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A LOCAL CHARACTERIZATION OF KAZHDAN PROJECTIONS

AND APPLICATIONS

MIKAEL DE LA SALLE

Abstract. We give a local characterization of the existence of Kazhdan pro-
jections for arbitary families of Banach space representations of a compactly
generated locally compact group G. We also define and study a natural gen-
eralization of the Fell topology to arbitrary Banach space representations of
a locally compact group. We give several applications in terms of stability of
rigidity under perturbations. Among them, we show a Banach-space version
of the Delorme–Guichardet theorem stating that property (T) and (FH) are
equivalent for σ-compact locally compact groups. Another kind of applica-
tions is that many forms of Banach strong property (T) are open in the space
of marked groups, and more generally every group with such a property is
a quotient of a compactly presented group with the same property. We also
investigate the notions of central and non central Kazhdan projections, and
present examples of non central Kazhdan projections coming from hyperbolic
groups.

1. Introduction

Let G be a finitely generated group with finite symmetric generating set S and
associated word-length ℓ. Consider the combinatorial laplacian ∆ i.e. the element
of the group algebra of G defined by

∆ =
1

2|S|

∑

s∈S

(s− 1)∗(s− 1) = 1−
1

|S|

∑

s∈S

s ∈ C[G].

A unitary representation (π,H) has spectral gap if there is ε such that the spectrum
of π(∆) is contained in {0} ∪ [ε, 2]. Since for t ∈ [0, 2], the inequality (1 − t

2 )
2t ≤

(1− ε
2 )

2t holds if and only if t ∈ {0} ∪ [ε, 2], this is equivalent to the validity of

π

(
(1−

1

2
∆)2∆

)
≤ (1−

1

2
ε)2π(∆) in B(H).

If we write m = 1− 1
2∆ = 1

2 + 1
2|S|

∑
s∈S s, this is equivalent to the inequality

(1.1)

(
∑

s∈S

‖π(s)π(m)x − π(m)x‖2

)1/2

≤ (1−
ε

2
)

(
∑

s∈S

‖π(s)x− x‖2

)1/2

.

for every x ∈ H. In words, averaging on the orbit of x with respect to the probability
measure m gives a vector which is moved (1− ε

2 ) times less than x by the elements
of S. The validity of (1.1) for every unitary representation (π,H) of G and x in
H therefore characterizes when G has a uniform spectral gap for every unitary
representation, i.e. when G has Kazhdan’s property (T). As was already observed
in [11], the importance of this criterion for property (T) is that it is local : if
(π,E) is a Banach space representation (or more generally an affine action) which
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2 DE LA SALLE

is close to a unitary representation (or an isometric action on a Hilbert space) of
G then the same inequality will hold with ε replaced by ε/2 for (π,E). We will
make the term “close to a unitary representation” precise later, but for example
this includes representations on a space close to a Hilbert space (in the sense that
the parallelogram identity holds up to a small multiplicative error) of a group close
to G in the space of marked groups and such that ‖π(g)‖ is close to 1 for all g in
S. This observation proves at the same time (1) Fisher and Margulis’s theorem [2]
that every isometric action of a group with property (T) on an Lp space has a fixed
point for p close enough to 2 (2) Shalom’s Theorem [25] that property (T) is an
open property in the space of marked groups (3) the fact that property (T) implies
robust property (T) for spaces close to Hilbert spaces. This last fact answers a
question raised in a preliminary version of [21].

All the preceding was probably known to experts, and in particular to the authors
of [11]. The first original contribution of this work is that the existence of a measure
satisfying (1.1) characterizes the existence of so called Kazhdan projection, not
only for unitary representations as the short computation above proves, but also
for arbitrary families of representations of G on Banach spaces, not necessarily
isometric or uniformly bounded.

The setting is the following. Let F be a collection of representations of G on
Banach spaces satisfying the very mild condition

(1.2) sup
(π,E)∈F

‖π(g)‖B(E) < ∞ ∀g ∈ S.

This condition allows to define a seminorm on the group algebra C[G] by

(1.3) ‖a‖F = sup
(π,E)∈F

‖π(a)‖B(E).

We denote by CF (G) the completion of C[G] for this seminorm. This is a general-
ization of the maximal C∗-algebra of a group, which corresponds to the case when
F is the unitary representations of G on a Hilbert space.

