
HAL Id: hal-01384486
https://hal.science/hal-01384486

Submitted on 20 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Implicit integral equations for modeling systems with a
transport delay

Delphine Bresch-Pietri, Nicolas Petit

To cite this version:
Delphine Bresch-Pietri, Nicolas Petit. Implicit integral equations for modeling systems with a trans-
port delay. E. Witrant; E. Fridman; O. Sename; L. Dugard. Recent results on time-delay systems:
analysis and control, 5, , 2016, Analysis and Control, 978-3-319-26367-0. �10.1007/978-3-319-26369-
4_1�. �hal-01384486�

https://hal.science/hal-01384486
https://hal.archives-ouvertes.fr


Implicit integral equations for modeling systems
with a transport delay

Delphine Bresch-Pietri and Nicolas Petit

Abstract In this chapter, we present a particular class of transport delay systems
(e.g. systems involving transportation of material), in which the delay is defined
through an implicit integral equation. To illustrate the practical interest of this class,
experimental use of such models is presented for two different examples of physical
systems, both from the field of automotive gasoline engines (specifically, exhaust
gas recirculation and exhaust catalyst thermal dynamics).We also discuss related
control challenges, together with some solutions.

1 Some motivations for investigating transport delay modeling

Time-delay systems have been widely investigated in the past decade following the
rise of telecommunications and network exchanges. Due to the practical relevance
of such cases, this research effort has yielded a substantial number of monographs
and studies devoted to time-varying delays [4, 31, 44]. In this field of research, the
variability of the studied delay is usually unstructured. Another important class of
delays consists in the ones arising from transportation of material. Prime examples
of such physics-driven systems are mixing processes [35] for liquid or gaseous flu-
ids, chemical reactors [17], automotive engine and exhaustline [21], heat collector
plant [38], and blending in liquid or solid networks [10], toname a few.

Despite this record, control oriented modeling and controldesign for transport
delay systems is still an underdeveloped field. The varying delays are either repre-
sented by purely uncertain time-varying models or, in the worst case, by a constant
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mean value. Yet, in all the above mentioned applications, the lag variability is strong,
especially because it depends on the past values of the control variable1.

This chapter aims at filling the gap in this area by stressing the relevance of a
particular class of time- and input-dependent delay definedthrough the following
implicit integral equation

∫ t

t−D(t)

ϕ(s, u(s))ds =1, ϕ > 0 (1)

In this equation, which covers the examples mentioned above, the delayD appears
in the lower bound of the integral andϕ is a strictly positive function that depends
on the manipulated variableu and on the time. Such a model is commonly used
in process and chemical engineering industry (see [45] or recently [42]) and even
owns a dedicated block in the simulation software SimulinkR© [30], Variable Trans-
port Delay. Nevertheless, it is infrequently employed in the control community.
Further, the input-dependency of this model is often neglected and has seldom if
never been studied theoretically (see the corresponding discussion in [37], in which
the crushing-mill example that is outlined fits into the framework of this chapter).

In this chapter, the model (1), proposed for the first time in [46] for plug flow
vessels up to the authors’ knowledge, is highlighted and shown to be representative
of a wide class of systems involving transport of material. To illustrate its practical
interest, experimental use of this model is presented for two systems from the field
of automotive gasoline engine: the temperature at the exhaust of the catalyst, and the
exhaust gas recirculation. Even if control design is not directly in its scope, related
challenges are also discussed, together with some potential solutions.

The chapter is organized as follows. In Section 2, the transport delay model (1) is
presented in details and discussed. Then, after some elements of context, Section 3
focuses on the design of a control-oriented model for catalyst temperature, in which
a transport delay appears. Section 4 proposes to apply this model to capture the
dilution dynamics occurring in a gasoline engine equipped with burned gas external
recirculation loop. Finally, as a conclusion, control stakes are exposed in Section 5.

2 Implicit integral delay equations

The implicit integral equation (1) defines a transport delay, in whichϕ should be
understood as a normalized velocity. To illustrate this point, we formulate the fol-
lowing result.

