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I mplicit integral equationsfor modeling systems
with atransport delay

Delphine Bresch-Pietri and Nicolas Petit

Abstract In this chapter, we present a particular class of transpelgydsystems
(e.g. systems involving transportation of material), inichhthe delay is defined
through an implicit integral equation. To illustrate thegtical interest of this class,
experimental use of such models is presented for two diffeneamples of physical
systems, both from the field of automotive gasoline engispedifically, exhaust
gas recirculation and exhaust catalyst thermal dynamitgs)also discuss related
control challenges, together with some solutions.

1 Some mativationsfor investigating transport delay modeling

Time-delay systems have been widely investigated in thedesde following the
rise of telecommunications and network exchanges. Duest@tactical relevance
of such cases, this research effort has yielded a subdtaanti@er of monographs
and studies devoted to time-varying delays [4, 31, 44]. is field of research, the
variability of the studied delay is usually unstructurechother important class of
delays consists in the ones arising from transportationaienal. Prime examples
of such physics-driven systems are mixing processes [33igfaid or gaseous flu-
ids, chemical reactors [17], automotive engine and exHmesf21], heat collector
plant [38], and blending in liquid or solid networks [10],name a few.

Despite this record, control oriented modeling and cordesign for transport
delay systems is still an underdeveloped field. The varyelgys are either repre-
sented by purely uncertain time-varying models or, in thesivoase, by a constant
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mean value. Yet, in all the above mentioned applicatioresigy variability is strong,
especially because it depends on the past values of theotwatiablé.

This chapter aims at filling the gap in this area by stresdiegrélevance of a
particular class of time- and input-dependent delay defthesligh the following
implicit integral equation

/t p(s,u(s))ds =1, ©>0 Q)

—D(t)

In this equation, which covers the examples mentioned ghibeedelayD appears
in the lower bound of the integral andis a strictly positive function that depends
on the manipulated variable and on the time. Such a model is commonly used
in process and chemical engineering industry (see [45] aenty [42]) and even
owns a dedicated block in the simulation software Sim@rR0], Variable Trans-
port Delay. Nevertheless, it is infrequently employed in the controeunity.
Further, the input-dependency of this model is often negtband has seldom if
never been studied theoretically (see the correspondsayisision in [37], in which
the crushing-mill example that is outlined fits into the fiamork of this chapter).

In this chapter, the model (1), proposed for the first timedi@][for plug flow
vessels up to the authors’ knowledge, is highlighted anevatto be representative
of a wide class of systems involving transport of materialilllistrate its practical
interest, experimental use of this model is presented fordystems from the field
of automotive gasoline engine: the temperature at the etlodthe catalyst, and the
exhaust gas recirculation. Even if control design is natatly in its scope, related
challenges are also discussed, together with some pdtsoltidions.

The chapter is organized as follows. In Section 2, the trarisi@lay model (1) is
presented in details and discussed. Then, after some diewiszontext, Section 3
focuses on the design of a control-oriented model for catagmperature, in which
a transport delay appears. Section 4 proposes to apply thikelnio capture the
dilution dynamics occurring in a gasoline engine equippét urned gas external
recirculation loop. Finally, as a conclusion, control gisilare exposed in Section 5.

2 Implicit integral delay equations

The implicit integral equation (1) defines a transport delaywhich ¢ should be
understood as a normalized velocity. To illustrate thismpoive formulate the fol-
lowing result.