Definition 1.1. A Kazhdan projection in CF (G) is an idempotent p belonging to
the closure of {m ∈ C[G],

∑
g∈G m(g) = 1} such that, for every (π,E) in F , π(p)

is a projection on the space of invariant vectors Eπ = {x ∈ E, π(g)x = x∀g ∈ G} .
A Kazhdan projection is called central if it belongs to the center of CF(G).

The importance of such projections for general Banach space representations
comes from the work of Lafforgue [16], see subsequent work [17, 18, 21, 24, 14].
Kazhdan projections have been studied in depth recently in [9], but our terminology
is a bit different, as they call a Kazhdan projection what we call here a central
Kazhdan projection. Motivations for this choice of terminology are presented in
§3.2, where the disctinction between central and non central Kazhdan projections
is made clear. In particular in Corollary 3.5 it is proved that when CF (G) is stable
by duality, then a Kazhdan projection is always central. We also present in Remark
5.10 some natural examples where there are Kazhdan projections but no central
Kazhdan projections. See Remark 3.2 for other comments.

If (π,E) is a representation of G (or more generally an action of G on a Banach
space E) and x ∈ E, we will measure by

(1.4) δπS(x) = max
s∈S

‖π(s)x − x‖E
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the maximal amount by which x is moved by the elements of S. We could as well
have defined δπS by the formula (

∑
s∈S ‖π(s)x−x‖2)1/2 as in (1.1), but since we do

not only work with Hilbert spaces, we prefer to use formula (1.4), which is not less
relevant but is simpler.

Our main new contribution is the following local characterization of Kazhdan
projections, which generalizes to non unitary representations the easy observation
from the beginning of the introduction.

Theorem 1.2. CF (G) contains a Kazhdan projection if and only if there exists
m ∈ C[G] with

∑
g m(g) = 1 such that

(1.5) δπS(π(m)x) ≤
1

2
δπS(x) for all (π,E) ∈ F and x ∈ E.

If these properties hold and if σ is an affine action of G whose linear part belongs
to F , then σ has a fixed point if and only if δσS(σ(m)x) ≤ 1

2δ
σ
S(x) for all x ∈ E.

We point out the following : contrary to the previous characterizations of Kazh-
dan projections in [9], the fact that Eπ has a complement subspace is not part of
the hypothesis, it is a consequence of (1.5). Of course, Theorem 1.2 remains true
if 1

2 is replaced by any number in (0, 1).
The main interest of this characterization of the existence of Kazhdan projections

is that it is completely local : if the support of m is contained in BR = {g ∈
G, |g|S ≤ R}, and if (π,E) is a representation of G such that for every x ∈ E,
the BR+1-orbit of x is “almost isometric” to the BR+1-orbit of a point x′ ∈ E′

for a representation (π′, E′) ∈ F , then (2) also holds for (π,E), perhaps with 1
2

replaced by 1
2 +ε. This opens the possibility of applying ultraproduct constructions

as in [12, 11]. This simple observation by itself is however not very useful from a
representation-theoretical point of view, as this notion of (π,E) being close to a
representation in F is strong. On the opposite there is a natural topology (related
to the Fell topology) on every set of Banach space representations of G satisfying
(1.2), that we define and study in §4. To feel the difference between these two
notions of representations being close, consider for example the case when xn is a
sequence of almost invariant unit vectors of a unitary representation π. For the
Fell topology, this says that π is close to the trivial representation, which does
not say anything about the validity of (1.5) for xn. To obtain useful information,
it is better to zoom around xn. Then the origin disappears from the vision, and
the representation now looks much more like an affine action with linear part a
representation close to π in the Fell topology. This vague discussion should give
an informal explanation why cohomology enters into our second main result, and
this will be made precise in its proof. Recall that H1(G;π) = 0 means that every
affine action of G with linear part π has a fixed point. See Theorem 5.1 for a more
precise statement.

Theorem 1.3. Let F be a set of representations of G satisfying (1.2). If CF (G)
has a Kazhdan projection and H1(G;π) = 0 for every (π,E) ∈ F , then there is a
strong neighbourhood (see Definition 2.2) F ′ of F such that CF ′(G) has a Kazhdan
projection and H1(G;π) = 0 for every (π,E) ∈ F ′.

We end the introduction by listing several consequences of this result, which
follow from the understanding, obtained in §4.2, of strong neighbourhoods in several
examples.
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If E is a collection of Banach spaces and m is a function from G to (0,∞), we
denote by F(E ,m) the collection of all representations (π,E) on a space E ∈ E and
such that ‖π(g)‖B(E) ≤ em(g) for all g (if m = cℓ this boils down to the inequality
maxg∈S ‖π(g)‖ ≤ ec).