Lemma 1. Consider a fluid flow with varying speedv(t) > 0 through a pipe of
lengthL, as depicted in Figure 1. The propagation timeD of the fluid through the
pipe, if finite, is defined according to the integral equation

1 In particular, if the input varies to counteract the lag effects by means of anticipation, the lag
varies in an implicit and possibly malicious fashion. This raises concerns about stability, in both
open and closed loop scenarii.
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v(t)

ξ(0, t) ξ(L, t)

Fig. 1 The transport of a variableξ with a varying speedv(t)

∫ t

t−D(t)

v(s)ds =L (2)

Proof. Formally, this integral equation can be directly obtained by observing that
the quantityξ(x, t) travelling through the pipe satisfies the transport PDE

ξt + v(t)ξx = 0 , x ∈ [0, L]

with v(t) > 0. Consider a given timet ≥ 0 and, forτ ≥ t, the change of variable

w(τ) = ξ

(∫ τ

t

v(s)ds, τ

)

which satisfieswτ = 0. Therefore,w(τ) = w(t) , τ ≥ t. Now, if it exists, consider
r(t) such that

∫ r(t)

t

v(s)ds =L

and, otherwise, defineD(t) = ∞. Taking a derivative of this relation with respect
to t, one can obtain thatr is invertible asdr

dt
= v(t)

v(r(t)) > 0. Therefore, introducing

D(t) = t− r−1(t), this relation can finally be reformulated as

∫ t

t−D(t)

v(s)ds =L

which is the integral relation (2). The proof is complete by observing that, either
D(t) = ∞, or

ξ(L, r(t)) = w(r(t)) = w(t) = ξ(0, t)

which is equivalent toξ(L, t) = ξ(0, r−1(t)) = ξ(0, t −D(t)), i.e. the delayD(t)
between the output and the input of the system satisfies (2).

Therefore, the delay induced by the transport of a fluid flow with varying speed
v(t) > 0 through a pipe of lengthL belongs to the class of model (1), with
ϕ(s, u(s)) = v(s)

L
. When the flow speed depends on the input, this delay in input-
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dependent. The model (2) can be interpreted as the generalization of an intuitive
propagation time model, for which the delay is defined as the ratio between the
length of the pipe and the gas speed. This situation corresponds to the steady-state
case, for which the gas speed is constant and is indeed caughtby (2).

2.1 Properties

Property 1.The delay defined through (1) is indeed a transport delay in the sense
thatD(t) > 0 andḊ(t) < 1 for t ≥ 0.

The second property guarantees that the plant is causal, i.e., that no input values
older than the ones that have already reached the system can reach the plant, as
d
dt
(t−D(t)) ≥ 0, t ≥ 0. In other words, the input signal direction is never reversed,

which ensures that the physical phenomenon is causal.

Proof. The positivity ofD follows from the one ofϕ. Indeed, ift−D(t) ≥ t, then
the left-hand side of the equation is non-positive, which isabsurd. Second, taking a
time-derivative of (1), one can obtain

1− Ḋ(t) =
ϕ(t, u(t))

ϕ(t−D(t), u(t−D(t)))
> 0

asϕ is a strictly positive function.

2.2 Numerical calculation

As this point is crucial in practical applications, it is worth highlighting the fact that,
even if the transport delay defined through (1) cannot be analytically expressed, as
underlined in [46], it can still be calculated numerically if the history of functionϕ
is known2.

Indeed, the functionD 7→
∫ t

t−D(t)
ϕ(s)ds is a strictly increasing function, equal

to zero for a zero delay. Therefore, a simple procedure to evaluate the current value
of the delay consists in evaluating the value of (a sampled version3 of) this function
for increasing delay values, starting withD = 0, until reaching a certain bound4,
say the value1. Such a procedure, which is real-time compliant, is illustrated in
Table 1.

2 The procedure proposed here is not exactly the one proposed in [46], which relies on z-invariance.
3 The sampling method may not involveu(t) if the control law is computed according to the delay
value.
4 If reachable, which is the case for example ifϕ has a strictly positive lower-bound. Otherwise,D

can be evaluated as infinite after a certain number of iterations.
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Algorithm 1 D = CalculateDelay(u(1:N))
i n t = 0 ;
f o r i = 0 :N−1

%C a l c u l a t e t h e p a s t v a l ue o f ph i a t t ime
%(N− i ) ∗ Ts and t h e c o r r e s p o n d i n g i n t e g r a l
ph i = g e t v a l u e p h i ( (N− i ) ∗Ts , u (N− i ) ) ;
i n t = i n t + Ts∗ ph i ;

% Check i f t h e i n t e g r a l i s equa l t o 1
i f i n t >=1

D = i ∗Ts ;
break ;

end
end
D = i n f ;

Table 1 Example of delay calculation procedure for the integral-type relation (1). Purposely, the
integral sampling does not involve the current input valueu(t).

