Vezzaro and Mikkelsen 2012)héncontext of stormwater management practices
modelling, assessing the effect of these unceitgin the performance of source control systems
requires propagation of errors through BMP mod#sfortunately, it is yet difficult to obtain
reasonable estimation of uncertainty from converioformal Bayesian methods which have
usually relied on unverified statistical assumpgi@tout model residuals (Dotto et al. 2013; Evin et
al. 2013). Informal techniques, such as the GeizexdhLikelihood Uncertainty Estimation (GLUE)
framework that do not require assumptions aboutrestructure, have hence often been preferred
over formal Bayesian approaches for their easesefand flexibility (Beven and Binley 2014). In
the last decade, a strong debate has however etnabget the coherence of informal methods as
compared to formal uncertainty analysis technigtres first ones being criticized for their lack of
statistical consistency and the second for theibility to deal with non-ideal situations (Beven et
al. 2007; Mantovan et al. 2007; Stedinger et a080/rugt et al. 2008). Here, the absence of an
explicit error characterization (e.g. output depsrmk, autocorrelation...) may somehow limit the
applicability of informal methods for the propageti of uncertainty through further model

components (as stated by Clark et al. (2011), tedigtive uncertainty is indeed lumped into a



simple “inflated parametric uncertainty” which mapt adequately reflect the structure of the
residuals). Besides, extensions of formal Bayesemmniques have recently shown promising
results for more rigorous bias description and sblwncertainty analysis (Del Giudice et al. 2013;
Schoups and Vrugt 2010; Yang et al. 2007).

The purpose of this study is therefore (1) to adégly evaluate the uncertainty in the intra-event
variability of concentrations simulated from thedelly used exponential wash-off model and (2) to
assess the effect of this uncertainty for BMP miaael The water quality model is calibrated from
continuous turbidity and flow-rate measurementsnfran urban street over an 11 month period,
using an autoregressive AR(1) error model to acctmrrthe autocorrelation and the non-normality
of the residuals. So as to illustrate the bendfitshis approach, calibration results are first
compared to those obtained under the standard lggist of independent, homoscedastic and
normally distributed residuals (standard error nhpdeter a short discussion on calibration results
TSS concentrations simulated for 1-year rainfatiggeand corresponding runoff rates are used as
an input to a conceptual BMP model. Parameter aadigiive uncertainty associated with pollutant
wash-off dynamics are thus propagated through € Bhodel to evaluate the effect of uncertainty
under various BMP design for both the improved stacidard error models.

M ATERIAL AND METHODS

SITE AND DATA DESCRIPTION

The experimental site consists of a small roadheaént (~800m?2) carrying moderate traffic loads
(~8000 vehicles per day) located in “Sucy-en-Bn&inicipality, a residential district nearby Paris,
France. Flow-rate and turbidity measurements wecerded over an 11 month period at a 1-min
time-step from a tipping bucket flow-meter systema @ multi-parameter probe located in a storm
drain. Turbidity time-series were converted to ltstaspended solids concentrations (TSS) using a
linear TSS-turbidity relationship adjusted from etvenean runoff samples collected for 7 rain

events (see Sage et al., 2015 for further detaikhe experimental setting and the dataset).

A total of 175 rain events (considering a 30 misut@inimum inter-event time for their
identification) were fully monitored from Januar@IB to November 2013 and are thus used in this
study for water quality model calibration and unaerty analysis. (While larger inter-event times

are usually considered in hydrology to ensure ttentification of statistically independent rain



events (Andrés-Doménech et al. 2010), the use @ dhmation is here essentially justified by the
need to isolate as much as possible dry periodagwhich various processes may rapidly affect
pollutant deposition).

WATER QUALITY MODELLING

The temporal variability of pollutant concentratsan runoff (from an event to another and during a
storm) has traditionally been assumed to resulhfdry weather accumulation of pollutants on
urban surfaces, followed by their removal duringn ravents and many conceptual water quality
models thus seek to replicate these two processesrtlatively simple equations (see Freni et al.,
2009 for some examples). Recent findings howeveggest that the reliability of such models

should be questioned and concerns have more gadgifibeen raised about the validity of

accumulation functions which relate the amount a@fytants available at the beginning of a rain

event to antecedent dry period duration (Kansd. 2086; Sage et al. 2015; Shaw et al. 2010).