Here are some of the consequences. Definitions can be found in the body of the
paper. Precise statements and other results can be found in §5.4, 5.5 and 5.6.

• (Corollary 5.5) If G has property (T), then there is ε > 0 such that
CF (G) has a central Kazhdan projection and H1(G;π) = 0 for every
(π,E) ∈ F , where F is the collection of all representations (π,E) such
that maxg∈S ‖π(g)‖ ≤ 1 + ε on a Banach spaces satisfying

1

2

(
‖x+ y‖2 + ‖x− y‖2

)
≤ (1 + ε)

(
‖x‖2 + ‖y‖2

)
∀x, y ∈ E.

With the vocabulary of [21] or Definition 3.8, property (T) is equivalent to
robust property (T) with respect to Banach spaces satisfying the preceding.

• (Corollary 5.9) Let 1 < p < ∞. G has property (FLp
) if and only if there is

ε > 0 such that G has robust property (T) with respect to {Lq, |p−q| < ε}.1

• (Corollary 5.13) Let E be a class of superreflexive Banach spaces closed
under ultraproducts (for example the class of Lp spaces for some 1 < p <
∞). Then the set of finitely generated groups with property (FE) is open
in the space of marked groups.

The second point above is also valid for many other reasonable classes of Banach
spaces, for example non-commutative Lp spaces. See Corollary 5.11 and 5.8. This
statement has to be compared to a celebrated theorem by Delorme and Guichardet
asserting that, for a countable group, property (T) is equivalent to (FH). It is well-
known that strictly speaking, the Delorme–Guichardet theorem is no longer true
for Banach space and for example Lp spaces for p large (see Remark 5.10): there are
groups which have (FLp

) but not (TLp
). Corollary 5.9, which characterizes (FLp

)
in terms of the existence of a Kazhdan projection for some class of representations
on Lp, should be considered as the correct Banach-space analogue of the Delorme–
Guichardet theorem.

The above results, and all other results in the paper, are valid more generally for
locally compact compactly generated groups2, and can be combined. For example,
if E is closed under finite representability and G has (FE ), then there is a compactly
presented group G′ which surjects on G, an integer N and a positive number ε > 0
such that G has robust (T) with respect to the Banach space such that all N -
dimensional subspaces are at distance less than (1 + ε) from a space in E . Let us
finally mention a result (Corollary 5.15) which almost says that every group with
Lafforgue’s strong property (T) with respect to a reasonable class E is a quotient
of a compactly presented group with strong property (T) with respect to E .

Comparision with previous work. It should be noted that a criterion similar to
(1.1) for property (T) was already at the heart of the work of Fisher and Margulis

1In particular, the set of values of p ∈ (1,∞) such that G has (FLp
) is open. Although we

are not aware of a place where this remark has already been made, we are sure that this was
well-known, as the proof by Fisher and Margulis of the case p = 2 [2, Lemma 3.1] applies with
almost no change.

2There is a small subtlety related to continuity of representations, so the assumption that E is
stable by ultraproducts has to be replaced by stability by finite representability.
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[11]. They also exploited that it still holds for actions (not necessarily on a Banach
space) which are “close” to actions by isometries on Hilbert space, and that for such
actions, π(m)nx converges to a fixed point of π, so in particular π has a fixed point
“not too far from x”. This allowed them to reprove Shalom’s theorem that property
(T) is open in the space of marked groups. This technique also allowed them to
prove that (T) implies (FLp

) for p small enough to 2 (but this was only written
in [2], and actually without relying on (1.1), where they allowed a less restrictive
meaning of representations being closed). Compared to [11], we make the choice
to work only with linear/affine actions on Banach spaces, but we do not restrict to
(close to) isometric actions, and we discuss in length the notion of closeness, and its
relation to the variant Fell topology that we consider in §4. The characterization
of Theorem 1.2 is new.