We now present two examples of physical systems that involvetransportation
of material and for which the resulting delay transport can be modeled according
to (1).

3 Application to the design of a control-oriented temperature
model for Spark-Ignited engine exhaust catalyst

3.1 Context and motivations

Automotive Spark-Ignited (SI) engines are equipped with a Three-Way Catalyst
(TWC) located in the exhaust line. This after-treatment device aims at reducing
pollutants resulting from the combustion. Yet, conversionefficiency highly depends
on the catalyst (distributed) substrate temperature [19,22]. Therefore, it is of critical
importance to control the combustion according to the catalyst temperature state,
in particular during light-off phases after a cold start. Nevertheless, no sensor is
commercially embedded to provide such an information and itis necessary to rely
on a model to perform this task.

Unfortunately, existing catalyst temperature models proposed in the literature
are: either mean-value models [25], which do not take into account the inherent
distributed nature of the catalyst and can therefore revealhighly inaccurate (when
one is interested in the temperature at a given location, 0D models can be tuned
accordingly and reveal satisfactory for control purposes.Yet, to account, e.g., for the
catalyst ageing, it may be useful to estimate its temperature at different locations,
which cannot be done with sufficient accuracy with such a lumped model); or Partial
Differential Equations (PDE) [12,26,33], discarded from real-time implementations
by their induced computational burden.
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Here, in view of obtaining a model of limited complexity, it is taken advantage
of the fact that, as this system involves transportation of material (exhaust gas), it
can then be included in the vast class of flow processes covered by this chapter and
represented by a transport delay of type (1). This result is obtained by designing
a semi-lumped approximation of the underlying PDE equations. For sake of con-
ciseness, these design elements are not presented here but the interested reader is
referred to previous works detailing them [8,9].

3.2 Approaching the temperature dynamics by a first-order
equation driven by an integral transport delay

A schematic representation of the thermal exchange occurring inside the monolith
is given in Figure 2. Exhaust burned gas enter the monolith atx = 0 and convective
exchange with the wall occur all along the monolith, i.e. forx = 0 to x = L. This
yield inhomogeneous distributed temperature profiles for the gasTg(x, t) and the
catalyst wallTw(x, t)5 which are governed by the following equations [27]







∂Tw

∂t
(x, t) = k1(Tg(x, t)− Tw(x, t)) + Ψ(x, t, Tw(x, t)) (3)

ṁg

∂Tg

∂x
(x, t) = k2(Tw(x, t)− Tg(x, t)) (4)

whereṁg is the inlet gas mass flow rate,k1, k2 > 0 are given positive physical
constants andψ is a distributed time-varying source term, related to the chemical
reaction occurring inside the catalyst.

To represent the source termψ, following [27, 28], we propose to consider the
pollutant conversion effects as a second temperature frontTeq occurring at a virtual
positionLr inside the catalyst. Indeed, for steady-state conditions,energy balance

Fig. 2 Schematic view of the distributed profile temperature inside a catalyst jointly with thermal
exchanges.

5 The axial conduction in the solid can be neglected [40,43]
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for the system can be written as

ṁgCpg (Tg(0)− Tg(L))
︸ ︷︷ ︸

∆
=Teq

+η(Tw(Lη))

N∑

i=1

∆Hi[xi]in = 0

where [xi]in are the inlet pollutant concentrations,Cpg is the gas heat capacity
and∆Hi is the unity enthalpy relative to the conversion of the pollutant i. Typi-
cally, three main pollutants are considered (N = 3), i.e. hydrocarbons (HC), car-
bon monoxide (CO) and nitrogen oxides (NOx). This results in the definition of an
equivalent temperature

Teq =

N∑

i=1

Gi[xi]in (5)

in which the steady-state gains can be calculated asGi = η(Tw(Lη))
∆Hi

ṁgCpg
. In

practice, the pollutant concentrations are not measured but can be effectively esti-
mated, e.g. by look-up tables.