Lemma 1. Consider a fluid flow with varying speedt) > 0 through a pipe of
length L, as depicted in Figure 1. The propagation tirfeof the fluid through the
pipe, if finite, is defined according to the integral equation

1 In particular, if the input varies to counteract the lag efiieby means of anticipation, the lag
varies in an implicit and possibly malicious fashion. This raisascerns about stability, in both
open and closed loop scenarii.
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v(t)

£(0,t) §(L,1)

Fig. 1 The transport of a variablewith a varying speed(t)

/t v(s)ds =L (2)
t—D(t)

Proof. Formally, this integral equation can be directly obtaingdobserving that
the quantitys(z, t) travelling through the pipe satisfies the transport PDE

&S +ovt)e, =0, z€]|0,L]

with v(¢) > 0. Consider a given time > 0 and, forr > ¢, the change of variable

w(r) = g(/tTu(s)ds,T>

which satisfiesv, = 0. Thereforew(7) = w(t), 7 > t. Now, if it exists, consider
r(t) such that

r(t)
/ v(s)ds =L
t

and, otherwise, defin®(¢) = oo. Taking a derivative of this relation with respect
to ¢, one can obtain thatis invertible as% = v("r((tt))) > 0. Therefore, introducing
D(t) =t —r~1(t), this relation can finally be reformulated as

t
/ v(s)ds =L
t—D(t)

which is the integral relation (2). The proof is complete lyserving that, either
D(t) = oo, Or

§(L,r(t) = w(r(t)) = w(t) = £(0,1)

which is equivalent tg(L, t) = £(0,771(t)) = £(0,t — D(t)), i.e. the delayD(t)
between the output and the input of the system satisfies (2).

Therefore, the delay induced by the transport of a fluid flothwarying speed
v(t) > 0 through a pipe of length. belongs to the class of model (1), with
(s, u(s)) = 2 When the flow speed depends on the input, this delay in input-
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dependent. The model (2) can be interpreted as the geragi@tizof an intuitive
propagation time model, for which the delay is defined as #ti® between the
length of the pipe and the gas speed. This situation cornelspio the steady-state
case, for which the gas speed is constant and is indeed day ¢\

2.1 Properties

Property 1.The delay defined through (1) is indeed a transport delayersémse
thatD(t) > 0 andD(t) < 1fort > 0.

The second property guarantees that the plant is causathaéno input values
older than the ones that have already reached the systermeaah the plant, as
4 (t—D(t)) > 0,t > 0. In other words, the input signal direction is never revéyse
which ensures that the physical phenomenon is causal.

Proof. The positivity of D follows from the one ofo. Indeed, ift — D(t) > ¢, then
the left-hand side of the equation is non-positive, whicalisurd. Second, taking a
time-derivative of (1), one can obtain

|- by ehu(®) »

p(t = D(t), u(t — D(t)))

asy is a strictly positive function.

2.2 Numerical calculation

As this point is crucial in practical applications, it is wiohighlighting the fact that,
even if the transport delay defined through (1) cannot beytoally expressed, as
underlined in [46], it can still be calculated numericaliytie history of functionp
is knowr.

Indeed, the functioD +— j;f_D(t) ©(s)ds is a strictly increasing function, equal
to zero for a zero delay. Therefore, a simple procedure tluatathe current value
of the delay consists in evaluating the value of (a samplesia& of) this function
for increasing delay values, starting with = 0, until reaching a certain boufd
say the valuel. Such a procedure, which is real-time compliant, is illatgd in
Table 1.

2 The procedure proposed here is not exactly the one proposé@limfhich relies on z-invariance.

3 The sampling method may not involugt) if the control law is computed according to the delay
value.

4 If reachable, which is the case for exampleifias a strictly positive lower-bound. Otherwige,
can be evaluated as infinite after a certain number of itersitio
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Algorithm 1 D = CalculateDelay(u(1:N))

int = 0;

for i = 0:N-1
%Calculate the past value of phi at time
%(N-i)*Ts and the corresponding integral
phi = getvaluephi ((Ni)*Ts,u(N-i));

int = int + Ts«xphi;
% Check if the integral is equal to 1
if int >=1
D = ixTs;
break ;
end
end
D = inf;

Table 1 Example of delay calculation procedure for the integraktyglation (1). Purposely, the
integral sampling does not involve the current input valgg.

We now present two examples of physical systems that inviohresportation
of material and for which the resulting delay transport camindeled according
to (1).