Theorem 1.3 can be informally expressed by saying that deforming a representa-
tion for this Fell-like topology preserves the vanishing of the first cohomology group.
Recently Bader and Nowak [3] also studied how deforming a representation affects
its cohomology groups. Our results do not seem to be comparable, since they work
with a much stronger notion of deformation than ours, where the Banach space is
unchanged and the generators act by operators close in the norm topology from
the original generators.
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2. Preliminaries

2.1. The group G. Throughout this paperG will be a compactly generated locally
compact infinite group, and S ⊂ G will be a compact symmetric generating set. We
assume that the identity of G belongs to S, so that (Baire) every compact subset
of G is contained in SN for some N . We denote by ℓ the word length function

(2.1) ℓ(g) = min{n, g ∈ Sn}.

We also fix a left Haar measure, and we denote
∫
f or

∫
f(g)dg the integration with

respect to it.
We will also assume that G is separable. This assumption is just for convience;

all the results of the paper remain true if κ is the cardinality of a dense subset of
G and every occurence of the word separable is replaced “with a dense subset of
cardinality ≤ κ”.

By an approximate unit in Cc(G) we mean a net fn ∈ Cc(G) such that
∫
fn =∫

|fn| = 1 and for every neighbourhood V of e, the support of fn is contained in V
for all n large enough.

2.2. Representations and affine actions. By representation of G we will always
mean a pair (π,E) of a Banach space E and a strongly continuous representation
π of G on E, i.e. π is group homomorphism from G to the group GL(E) of
bounded invertible operators on E such that g 7→ π(g)x is continuous for every
x ∈ E. Two representations (π1, E1) and (π2, E2) are said to be equivalent if there
is a surjective linear isometry between E1 and E2 which intertwines the actions.
We say that (π,E) is an isometric representation if π(g) is an isometry of E for
all g ∈ G. We will keep the word unitary representation for representations by
isometries on a Hilbert space.

In §4 and 5 we will make the effort to explicitely work with sets of representations.
This is a small issue because the class of all representations of a group is not a set.
A solution is to consider equivalence classes of representations with some bound
on the dimension of the Banach space. For example a reasonable set will be the
set of equivalence classes of representations on a separable Banach space. This is
indeed reasonable because, G being separable, every Banach space representation
is a direct limit of separable Banach space representations. We could also bound
the dimension by some inaccessible cardinal, which would have the nice feature
that our set of Banach spaces will be stable by the operations of duality and most
ultraproducts.

The dual (or contragredient) representation of a representation (π,E) is the
representation (tπ, tE) where tE is the closed subspace of the ξ ∈ E∗ such that
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g 7→ π(g−1)∗ξ is continuous, and tπ(g) is the restriction of π(g−1)∗ to this subspace.
If E is reflexive then tE = E∗. In general tE is only a weak-* dense subspace of

E∗, but this implies that (π,E) is naturally a subrepresentation of (
ttπ,

ttE) [24,
Lemma 2.3].

The space of invariant vectors of a representation (π,E) is denoted Eπ:

Eπ = {x ∈ E, π(g)x = x∀g ∈ G}.

An important fact about isometric representations on reflexive Banach spaces is that
the space Eπ has always a π(G)-invariant complement subspace [4, 26]. This is not
the case for arbitrary Banach space representations. See for example [2, Remark
2.9] (respectively [26]) where for every non-amenable discrete group, an example of
an isometric representation is given where Eπ has no π(G)-invariant complement
subspace (respectively has no complement subspace at all). There are also examples
in a different direction (reflexive spaces but not isometric representations). Indeed,
the dual representation of the representation constructed in [16, Théorème 1.4] for
a hyperbolic group G is a representation with polynomial growth on a Hilbert space
where Eπ has no π(G)-invariant complemented subspace. In a similar direction, it
follows from Remark 5.10 and Proposition 3.4 that for every hyperbolic group G,
there exist 1 < p < 2 such that, for every ε > 0, there is a representation of G on
E = Lp such that maxs∈S ‖π(g)‖ ≤ 1 + ε and such that Eπ has a complemented
subspace but no π(G)-invariant complemented subspace.

A continuous affine action of G on a Banach space E is a group homomorphism σ
from G to the group of continuous invertible affine maps on E such that g 7→ σ(g)x
is continuous for every x ∈ E. Since this group is isomorphic to GL(E) ⋉ E, a
continuous affine action is of the form σ(g)x = π(g)x + b(g) for a representation
(π,E) of G and a continuous function b : G → E satisfying the cocycle relation
b(gh) = b(g) + π(g)b(h) for all g, h ∈ G. Traditionally, the vector space of such
continuous cocycles is denoted by Z1(G, π), the cocycles of the form b(g) = x−π(g)x
(which correspond exactly to the affine actions with a fixed point) are denoted by
B1(G, π), and the quotient vector space Z1(G, π)/B1(G, π) is denoted by H1(G, π).
So the formula H1(G, π) = 0 means that every affine action with linear part (π,E)
has a fixed point.