The inability of conventional water quality models simulate pollutant accumulation for the
dataset used in this study, as a result of théhagtic nature of sediment deposition, was discussed
in Sage et al. (2015). In this paper, accumulaisohence deliberately left aside so as to focus on
the uncertainty associated with wash-off modellirigch controls the intra-event variability of TSS

concentrations. A widely used wash-off equatiohase considered:

M, X[l— exp(—Cl x Q< xAt)}
q xAt

(1)

C:I:

Where: G = TSS concentration in runoff from t toAt-(subscript i is here refers to tHe time-
step), g = flow rate recorded (or simulated) at the outétthe catchment, G- sediment load
available on road surface at the beginning of ie-step [g.1if], At = computation time-step (= 5
min), G, G, = wash-off model parameters. When runoff occurs>(Q), the sediment storage is
updated at each time-step from the suspended Isalibwashed-off at the previous time step.(M

= M; - G x g x At). The model hence simply requires td be specified at the beginning of each

rain event (corresponding procedure is discusséueimext section).



M ODEL CALIBRATION AND UNCERTAINTY ANALYSIS

Bayesian inference and MCMC sampling

Formal Bayesian techniques have often been suctlgsapplied in hydrological modelling and

clearly offer opportunities for a robust assessnuérgarameter and predictive uncertainty (Bates
and Campbell 2001; Del Giudice et al. 2013; Lilet2@11; Schoups and Vrugt 2010; Yang et al.
2007). In this study, a Monte-Carlo Markov Chain GMC) sampling method based on the
Metropolis-Hasting (1970) algorithm (M-H) is adogtéor calibration and uncertainty analysis of

the exponential wash-off model.

Under the formal Bayesian approach, model’'s outclona set of parametéris expressed as a
probability density function of model parameter§|Bj that can be derived from prior knowledge
about model parameterstlpupdated by observations D. Assuming non-informeafe.g uniform)
prior P@), the posterior probability density function of deb parameters B{D) can be shown to
be proportional to the likelihood function L{)|which measures the probability of simulation
errors and reflects the structure of the residbatsveen observation and model outputs. Once the
likelihood function specified, posterior paramedéstribution PQ|D) can be estimated numerically
from the M-H algorithm which generates a randomkwihrough the space of parameters that

converges to the posterior probability functiof|B] (Chib and Greenberg 1995).
Error model formulation

The specification of a likelihood function directiglates to the selection of a statistical errodeto

to describe the residualsleetween model outputs and observations (Schoupd/amgt 2010). In
many applications, residuals have been assumee iodependent, homoscedastic and normally
distributed e- N(0, 6¢). Under such hypothesistfD) can be computed from:

P(6|D)D |_(D|¢9)=|j[\/%%2 ex;{—;j&zﬂ ()

Unfortunately, such assumptions are generally disteain both natural and urban hydrology,

especially when dealing with high frequency flowesaor water quality measurements (Del Giudice
et al. 2013; Sage et al. 2015), and recent resuligest that strong violation of these statistical
hypotheses may lead to erroneous estimation ohpatea and prediction uncertainty (Dotto et al.
2013; Evin et al. 2013; Schoups and Vrugt 2010;efhst al. 2009). In this study, a non-normal



autoregressive AR(1) error model and log-sinh vexéastabilization technique (Del Giudice et al.