3 Application to the design of a control-oriented temperature
model for Spark-Ignited engine exhaust catalyst

3.1 Context and motivations

Automotive Spark-Ignited (SI) engines are equipped withhae€&-Way Catalyst
(TWC) located in the exhaust line. This after-treatment ck\aims at reducing
pollutants resulting from the combustion. Yet, conversditiency highly depends
on the catalyst (distributed) substrate temperature ]9 herefore, it is of critical
importance to control the combustion according to the gatabmperature state,
in particular during light-off phases after a cold start.viigheless, no sensor is
commercially embedded to provide such an information amglriecessary to rely
on a model to perform this task.

Unfortunately, existing catalyst temperature models psepl in the literature
are: either mean-value models [25], which do not take intmant the inherent
distributed nature of the catalyst and can therefore ravighlly inaccurate (when
one is interested in the temperature at a given location, @dets can be tuned
accordingly and reveal satisfactory for control purposes.to account, e.g., for the
catalyst ageing, it may be useful to estimate its tempegadtidifferent locations,
which cannot be done with sufficient accuracy with such a ledpodel); or Partial
Differential Equations (PDE) [12,26,33], discarded fraalrtime implementations
by their induced computational burden.
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Here, in view of obtaining a model of limited complexity, & iaken advantage
of the fact that, as this system involves transportation afemal (exhaust gas), it
can then be included in the vast class of flow processes abbgrthis chapter and
represented by a transport delay of type (1). This resulbtained by designing
a semi-lumped approximation of the underlying PDE equatiéior sake of con-
ciseness, these design elements are not presented hehe lnterested reader is
referred to previous works detailing them [8, 9].

3.2 Approaching the temperature dynamics by a first-order
equation driven by an integral transport delay

A schematic representation of the thermal exchange oocumside the monolith
is given in Figure 2. Exhaust burned gas enter the monolith-at) and convective
exchange with the wall occur all along the monolith, i.e.dfoe 0 tox = L. This

yield inhomogeneous distributed temperature profilestiergasT, (x,t) and the
catalyst wallT,,,(z, t)® which are governed by the following equations [27]

or,

ot ($,t> = kl(Tg(xvt) - Tw(xat)) —+ ![/(Qf,t,Tw(J?,t)) (3)
g 28, = ko(Tu(,0) — Ty, 1) @

wherern, is the inlet gas mass flow raté;, k» > 0 are given positive physical
constants ang is a distributed time-varying source term, related to thencical
reaction occurring inside the catalyst.

To represent the source tenm following [27, 28], we propose to consider the
pollutant conversion effects as a second temperature Tigriccurring at a virtual
position L,. inside the catalyst. Indeed, for steady-state conditiensrgy balance

Tw(2,1)
Released enthalpy L
Ty(x,1)

o X

; } >
z L

Convection (hy) Conduction
_____________ d4-—-————p

Fig. 2 Schematic view of the distributed profile temperature insidetalyst jointly with thermal
exchanges.

5 The axial conduction in the solid can be neglected [40, 43]
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for the system can be written as

N
1gCpg (T4(0) — T4(L)) +n(Tw(Ly)) Z AH;[z;]in =0
—_— i—
éTeq i=1
where [z;];,, are the inlet pollutant concentrationSp, is the gas heat capacity
and AH; is the unity enthalpy relative to the conversion of the palfti:. Typi-
cally, three main pollutants are consideréd & 3), i.e. hydrocarbons (HC), car-
bon monoxide (CO) and nitrogen oxides (NOThis results in the definition of an

equivalent temperature

N
Teq - Z Gl [xz]zn (5)
i=1
in which the steady-state gains can be calculated as= n(Tw(Ln))mAgg;g- In

practice, the pollutant concentrations are not measureddmbe effectively esti-
mated, e.g. by look-up tables.