Claim 1 The wall catalyst temperature at positionLη can be efficiently rep-
resented as

Tw(t, Lη) =T
th
w (t) + Tψw (t) (6)

whereT thw satisfies

τ(Lη, t)
dT thw
dt

=− T thw (t) + Tg(0, t−D(Lη, t)) (7)

andTψw satisfies

τ(Lη − Lr, t)
dTψw
dt

=− Tψw (t) + Teq(0, t−D(Lη − Lr, t)) (8)

in whichTeq is given in(5), the time constantτ and the delayD are defined
for x ∈ [0, L] as







τ(x, t) =
1

k1
+ νδ(x, t) (9)

D(x, t) = (1− ν)δ(x, t) (10)

with ν a given constant in[0, 1] andδ defined through the integral equation
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∫ t

t−δ(x,t)

k1

k2
ṁg(s)ds = x (11)

The proof of this claim can be found in [8].

Fig. 3 Proposed catalyst temperature model (6)–(11). The pollutant conversion effect (HC, CO
and NOx) are assimilated to a front of temperatureTeq propagating on a virtual lengthLη − Lr,
while the gas heating occurs on the complete lengthLη . The model is also fed by the gas mass
flow rateṁg , which is not represented here for the sake of clarity.

The proposed model is grounded on the linearity of the dynamic through a super-
position principle: the effects of the inlet temperatureTg(0) is distinguished from
the one of the pollutant conversion. The distributed temperature of the catalyst is
then modeled as the sum of two similar input-delay equations. The propagation
phenomena occurs on two different lengths. This model is pictured in Fig. 3.

Relation (11) is in the form (1) withϕ(s, u(s)) = k1
k2

ṁg

x
which is a positive-

valued function. For an hybrid vehicle, the mass flow rate is an actuated variable
and this integrand function is input-dependent. Here, thispropagation time can be
understood as a residence time into the monolith (see [11]).As the two main effects
of the gas residence inside the monolith are transport and exchange with the mono-
lith, it can reasonably be separated into a first order dynamics with a pure delay
effect.

The tuning parameterν and the reactive lengthLr can be determined via dedi-
cated testings and allows this model to qualitatively represent a relatively vast range
of catalyst devices.
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3.3 Validation of the reduced model(6)–(11)using experimental
data

To illustrate Claim 1, simulation results of the temperature inside the wall catalyst at
two different locations are pictured in Figure 4 and compared to experimental data.
The inputs used to evaluate the model (gas mass flow rate and gas inlet tempera-
ture) are data recorded during the European normalization cycle (NEDC). They are
pictured in Figure 4(b). In particular, one can observe thatthe considered gas mass
flow rate variations are quite large, which makes this test challenging, as the model
time constants and delays depend on this quantity accordingto (11).

The simulated temperature in Figure 4(a) almost perfectly matches the experi-
mental data. It is worth emphasizing that such a match could not be obtained with a
0D model which inherently approximates the distributed temperature by an average
one: a compromise between representativity of the two temperatures would have to
be reached. Further, as these performances are obtained forvery demanding external
conditions, one can reasonably expect similar behavior on different kinds of driving
conditions. Use of this model for light-off strategies are discussed in [9].

4 Practical implementation for Exhaust Gas Recirculation for
Spark-Ignited engines

We now present a second application from the field of automotive engine, the Ex-
haust Gas Recirculation for Gasoline engine, for which the proposed delay model is
of interest, as will appear in the sequel.

4.1 Context and motivations

To prevent the malicious knock phenomenon appearing at highload in downsized
Spark-Ignited engines, one of the solutions considered in the automotive industry
consists in using exhaust gas recirculation (EGR) through alow-pressure circuit
(see [20] or [36]). A typical implementation is representedin Fig. 5.