2013; Wang et al. 2012) are thus introduced foiloaemealistic bias description:

6 =0 Yini)~ d Woe)) =0% &1+ 3)

9(Yn) :%Iog[sinh( a+ bysimiﬂ (4)

Where: yps; = observations, ¢4, = model outputs, ;e= residuals in the transformed spages
autocorrelation coefficientg; = stochastic innovations, a and b = log-sinh fi@nsation
parameters. Assuming that innovatieng$ollow a Student-t distribution with standard d&ion o
andv degrees of freedom, the likelihood function becsif¥ang et al. 2007):

dy

(5)

Y

v+1 v+l v+l v
L(9| D) B F[T) i " eoz 1_,02) 2 dg N r[?j 1 1+ giz 2 dg
- v _ (v-2)o° dy D v g’\/ﬂ(v—z) (v-2)o®
r(g) o2 (3
Where: N = number of observatiorss= innovations at the"itime-step, |dg/dy| = derivative of the
log-sinh function]' = Gamma function. Note that for the first timepsegis here assumed to follow

the same distribution ag as suggested in previous studies (Evin et al32¥&ng et al. 2007).

Uncertainty analysis implementation

So as to evaluate the benefits of a statisticaltyact bias description, wash-off model calibrati®n
conducted for both the “standard” and “improved.g(eautoregressive, heteroscedastic and non-
normal) error models with corresponding likelihdoactions (Eq. 2 and 5). M-H algorithm is run
for 100.000 iterations from a previously identifiedaximum likelihood estimate and jump
probability is automatically adjusted to approxiglgtachieve a 23% acceptance rate (see Roberts
et al., 1997). Because pollutant accumulation oersurface of the road is not represented in this
study, the sediment storage &Vailable at the beginning of each rain event igisadd from a
simple least square optimization at each iteratwénthe M-H algorithm, and the calibration
procedure thus solely investigates the uncertaasiyociated with the intra-event variability of
pollutant concentrations and wash-off model paransefFitted Mvalues are here assumed to range
from 0 to 20 g/m?, in accordance with previousrétare results (Deletic and Orr 2005; Vaze and
Chiew 2002; Zhao et al. 2011).



Posterior probability distribution for wash-off meld parameters Cand G as well as
autocorrelation coefficient and log-sinh transformation parameters a and lestienated jointly
within the Bayesian framework for uniform prior glibution P@). For the second likelihood
function, the optimal value for the degrees of di@av of the Student t-distribution is determined
after performing calibration for different value$ @ and checking corresponding innovations
against their theoretical distribution, followiniget approach of Yang et al. (2007). Parameter and
total predictive uncertainties (combining stochasirors and parameter uncertainty) are finally
propagated by running the model for 5.000 setsachmeters sampled from the estimated posterior
distribution P@|D) to generate confidence intervals for both tefdard” and “improved” error
models. For each sample, a random error term (@auggite noise or auto-correlated bias with
Student-t innovations) is hence added to modelusitip compute total predictive uncertainty. (A

detailed methodology for the calculation of confide intervals can be found in Li et al., 2011)
BMP MODELLING AND PROPAGATION OF UNCERTAINTY

Stormwater management modelling

A conceptual BMP model is adopted to assess tleetedff uncertainties associated with pollutant
wash-off dynamics for the modelling and the evabtmatof on-site stormwater management
practices. This model was initially developed togliate both volume control (e.g. capture and
abatement of some fraction of runoff) and flow-ratmtrol strategies (e.g. storage and release of
captured volumes). The facility consists in a sengtiorage unit, providing volume control through
infiltration or evapotranspiration, and from whidischarge may either occur as overflow (volume
control only) or release at controlled rate throagfiow limiting device (cf. Fig. 1). The model,
intended to provide a relatively detailed descoiptof the hydrological processes in the facility,
may be described as more sophisticated than seokthle approaches adopted to evaluate the
effect of source control-systems for larger scalelies (Burns et al. 2012; Freni and Oliveri 2005;
Petrucci et al. 2013) and somehow similar to thePBfdature implemented in the United States
Environmental Protection Agency Storm Water Managi@nModel (Rossman 2010). While the
ability of source-control systems to provide stormsy treatment is often considered (Wild and
Davis 2009; Wong et al. 2006), a strictly hydrotadi modelling approach is here adopted, and
specific processes such as settling or adsorptiennat accounted for: pollution control hence
simply results from the volume reduction associatétl infiltration and evaporation. This choice

is chiefly motivated by (1) the finding that loadductions do not systematically result from a



decrease of pollutant concentrations at the oatfléte facilities (Bressy et al. 2014; Trowsdalel an
Simcock 2011) and (2) the large uncertainties sumdong stormwater treatment modelling that
heavily relies on observations (Imteaz et al. 2013)