If (π,E) is a representation of G, and if m is a compactly supported complex
measure onG, we will denote by π(m) ∈ B(E) the operator x ∈ E 7→

∫
π(g)xdm(g).

Ifm is absolutely continuous with respect to the Haar measure, we will denote π(m)
by π(f) if f = dm

dg is the Radon-Nikodym derivative. We will use the same notation

σ(m)x =
∫
σ(g)xdm(g) when σ is a continuous affine action of G on X , and m is

a compactly supported measure with
∫
1dm = 1.

2.3. Ultrafilters. An ultrafilter on a set I is a set U of subsets of I that is closed
under taking supersets, and such that for every subset A of I, U contains either A or
I\A (but not both). As is standard, the set of ultrafilters on I is in natural bijection
with the set of characters of ℓ∞(I): an ultrafilter is something that chooses, for every
bounded family (ai)i∈I of complex numbers, a point in the closure of {ai, i ∈ I} in
a way compatible with pointwise multiplication and addition.

If U is an ultrafilter on a set I, we denote by (ai)i∈I 7→ limU ai the associated
character of ℓ∞(I). It is characterized by the fact that A ∈ U if and only if
limU 1i∈A = 1.
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If I is a directed set, we say that U is cofinal if limU 1i≥i0 = 1 for all i0 ∈ I. It
follows by Zorn’s lemma that cofinal ultrafilters exist on every directed set.

2.4. Strong neighbourhoods. In a non-Hausdorff topological space, there is a
difference for a net to converge to a point in a subset A, and for all its limit points
to belong to A. The next lemma and the definition that follows, related to this
phenomenon, will be important for us.

Lemma 2.1. Let X be a topological space, and A,B ⊂ X. The following are
equivalent.

(1) For every net (xi)i∈I in X whose accumulation points are contained in A,
there is i0 ∈ I such that xi ∈ B for all i ≥ i0.

(2) For every net (xi)i∈I in X such that xi ∈ Bc for all i, the net (xi) has an
accumulation point in Ac.

(3) B belongs to every ultrafilter on X whose accumulation points are contained
in A.

Proof. (1) =⇒ (2) is obvious.
Assume (2). Let U be an ultrafilter on X such that B /∈ U . We shall prove that

U has an accumulation point in Ac. Since U is an ultrafilter, Bc ∈ U , and for every
C ∈ U , there is xC ∈ C ∩ Bc. By (2) the net (xC)C∈U has an accumulation point
x ∈ Ac. Then x is an accumulation point of U as requested.

Assume (3), and let (xi)i∈I be a net such that for every i0 ∈ I, there is i ≥ i0 such
that xi ∈ Bc. By Zorn’s lemma there is an ultrafilter U on X which contains Bc

and {xi, i ≥ i0} for all i. In particular, B /∈ U , so that by (3) U has an accumulation
point x ∈ Ac. It is in particular an accumulation point of (xi)i∈I , which proves
(1). �

If X is compact and Hausdorff, then the equivalent properties in Lemma 2.1 are
equivalent to B being a neighbourhood of A. This justifies the following definition.

Definition 2.2. If the equivalent properties in Lemma 2.1 are satisfied, we will
say that B is a strong neighbourhood of A.

We warn the reader that a strong neighbourhood of a set A does not necessarily
contain A. For example, if X contains a point x0 whose only neighbourhood is X ,
then the empty set is a strong neighbourhood of X \ {x0}. More generally, x ∈ A

belongs to every strong neighbourhood of A if and only if {x} ⊂ A.

2.5. Ultraproducts and finite representability. We recall briefely some facts
on the local theory of Banach spaces. We refer to [19] (in particular section 9) for
a concise introduction.

If U is an ultrafilter on a set I and Ei, i ∈ I are Banach spaces, we denote
by
∏

U Ei the ultraproduct Banach spaces, as introduced by Dacunha-Castelle and
Krivine [8]. Recall that

∏
U Ei is the quotient of the Banach space

∏
I Ei of bounded

families with values in Ei for the norm ‖(xi)‖ = supi ‖xi‖Ei
by the closed subspace

of sequences satisfying limU ‖xi‖ = 0. The equivalence class of (xi)i∈I will be
denoted by (xi)U . Its norm is limU ‖xi‖. If Ai ∈ B(Ei) are operators such that
supi ‖Ai‖ < ∞, its ultraproduct

∏
U Ai is the operator sending (xi)U to (Aixi)U .