Yet, EGR has strong interactions with other simultaneouslyoperating engine
controllers such as the regulation of Fuel-to-Air Ratio (FAR) to stoichiometry (see
[21]). To counteract the impact of intake burned gas, a solution would be to modify
the feedforward action on the cascaded controllers (fuelpath controller and ignition
path controller) based on a real-time estimatex̂ of the intake burned gas rate. Nev-
ertheless, no real-time sensor of this variable is embeddedin any real-world vehicle.

For this reason, the approach employed here is to substituteone such sensor with
a model. Again, this systems fits into the general framework of flow processes, as
it involves transportation of burned gases on a relative long distance (between the
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Fig. 4 Comparison between experimental data and simulation results obtained with the reduced
first-order input-delay model (6)–(11). Wall temperature at two different locations pictured in 4(c)
and for the inputs represented in 4(b) are reported in 4(a).
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actuator, the EGR valve, located upstream of the compressorand the inlet manifold).
This leads to a large transport delay (up to several seconds depending on the engine
specifications) which can be modeled by an integral relationof type (1).

The main difficulty when using this representation arises from thermal exchanges
and changes in gas velocity occurring in the intake line, which are not directly
caught by (1). We aim here at illustrating how this complexity can be handled by
presenting a relatively fair practical delay calculation methodology to account for
these phenomena. This procedure is compliant with real-time constraints and has
been experimentally validated on a test bench.

Fig. 5 Scheme of a turbocharged SI engine equipped with direct injection, VVT and a low-pressure
EGR loop.

4.2 Modeling

Formally, the in-cylinder burned gas fractionxcyl is defined as the ratio between the
in-cylinder burned gas mass originated from the EGR loopmbg and the total mass
of gas in the cylinder volumemasp = mair +mbg, i.e.

xcyl =
mbg

mair +mbg

From now on, this variable is considered equal tox the intake burned gas fraction6.

6 Actually, this relation depends mainly on the Variable ValveActuator control strategy. We neglect
this influence here for sake of clarity.
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Fig. 6 Scheme of the intake burned gas fraction dynamics.

Definingxlp as the burned gas rate upstream of the compressor, the EGR dynam-
ics can be expressed as

ẋlp =α [−(Degr(t) +Dair(t))xlp(t) +Degr(t)] (12)

x(t) =xlp(t−D(t)) (13)

whereα is a positive constant,Dair is the inlet air mass flow rate,Degr is the
recirculated exhaust gas mass flow rate andD(t), the delay between this ratio and
the intake composition, satisfies

∫ t

t−τ(t)

vgas(s)ds =LP (14)

whereLP is the pipe length from the compressor down to the intake manifold and
vgas stands for the gas speed.

Equation (12) is a balance equation on the volume downstreamof the EGR valve,
using the fact that the EGR circuit is totally filled with burned gas7. According to
engine setups, the thermodynamics constantα appearing in (12) is either measured
or known. Following the proposed model, which is pictured inFig. 6, the intake
burned gas fraction is the result of a first order dynamics coupled with a transport
delay. This transport delay is of the form (1) withϕ(s, u(s)) =

vgas

LP
. Because the

velocity of the gas is indirectly related to the amount of reintroduced burned gas,
which is the control variable, this delay is input-dependent, as will reveal in the
following.

For sake of clarity, the approach used to model the mass flow rate quantities
(Degr,...) used through (12) to provide an open-loop estimator ofthe variablexlp
is not detailed here. The interested reader can refer to [6] for further details. In the
following, we assume that such an estimatorx̂lp and the different mass flow rates
are available.

To provide an implementable open-loop estimate ofx based on the model (12)-
(14), a practical calculation methodology of the delayD, using only real-time mea-

7 For SI engines, the FAR is regulated to its stoichiometric value(see [19]), which results into an
exhaust burned gas fraction close to unity. Note that this assumption disrupts the potential link that
could exist between the intake manifold composition and the exhaust line one, which could create
an implicit loop in our approach.
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surements, remains to be developed. Indeed, the velocity ofthe gas is not a measured
quantity. Further, the thermodynamical transformations the gas is submitted to in the
intake line impact this velocity. These variations need to be taken into account. We
now address this point.