Claim 1 The wall catalyst temperature at positidn, can be efficiently rep-
resented as

Tw(t, Ly) =T, (t) + T (t) (6)
whereT'" satisfies
Ty th
T(Ln’t)w =—T,'(t) + T4(0,t — D(Ly, 1)) (1)
andTY satisfies
ary
T(Ln_Lrat)d_tw :_ng)(t)"i_Teq(Oat_D(Ln_Lrat)) (8)

in which T, is given in(5), the time constant and the delayD are defined
forz € [0, L] as

T(x,t) = k:il + vé(x,t) 9)
D(z,t) = (1 —v)d(x,t) (20)

with v a given constant ifi0, 1] and ¢ defined through the integral equation
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/ t m Thg(s)ds = @ (11)
t

—0(z,t) k_2

The proof of this claim can be found in [8].

T,(0,1) First-Order + Delay
Model (L)

T Lo 1)

L,
G
]

First-Order + Delay
Model (L,, = L,)

Efficiency model

Fig. 3 Proposed catalyst temperature model (6)—(11). The pollutantecsion effect (HC, CO
and NQ,) are assimilated to a front of temperatdrg, propagating on a virtual length,, — L,
while the gas heating occurs on the complete lergihThe model is also fed by the gas mass
flow raterng, which is not represented here for the sake of clarity.

The proposed model is grounded on the linearity of the dyodnnough a super-
position principle: the effects of the inlet temperatlig0) is distinguished from
the one of the pollutant conversion. The distributed terajpee of the catalyst is
then modeled as the sum of two similar input-delay equatidhg propagation
phenomena occurs on two different lengths. This model isid in Fig. 3.

Relation (11) is in the form (1) witlp(s, u(s)) = ’Z—;% which is a positive-
valued function. For an hybrid vehicle, the mass flow ratenisetuated variable
and this integrand function is input-dependent. Here, fihigpagation time can be
understood as a residence time into the monolith (see [A&])he two main effects
of the gas residence inside the monolith are transport acttberge with the mono-
lith, it can reasonably be separated into a first order dyosuwith a pure delay
effect.

The tuning parameter and the reactive length,. can be determined via dedi-
cated testings and allows this model to qualitatively repn¢ a relatively vast range
of catalyst devices.
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3.3 Validation of the reduced modé€6)—(11) using experimental
data

To illustrate Claim 1, simulation results of the temperatimside the wall catalyst at
two different locations are pictured in Figure 4 and comgdeeexperimental data.
The inputs used to evaluate the model (gas mass flow rate anithlghtempera-
ture) are data recorded during the European normalizayicle (NEDC). They are
pictured in Figure 4(b). In particular, one can observe thatconsidered gas mass
flow rate variations are quite large, which makes this teatlehging, as the model
time constants and delays depend on this quantity accotdifidL).

The simulated temperature in Figure 4(a) almost perfectycires the experi-
mental data. It is worth emphasizing that such a match cantithe obtained with a
0D model which inherently approximates the distributedgerature by an average
one: a compromise between representativity of the two teatpees would have to
be reached. Further, as these performances are obtaingdyatemanding external
conditions, one can reasonably expect similar behavioiiféerent kinds of driving
conditions. Use of this model for light-off strategies aigcdssed in [9].

4 Practical implementation for Exhaust Gas Recirculation for
Spark-Ignited engines

We now present a second application from the field of autoraangine, the Ex-
haust Gas Recirculation for Gasoline engine, for which tieppsed delay model is
of interest, as will appear in the sequel.

4.1 Context and motivations

To prevent the malicious knock phenomenon appearing atlbaghin downsized
Spark-Ignited engines, one of the solutions consideretienatitomotive industry
consists in using exhaust gas recirculation (EGR) throudiwapressure circuit
(see [20] or [36]). A typical implementation is represeniteérig. 5.

Yet, EGR has strong interactions with other simultaneowglgrating engine
controllers such as the regulation of Fuel-to-Air Ratio F5Ao stoichiometry (see
[21]). To counteract the impact of intake burned gas, a smiuwwould be to modify
the feedforward action on the cascaded controllers (ftielpantroller and ignition
path controller) based on a real-time estimatf the intake burned gas rate. Nev-
ertheless, no real-time sensor of this variable is embeitdaay real-world vehicle.