Overflow and

Inflow (runoff and Evaporation discharge at
concentrations) controlled rate
= Vs
Inflow (runoff and Evaporation
concentrations) Overflow
- / —

L

; huax = he [ g = h I Q
P

Fig. 1a Infiltration Fig. 1b Infiltration

Figure 1 - Conceptual BMP model- 1a: volume reduc8trategies, 1b: flow-rate control
strategies

The BMP can be described by its relative size Ipr@ssed as the ratio of infiltration area to
drainage area), a maximum water elevatigaxi(mm), a permanent interception depth(tmm) (in
the case of volume control strategigs=Hwax) and a maximum outflow ratey@x (I.s*.ha') (flow
rate control strategies only). Outflow rates areehealculated from a simple orifice function
assuming that (hx is reached at the maximum water elevatigixh A Green-Ampt model
coupled with a conceptual soil moisture redistitrutscheme introduced by Milly (1986) is
implemented to simulate infiltration and evapotraretion fluxes are calculated from
meteorological records (Penman-Monteith referenc@petranspiration). As compared to
conventional BMP models which often rely on simglpproaches to simulate soil moisture
redistribution (or simply ignore this process) (Bre et al. 2008), this model explicitly accounts
for the variations in water content within the spibfile and their influence on infiltration rates.
While lateral infiltration is sometimes considerid specific BMP designs such as infiltration
trenches (Freni and Oliveri 2005; Freni et al. 280%catelli et al. 2015), the model adopted here

only simulates vertical infiltration (assuming thlé shape of the facility is not too elongated).

Because the infiltration-redistribution model ragsisoil hydrodynamic parameters to be specified,
a soil description based on the United States Deyeat of Agriculture classification (Rawls et al.
1982) is here adopted (soil type may hence be seeran additional model parameter).
Concentrations in the storage unit are finally cated considering the BMP as a perfect reactor

where runoff inflow instantaneously mixes with stwater



.Propagation of uncertainty

So as to clarify the benefits of a statisticallyrreat bias description (consistent with the
assumptions about the residuals), predictive ananpeter uncertainties are propagated through the
BMP model for both the “standard” and “improved’rar models. BMP model response is
evaluated from the annual pollutant load reducaéficiencyn simulated for 2 designs scenarios
(cf. table 1). The approach adopted for the propagaof uncertainties is similar to the one
described in the previous section (for the produrcidf confidence intervals), although a lower
number of run (500) is here performed due to thenmdational cost associated with BMP
modelling. (Because the purpose of the procedute iBustrate the potential effect of modelling
uncertainties rather than providing a precise eston of the distribution of simulated efficiencies
the use of a larger number of simulations is naeassarily required. Further details can be found in
Table S1 and S2).

Design scenario b (%) he (mm) huax (MM)  Quax (I/s/ha)  Soil Type
Volume reduction 1to 10 100 100 0 Silt Loanm’
Flow rate control 5 0 400 5 Silt Loant

Table 1 - Configuration of the BMP model for thepagation of uncertaintiesqumulative runoff
volume associated with each containércorresponding saturated hydraulic conductivity6is
mm/h)

A simple linear reservoir model is implemented émerate runoff volumes from an urban street for
a 1-year rainfall record (Paris region, 01/06/28®1D1/06/2008), considering 1mm initial losses, a
108 m.s* infiltration through road surface (in addition efaporation) and a 1-min lag time to
simulate flow routing (proposed parameterizatiorb@sed on the observations of Ramier et al,
2011). TSS concentrations are computed from sirdlatnoff volumes and used as inputs of the
BMP model.