4.3 Transport delay description

Using the ideal gas law (as is classically done for engine gasflows, e.g. in [19]), one
can relate the gas speed to current thermodynamical conditions and mass flow rates,
which are measured/modeled. Namely,

∀t ≥ 0 , vgas(t) =
1

S(t)

rT (t)

P (t)
[Dair(t) +Degr(t)]

whereS is the current pipe area,T, P are the current temperature and pressure
values,r is, as previously, the (common) ideal gas constant of both fresh air and
burned gas.

A thermal contraction of the gas occurs inside the intake cooler. This results in
spatial changes of the gas velocityvgas, pictured in Fig.5. To model this, we split the
intake line into three main sections with three respective and cumulative transport
delaysD1,D2 andD3 such thatD = D1 +D2 +D3.

• downstream of the compressor to the intercooler:in this part, the current pressure
and the temperature are measured and, respectively, are equal to Pdc andTdc.
Then, one can write

∫ t

t−D1(t)

rTdc

Pdc
[Dair(s) +Degr(s)]ds = V1 (15)

with V1 the corresponding volume.
• inside the intercooler:considering boundary conditions, the pressure inside the

intercooler can reasonably be assumed as constant and equalto the input one
Pdc. Further, we assume that the spatial profile of the inside temperature is affine
with respect to the spatial variable, with measured boundary conditionsTdc and
Tint

8. Under this assumption, equation (14) can be reformulated on this section
as

∫ t−D1(t)

t−D2(t)−D1(t)

r

Pdc
[Dair(s) +Degr(s)]ds = S2

∫ L2

0

dx

T (x)

=
V2

Tint − Tdc
ln

(
Tint

Tdc

)

(16)

whereL2, S2 andV2 are the corresponding length, area and volume.

8 i.e.T (x) = Tint−Tdc
L2

x+ Tdc
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• downstream of the intercooler to the intake manifold:in this section, the tem-
perature can be approximated by the intake manifold temperature Tint, which
yields

∫ t−D2(t)−D1(t)

t−D3(t)−D2(t)−D1(t)

rTint

Pdc
[Dair(s) +Degr(s)]ds = V3 (17)

with V3 the corresponding volume.

Knowing intermediate volumesV1, V2 andV3, one can calculate the delay in a very
straightforward manner, solving, one after the other, (15), (16) and finally (17). The
transport delay is then simply deduced asD(t) = D1(t) + D2(t) + D3(t). The
numerical solving of these equations is addressed in Section 2.2 and involves real-
time compliant operations. Real-time measurements of temperatures and pressures
serve to determine the value of the delay. These informationare commonly available
using embedded sensors. Values for physical volumes (V1, V2 andV3) can be used
to calibrate the model.

4.3.1 Experimental use of the proposed model

The modeling (12)–(13) can be used to estimate online the intake burned gas rate. In
details, through the delay calculation methodology proposed in the previous section,
one can build a “software” sensor, embedded into a real-timecontrol target and em-
ployed at test-bench. Experiments validating the delay modeling and, in particular,
the integral delay model have been carried out. They are presented in [7].

5 Control stakes and open problems

As mentioned in [37], while a few works have investigated open-loop design for
input-dependent delay systems (see for example [13–15] which investigates a delay
model of type type (1)),closed-loop control for input-dependent delay systemsis
still an open problem. The main difficulty arises from the fact that the delay is not
only varying but also depends on the control variable in a waywhich should be
taken into account while designing the feedback law.

In a nutshell, for time-varying delays, available techniques either employ a fre-
quency technique to study the sensitivity of the infinite number of roots to delay vari-
ations [31] or solve Linear Matrix Inequalities (LMI) to ensure stabilization [18].
Both techniques determine admissible feedback gain depending on a upper-bound
of the delay variations. Nevertheless, when the delay depends on the input, things
get very involved. Indeed, delay variations are then related to feedback gain and
designing a stabilizing feedback law using these techniques becomes an implicit
issue.
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In this section, we present some preliminary but encouraging directions of work
for input-dependent delay of type (1).