For this reason, the approach employed here is to substitgtsuch sensor with
a model. Again, this systems fits into the general framewdifloav processes, as
it involves transportation of burned gases on a relativg Idistance (between the
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9 S e
§ QOO oot i i e o TR
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(c) Available sensors with their location in test-bench féeti

Fig. 4 Comparison between experimental data and simulation resultmettaith the reduced
first-order input-delay model (6)—(11). Wall temperature ai tifferent locations pictured in 4(c)
and for the inputs represented in 4(b) are reported in 4(a).
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actuator, the EGR valve, located upstream of the compresshthe inlet manifold).
This leads to a large transport delay (up to several secagpandiing on the engine
specifications) which can be modeled by an integral relaifdgpe (1).

The main difficulty when using this representation arisesifthermal exchanges
and changes in gas velocity occurring in the intake line,ciwtare not directly
caught by (1). We aim here at illustrating how this complexian be handled by
presenting a relatively fair practical delay calculatioethodology to account for
these phenomena. This procedure is compliant with rea-tonstraints and has
been experimentally validated on a test bench.

Dair EGR
2 . [ Valve
(B) (A
il &) | ‘
Intercooler Pj. Ty

‘=‘ _ Dae

— Compressor ( \
i Intake VVT Exhaust VVT s

Exchanger

Fig.5 Scheme of a turbocharged Sl engine equipped with directtiojgd/VT and a low-pressure
EGR loop.

4.2 Modeling

Formally, the in-cylinder burned gas fractiop,; is defined as the ratio between the
in-cylinder burned gas mass originated from the EGR logp and the total mass
of gas in the cylinder volumei, s, = mair + mig, i.€.

Mpg

Teyl =
Mair + Mpg

From now on, this variable is considered equat tihe intake burned gas fractién

6 Actually, this relation depends mainly on the Variable Vahk@uator control strategy. We neglect
this influence here for sake of clarity.
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EGR burned gas

Xy xT
P Transport delay

Thermal contraction)

®

Fig. 6 Scheme of the intake burned gas fraction dynamics.

Dilution

Fresh air

Definingz;, as the burned gas rate upstream of the compressor, the EGRelyn
ics can be expressed as

1y =0 [ (Degr(t) + D (1)1 (1) + Degr (1] (12)
2(t) =a1,(t — D(1)) (13)

wherea is a positive constant),;, is the inlet air mass flow ratd)., is the
recirculated exhaust gas mass flow rate &1d), the delay between this ratio and
the intake composition, satisfies

t
/ Vgas(s)ds =Lp (14)
t—7(t)

whereL p is the pipe length from the compressor down to the intake folahand
vgas Stands for the gas speed.

Equation (12) is a balance equation on the volume downstoééime EGR valve,
using the fact that the EGR circuit is totally filled with bexhgas. According to
engine setups, the thermodynamics constaappearing in (12) is either measured
or known. Following the proposed model, which is pictured-ig. 6, the intake
burned gas fraction is the result of a first order dynamicptEmiwith a transport
delay. This transport delay is of the form (1) wiftfs, u(s)) = ”Lg—j) Because the
velocity of the gas is indirectly related to the amount ohteduced burned gas,
which is the control variable, this delay is input-dependas will reveal in the
following.

For sake of clarity, the approach used to model the mass fl@vgaantities
(Degr,...) used through (12) to provide an open-loop estimatahefvariablex;,
is not detailed here. The interested reader can refer twf@ufther details. In the
following, we assume that such an estimatgy and the different mass flow rates
are available.

To provide an implementable open-loop estimate dased on the model (12)-
(14), a practical calculation methodology of the delayusing only real-time mea-

7 For Sl engines, the FAR is regulated to its stoichiometric vésee [19]), which results into an
exhaust burned gas fraction close to unity. Note that this assomgtisrupts the potential link that
could exist between the intake manifold composition and thetestHae one, which could create
an implicit loop in our approach.
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surements, remains to be developed. Indeed, the veloditgafas is not a measured
quantity. Further, the thermodynamical transformatitvesgas is submitted to in the
intake line impact this velocity. These variations needdddken into account. We

now address this point.