Here, the use of simulated flow-rates is essentiaktified by the absence of records for some
periods of the observation time-series (Sage &(dl5) and the need to evaluate BMP performance
from a more representative array of rain eventcaBse the wash-off equation requires initial
sediment load M{t) to be specified at the beginning of each rainngvaypotheses regarding
pollutant accumulation are necessary to generateetration time series. The widely used Alley

and Smith (1981) accumulation model is thereforeptetl, assuming that accumulation occurs



whenever rainfall stops at very fast rate (95% &gdn? equilibrium load reached within a day),
which has been found to be acceptable in numenmases (Kanso et al. 2006; Sage et al. 2015;
Shaw et al. 2010).

RESULTS AND DISCUSSION

WATER QUALITY MODELLING
Error model consistency

As shown in figure 2, the standard assumptionsndependent, homoscedastic and normally
distributed residuals clearly do not hold in thisdy. It can be noted that residuals here exhibit a
very strong first order autocorrelation (R=0.81)g(R2b) which may result from model structural
errors (Beven 2005) and is probably exacerbatedthey relatively high frequency of the
measurements (5 min time step) (Del Giudice et28l13). In comparison, the improved
(autoregressive with Student-t innovations anddimip transformation) error model appears to be
much more consistent and diagnostic plots (Figid®2@e) indicate that corresponding statistical
assumptions are not strongly violated (best agraemoeobserved residuals is obtainedyor 3).
More specifically, figure 2f shows that the heasifed Student-t distribution better describes large

and relatively infrequent errors than the Gausdiatribution does.
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Model performance

The accuracy of the wash-off model is first evaddatising the Nash-Sutcliffe efficiency coefficient
(E) computed for non-zero values of TSS concemwinati The overall performance the model
remains very similar for both calibration approaghathough a slightly lower value of E (0.84 vs.
0.86) is obtained for the improved error model asesult of variance stabilization (log-sinh
transformation) which requires the model to fit mlev portion of the pollutographs (Dotto et al.
2013). This difference nonetheless remains veryaraid as the log-sinh transformation tends to
preserve the least square nature of the likeliHmiter than other variance stabilization method do
(Del Giudice et al. 2013).

As shown in Sage et al. (2015), turbidity time-sgniecorded at studied site however exhibit a large
seasonal variation which limits the applicabilitiytbe Nash-Sutcliffe criterion since the average of
observation becomes a poor predictor of refereinoe series (Schaefli and Gupta 2007). Besides,
because the sediment storagedvadjusted at the beginning of each rain eveaetjodel should be
expected to “naturally” replicate the inter-eveatigbility of TSS concentrations. The application
of a simple constant concentration model adjustedeich rain event indeed results in an only
slightly lower efficiency (E=0.79), which suggesitsit model performance regarding the intra-event
variability of concentrations is in fact relativepoor (cf. Fig 2a and 2c) despite high E values.
Nevertheless, detailed inspection of simulatiomltssndicate that the wash-off model still remains
a better predictor than event mean concentrationg8% of the events and that the mean absolute

percentage error for TSS predictions does not &k26@6 for half of them.
Uncertainty analysis results

Posterior parameter distributions estimated throtingh M-H algorithm for each error model are
presented in figure 3. In the case of wash-off fecieht C;, calibration results clearly demonstrate
that a change of the likelihood function can dracadiy affect the posterior distribution of model
parameters, which is consistent with previous figdi (Bates and Campbell 2001; Dotto et al.
2013; Schoups and Vrugt 2010; Yang et al. 2007)ilé\the value of €is mostly driven by high
concentrations for the standard error model (assalt of the least-square nature of Eg. 3), the
improved approach requires the model to fit a laggertion of the measurements and assigns
greater probability to large prediction errors fhetailed distribution of the innovations) (Schoups

and Vrugt 2010), resulting in higher uncertaintyd asignificantly different values for C



Contrariwise, posterior distribution for the secomdsh-off parameter L£Ldoes not significantly
differ from a calibration approach to another angl v@lues thus probably remains equally
acceptable regardless of the magnitude of outputerdrations.
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Figure 3 — Distributions of model parameters fotlberror models.