5.1 Including the delay in the system state

For sake of simplicity, consider the non-linear dynamics

ẋ(t) =f
(
x(t), x(t−D(t)), u(t), u(t−D(t))

)
(18)

in which D(t) is defined through (1). Then, taking a time-derivative of (1), and
defining an extended statez = [x zn+1 , D]T , (18) rewrites

ż =

(

f
(
x(t), x(t− zn+1), u(t), u(t− zn+1)

)

1− ϕ(t,u(t))
ϕ(t−zn+1,u(t−zn+1))

)

(19)

Then, this transformation allows to transform an input-varying delay into astate-
dependent delay, which is less complex to analyse. However, this configuration
problem is not directly tractable using currently available tools for state-dependent
input-delays because the extra delay differential equation brings controllability
questions. One possibility could be to blend this formulation with the successive
interval approach employed in [15] to calculate admissibletrajectories.

5.2 Prediction-based controller for input-delay

Predictor-based control strategies [1, 29, 39] have been proposed for time-varying
delay systems (see [32] or, more recently, in [24]). The ideaof this technique is to
compensate the input delay by calculating a state prediction over a time window of
which length matches the value of the future delay. Namely, consider the following
linear plant

ẋ(t) =Ax(t) +Bu(r(t))

r(t) =t−D(t)

with x ∈ R
n andu ∈ R

m. Then, compensation of the delay is achieved by using
the control law

u(t) =Kx(r−1(t))

in which the feedback gainK is stabilizing. In other words, one needs to predict the
future variations of the delay to calculate the time horizonr−1(t). For example, this
is the approach followed in [41] for a time-varying delay, the variations of which are
provided by a given known model. It has also been extended in [2, 3] to nonlinear
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dynamics and state-dependent delay, where variations are characterized by a careful
prediction of the system state.

Nevertheless, determination of such an horizon may not be practically achievable
when the delay depends on the input, because of the reciprocal interactions between
the control (current and past) values and the delay. The authors recently proposed
in [5] to use the current delay value as prediction horizon. To analyse the closed-
loop stability, a two-step methodology was proposed to disrupt the loop between
input and delay. For an input delay satisfying

∫ t

t−D(t)

u(s)ds =1

it was shown that robust prediction-based stabilization isachieved provided that
the feedback magnitude gain is sufficiently small, according to the initial condition
scale.

This methodology consists in the following steps:

• In a first move, the input-dependent delay is considered as anelement of the more
general class of time-varying delay. It enables then to use arobust compensation
result which has been obtained for linear systems with time-varying input delay,
using the backstepping tools proposed in [23] for the analysis of input-delay
systems stability. Technically, this result guarantees stabilization provided the
delay variations are sufficiently small.

• In a second step, a more practical sufficient condition for stabilization is ob-
tained by relating the delay variations to the control tracking error, which is anal-
ysed using the asymptotic convergence of delay differential equations (DDE)
(Halanay-type inequalities [16]). The final sufficient conditions characterizes the
admissible feedback gain magnitude according to the initial condition scale.

Extension of this technique to the general delay model (1) isan important chal-
lenge that remains to be addressed. Further, stabilizationof systems with state delays
of type (1) is also a major question to be explored.

6 Conclusion

This chapter focused on a particular integral-type delay model, which is represen-
tative of a large class of transport processes and yet still understudied in Automatic
Control. This last point was highlighted through the modeling of two subsystems
from the field of automotive engine control, the dynamics of which involve a trans-
port delay and can be modeled accordingly. Experimental relevance of the proposed
model has been shown. Yet, various challenges remain while aiming at controlling
such systems. In particular, the input-dependence of the delay integral is often non-
negligible and should be taken into account. This point is still an open problem.
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d’Automatique de Grenoble, 2005.
42. M. Wu, C. Wang, W. Cao, X. Lai, and X. Chen. Design and application of generalized predic-

tive control strategy with closed-loop identification for burn-through point in sintering process.
Control Engineering Practice, 20:1065–1074, 2012.

43. L. C. Young and B. A. Finlayson. Mathematical models of the monolith catalytic converter.
AIChE Journal, 22(2):343–353, 1976.

44. D. Yue and Q. L. Han. Delayed feedback control of uncertain systems with time-varying input
delay.Automatica, 41(2):233–240, 2005.

45. K. Zenger and A. J. Niemi. Modelling and control of a class of time-varying continuous flow
processes.Journal of Process Control, 19(9):1511–1518, 2009.

46. K. Zenger and R. Ylinen. Simulation of variable delays in material transport models.Mathe-
matics and computers in simulation, 37:52–72, 1994.