4.3 Transport delay description

Using the ideal gas law (as is classically done for engindlgas, e.g. in [19]), one
can relate the gas speed to current thermodynamical consliéind mass flow rates,
which are measured/modeled. Namely,

L T

VE>0, vges(t) = S(t) P(t)

[Dair(t) + Degr ()]

where S is the current pipe ared,, P are the current temperature and pressure
values,r is, as previously, the (common) ideal gas constant of babhfrair and
burned gas.

A thermal contraction of the gas occurs inside the intakdezo®his results in
spatial changes of the gas velocity, s, pictured in Fig.5. To model this, we split the
intake line into three main sections with three respective @umulative transport
delaysD1, Dy, and D3 such thatD = Dy + D5 + Ds.

e downstream of the compressor to the intercoaiiethis part, the current pressure
and the temperature are measured and, respectively, aaéteqt;. and Ty..
Then, one can write

t TTdC
2 [Dair(s) + Degr(s)]ds = V4 (15)
t—D+ (t) dc

with V; the corresponding volume.

¢ inside the intercoolerconsidering boundary conditions, the pressure inside the
intercooler can reasonably be assumed as constant andteghal input one
Py.. Further, we assume that the spatial profile of the insid@égature is affine
with respect to the spatial variable, with measured bouyndanditionsT;. and
T;n:8. Under this assumption, equation (14) can be reformulatetthis section

as
thl(t) r Lo dl’
——[Dyir(8) + Degr(s ds:S/ —
/tDz(t)Dl(t) Pdc[ air (5) cgr(s)] *Jo T(a)

‘/2 CTint
=< ] 16
Tint - Tdc " ( Tdc ) ( )

whereL,, S; andV; are the corresponding length, area and volume.

Sie. T(z) = Tint=Taeg 4 7,
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e downstream of the intercooler to the intake manifdtdthis section, the tem-
perature can be approximated by the intake manifold tenyrerd;, ;, which
yields

t—Do(t)—D1(t) T.
/ T [ Din(5) + Deg(s)]ds = Vs (17)
t

—Ds(t)-Da(t)-Dy(t) Fde
with V3 the corresponding volume.

Knowing intermediate volumeg;, V> andVj3, one can calculate the delay in a very
straightforward manner, solving, one after the other, ,((B) and finally (17). The
transport delay is then simply deduceda§) = Di(t) + Ds(t) + Ds(t). The
numerical solving of these equations is addressed in $e2tband involves real-
time compliant operations. Real-time measurements of éeatpres and pressures
serve to determine the value of the delay. These informatiecommonly available
using embedded sensors. Values for physical voluigsl, andV3) can be used
to calibrate the model.

4.3.1 Experimental use of the proposed model

The modeling (12)—(13) can be used to estimate online th&eértturned gas rate. In
details, through the delay calculation methodology pregads the previous section,
one can build a “software” sensor, embedded into a real-tiom¢rol target and em-
ployed at test-bench. Experiments validating the delayeatiog and, in particular,

the integral delay model have been carried out. They arepted in [7].

5 Control stakes and open problems

As mentioned in [37], while a few works have investigated refmop design for
input-dependent delay systems (see for example [13—-1%jhwhvestigates a delay
model of type type (1)),closed-loop control for input-dependent delay systesms
still an open problem. The main difficulty arises from thetfdmat the delay is not
only varying but also depends on the control variable in a wayjch should be
taken into account while designing the feedback law.

In a nutshell, for time-varying delays, available techmig®ither employ a fre-
quency technique to study the sensitivity of the infinite benof roots to delay vari-
ations [31] or solve Linear Matrix Inequalities (LMI) to e stabilization [18].
Both techniques determine admissible feedback gain dépgioth a upper-bound
of the delay variations. Nevertheless, when the delay dipen the input, things
get very involved. Indeed, delay variations are then rdlatefeedback gain and
designing a stabilizing feedback law using these techsiduezomes an implicit
issue.
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In this section, we present some preliminary but encougadirections of work
for input-dependent delay of type (1).