The difference in the distribution of model paraenet does not necessarily result in large
differences in simulated concentrations (cf. figdyeA possible explanation is that, for several ra

events, the adjustment of the initial sediment Idafl,;) might actually compensate for the
differences in € and result in an equally good fit to the measurdmeNonetheless, further

comparison between the concentrations compute@doh calibration approach indicates that (1)
more significant differences may as well be obseérfee other rain events (cf. figure 5a) and that
(2) slightly different wash-off dynamics are actyaimulated, with higher concentrations at early

stages of runoff in the case of the improved emodel (cf. figure 5b)

1000 - 0 1000 0
Fig. 4a ' Fig. 4b '

-~
[42)
[=]
T
=

500

=]

Flow rate (mm/h)
(o]

Flow rate (mm/h)

TSS concentration (mgA)
(4]
o
o

TSS concentration (mgA)

18:00 21:00 00:00 18:00 21:00 00:00
Time Time

Figure 4— Simulation results for the 10/04/2013 event-standard error model, 4b: improved

error model. Black dashed: measured concentratieabg black line: simulated concentrations,

light shaded area: 5-95% total uncertainty, dahaded area: 5-95% parameter uncertainty and
black area: flow rate over street surface

Further comparison between the standard and imgrocadibration approaches can be done by



comparing confidence intervals generated for eadr enodel. As shown in figure 4, the effect of
parameter uncertainty does not significantly diffeem an approach to another, despite the
differences in both optimal parameter values and thspersion of posterior distributions.
Conversely, the standard error model clearly predumrealistic confidence intervals for the total
predictive uncertainty as it does not account ler dutput dependence of the residuals (cf. Fig 4a).
Besides, the simple addition of a random Gaussmserto simulated concentrations does not only
result in unreliable coverage of uncertainty bgbaflail to capture the temporal variability of the
stochastic error (Dotto et al. 2011), and it isyetlear whether such approach is acceptable if one

seeks to propagate uncertainties though anotheelnjcid next section).
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Figure 5 — Comparison between the concentrations simulateddch error model(Results shown
at the maximum of likelihood)

PROPAGATION OF THE UNCERTAINTY IN THE BMP MODEL

Simulation results for the propagation of the utaiety associated with pollutant wash-off
dynamics through the BMP model (cf. table 1) arewshin figure 6. For both design scenarios,
total pollutant load reduction simulated for the standard and improved error reumificantly
differs as a result of water quality model parametéion. Because estimates of wash-off
coefficient G based on the improved calibration approach are dllnwice as large as for the
standard one (cf. Fig. 3), the water quality madelulates a faster sediment wash-off and therefore
produces a more pronounced decrease of TSS coattensr at early stages of runoff (cf. Fig 5b).
As a consequence, first millimeters of runoff, Basaptured in the BMP, represent a larger fraction
of the total washed-off sediment load, resultingpigher values fon. Besides, it may be noted that

n remains systematically higher than the volume c&dn efficiency (cf. Fig. 6). These results



suggest that accounting for the temporal varigbitf pollutant concentrations is probably
necessary to assess the performance of stormwateagement strategies, although simulation
results may depend strongly on water quality mpdeameterization.
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Figure 6— Comparison Results for the propagation of theestainty in the BMP model:
distribution of load reductions (in %). 5a: volume reduction scenario, 5b: flowteaontrol
scenario

Surprisingly, while the magnitude of clearly varies from a posterior distribution too#mer
(depending on the value of)Cthe uncertainty in model outputs, representethbydispersion of,
remains very similar for the two error models amaistpresumably do not depend on error structure.
This uncertainty in BMP model outputs however dows solely originate from calibration
uncertainty: in the case of the volume control acen simulated efficiencies for the first and last
percentile of G(for the posterior distribution computed with tingproved error model) for instance
exhibit only a 1.4% difference, which remains maderas compared to the dispersipshown in
figure 6a (2.5% difference between the first arsd fgercentiles). This result therefore indicate tha
the propagation of a stochastic error term to asttar the uncertainty in TSS concentrations does
influence BMP model outputs, although the structofethis error (statistical properties and
temporal variability) apparently has no effect anidated efficiencies. Nonetheless, the similarity
in the dispersion of for the two approaches might be related to theothgsis of a nearly invariant
initial pollutant load M(;) which reduces the variability of simulated cortcations and thus

limits the incidence of the homoscedasticity assiondor the standard error model.

Comparison between the volume and the flow-ratetrobrscenarios does not reveal major
differences in the uncertainty associated with BMBdel outputs. However, because previous

approach only partially explores the relation betweBMP design and the dispersion w@f



propagation of the uncertainty is additionally penied for different values of the surface ratimb i

the case the volume control strategy.
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Figure 7— Results for the propagation of the uncertaintthancase of the volume reduction
scenario with the improved error model: Uncertaintgimulated efficiency as a function of BMP
area. The dashed black line gives the 1-99% coméelenterval for simulated efficiency. (Results

interpolated from the distributions calculated I6rvalues of b)

As indicated in figure 7, the dispersionmp€learly tends to decrease as the surface ratioreases
and the difference between the first and last peilean simulated efficiencies ranges from 4.6% to
1.3% for b = 1% and 10% respectively. However,rttagnitude of is as well strongly influenced
by b: the reduction in model output uncertaintieslarge values of b is therefore very expectable
since an important fraction of the total runoff wmle is captured in BMP, resulting in a very
limited effect of the variability in TSS concenimat. Besides, it is finally important to acknowledg
that, regardless of the value b, the dispersion @mains very moderate, and should probably be

regarded as negligible given the numerous assungpéissociated with BMP modelling.

CONCLUSION AND PERSPECTIVES

Calibration and uncertainty analysis of a commamged wash-off model was conducted using a
formal Bayesian approach, considering two differemtor models, either (1) based on the
unverified assumption of homoscedastic, independedtnormally distributed residuals (standard
error model) or (2) assuming heteroscedastic atmtegressive errors (improved error model). For

both approaches, the uncertainty associated witbrvgaiality modelling was propagated through a



conceptual BMP model, whose response was evaldated the total pollutant load reduction

efficiency simulated over a 1-year period. The ltssef this study can be summarized as follow:

* In the case of pollutant wash-off modelling, goggement with the statistical assumptions
about the residuals could be achieved with therbstedastic and autoregressive error
model (for Student-t innovations). Parameter dstion estimated for the improved
calibration approach significantly differed frometlone obtained with the standard and
unverified hypotheses. Besides, the standard enomtel was found to produce unreliable
predictive confidence intervals due the heterosstirity of the residuals. Further research
is however needed to identify the most importaatigical hypotheses to be verified for a
robust assessment of parameter uncertainty. Itidhedso be pointed out that, while the
methodology adopted in this study does allow fataistically correct bias description, it
does not explicitly address measurement uncergirsind could hence be improved on the
basis of advanced error models (Kavetski et al62B@Qiczera et al. 2006) which have yet

essentially been applied to large scale rainfatiefiModelling.

* The magnitude of pollutant removal efficiency siated by the BMP model after
propagation of the uncertainties associated witBhaaff dynamics significantly differed
from an error model to another as a result of tifeerénces in parameter posterior
distributions. This finding therefore indicates ttiBMP model outputs are in fact quite
sensitive to the intra-event variability of inflosoncentrations and suggests that erroneous
representation of the pollutant wash-off dynamicaynbias the assessment of the
performance of Best Management Practices (BMP}YhEuinvestigation is however needed
to evaluate the importance of runoff-quality modglias compared to other model
components, such as the rainfall-runoff transforomabr the BMP sub-model, which may

as well introduce uncertainties in simulated effiaties.

For both the standard and improved approachesytpotl removal efficiencies simulated by the
BMP model were found to exhibit a very similar disgon. While the use of a statistically correct
error model is clearly needed for calibration, st yet unclear whether it is justified for the
propagation of uncertainty through another modedsi@es, the uncertainty in model outputs
apparently remained very moderate regardless of BEgn, which casts doubt on the necessity
of accounting for the uncertainty associated with intra-event variability of concentrations in

runoff.
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