5.1 Including the delay in the system state

For sake of simplicity, consider the non-linear dynamics
i(t) =f(x(t), z(t — D(t)), u(t), u(t — D(t))) (18)

in which D(¢) is defined through (1). Then, taking a time-derivative of, @nd
defining an extended state= [z z,.; = D]T, (18) rewrites

z(t), x(t — znt1),ul(t), u(t — zp+1
2_<f( (t) 1(_ 1), ult) ult =z >>> 19)

P(t—2nt1,u(t—2n41))

Then, this transformation allows to transform an inputyireg delay into astate-
dependent delaywhich is less complex to analyse. However, this configarati
problem is not directly tractable using currently avai&tmols for state-dependent
input-delays because the extra delay differential eqoaliongs controllability
questions. One possibility could be to blend this formolatvith the successive
interval approach employed in [15] to calculate admisditagectories.

5.2 Prediction-based controller for input-delay

Predictor-based control strategies [1, 29, 39] have beepgsed for time-varying
delay systems (see [32] or, more recently, in [24]). The ifethis technique is to
compensate the input delay by calculating a state predictier a time window of
which length matches the value of the future delay. Namelysier the following
linear plant

2(t) =Ax(t) + Bu(r(t))
r(t) =t — D(t)

with x € R™ andu € R™. Then, compensation of the delay is achieved by using
the control law

u(t) =Ka(r~'(t))

in which the feedback gaifi” is stabilizing. In other words, one needs to predict the
future variations of the delay to calculate the time horizoh(t). For example, this
is the approach followed in [41] for a time-varying dela trariations of which are
provided by a given known model. It has also been extended, 8] fo nonlinear
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dynamics and state-dependent delay, where variation$araaterized by a careful
prediction of the system state.

Nevertheless, determination of such an horizon may notaaipally achievable
when the delay depends on the input, because of the recipmt@actions between
the control (current and past) values and the delay. Theoeitlecently proposed
in [5] to use the current delay value as prediction horizanamalyse the closed-
loop stability, a two-step methodology was proposed tougiisthe loop between
input and delay. For an input delay satisfying

¢
/ u(s)ds =1
t—D(t)

it was shown that robust prediction-based stabilizatioadsieved provided that
the feedback magnitude gain is sufficiently small, accardanthe initial condition
scale.

This methodology consists in the following steps:

e Inafirst move, the input-dependent delay is considered ateament of the more
general class of time-varying delay. It enables then to usbast compensation
result which has been obtained for linear systems with tiarging input delay,
using the backstepping tools proposed in [23] for the amalygs input-delay
systems stability. Technically, this result guaranteedibzation provided the
delay variations are sufficiently small.

e In a second step, a more practical sufficient condition fabitization is ob-
tained by relating the delay variations to the control traglerror, which is anal-
ysed using the asymptotic convergence of delay differeetimations (DDE)
(Halanay-type inequalities [16]). The final sufficient cdimhs characterizes the
admissible feedback gain magnitude according to the imitindition scale.

Extension of this technique to the general delay model (&pismportant chal-
lenge that remains to be addressed. Further, stabilizetigystems with state delays
of type (1) is also a major question to be explored.

6 Conclusion

This chapter focused on a particular integral-type delagehonhich is represen-
tative of a large class of transport processes and yet stiérstudied in Automatic
Control. This last point was highlighted through the mauadiglof two subsystems
from the field of automotive engine control, the dynamics bfck involve a trans-
port delay and can be modeled accordingly. ExperimenteVagice of the proposed
model has been shown. Yet, various challenges remain winilim@ at controlling
such systems. In particular, the input-dependence of tlay detegral is often non-
negligible and should be taken into account. This pointilsast open problem.
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