This defines an isometric map
∏

U B(Ei) → B(
∏

U Ei), which is not surjective in
general.
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If C ≥ 1, two Banach spaces Y, Y ′ are said to be C-isomorphic if there is a
continous and bijective linear map u : Y → Y ′ such that ‖u‖‖u−1‖ ≤ C. The
Banach-Mazur distance (or isomorphism constant) between Y and Y ′ is the infi-
mum of the constants C such that Y and Y ′ are C-isomorphic. We warn the reader
that the Banach-Mazur distance is sub-multiplicative. So to get a distance satis-
fying the usual triangle inequality, one should (but we will not) take the log of C.
The Banach-Mazur distance is particularilly relevant for spaces of the same finite
dimension, as it typically infinite between infinite dimensional Banach spaces.

A Banach space X is finitely representable in a class E of Banach spaces if for
every finite dimensional subspace Y of X and every ε > 0, Y is at Banach-Mazur
distance less than 1 + ε from a subspace of a space in E (that is, there is a space
X ′ ∈ E and a linear map u : Y → E such that (1 − ε)‖x‖ ≤ ‖u(x)‖ ≤ ‖x‖ for
all x ∈ Y ). For example, Lp([0, 1]) is finitely presentable in ℓp, and ℓp is fintely
representable in Lp([0, 1]). Recall [8] or [13] that X is finitely representable in E
if and only if X is isometrically isomorphic to a subspace of an ultraproduct of
spaces in E . For the convenience of the reader not familiar with the local theory of
Banach spaces, we reproduce here the standard proof of this equivalence. We will
use similar arguments later in the paper.

Proof. Assume that X is finitely representable in E . Denote by I the set of all pairs
(ε, Y ) for ε > 0 and Y a finite dimensional subspace of X . Declare that (ε, Y ) is
larger than (ε′, Y ′) if ε < ε′ and Y ′ ⊂ Y . This is an order relation which makes I
into a directed set. Let U be a cofinal ultrafilter on I. By assumption, for every
i ∈ I, there is a Banach space Ei ∈ E and a linear map ui : Y → Ei such that
(1 − ε)‖x‖ ≤ ‖ui(x)‖ ≤ ‖x‖ for all x ∈ Y . Extend ui to a nonlinear map X → Ei

by setting ui(x) = 0 if x /∈ E. This allows to define a map u : E →
∏

U Ei by
defining u(x) as the class of (ui(x))i. The cofinality of U implies that u is linear
and isometric.

For the converse, assume that there is a set I with ultrafilter U , a family
(Xi)i ∈ I ∈ EI and an isometric embedding u of X into

∏
U Xi. Let Y be a

finite dimensional subspace of X , and y1, . . . , yn be a basis for Y . For every k ≤ n,
pick (yk,i)i ∈

∏
i Xi a representative of u(yk). Define, for every i, a linear map

ui : Y → Xi by extending by linearity the map yk 7→ yk,i. Then by linearity of u, for
every y ∈ Y , (ui(y))i is a representative of u(y), and in particular limU ‖ui(y)‖ = y.
By compactness the convergence in uniform in the unit ball of y, and in particular
for every ε > 0, there is i such that

(1− ε)‖y‖ ≤ ‖ui(y)‖ ≤ (1 + ε)‖y‖.

This proves that X is finitely representable in E . �

If E is a class of Banach spaces, we denote by EN,ε the class of Banach spaces
E such that all N -dimensional subspaces of E are at Banach-Mazur distance less
than 1 + ε from a subspace of a space in E .

We shall use the following finitary version of the well-known fact that the dual
of a subspace is isometric to a quotient of the dual.

Lemma 2.3. For every N ∈ N, ε > 0, there exists N ′ ∈ N, ε′ > 0 such that
the following holds. If E is a class of Banach spaces and X ∈ EN ′,ε′ , then every
subspace of X∗ of dimension ≤ N is (1 + ε)-isometric to a subquotient (=subspace
of the quotient) of the dual of a space in E.
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In particular if E is stable under subspaces and duals, then for every Banach
space X ∈ EN ′,ε′ , X∗ ∈ EN,ε.

For the proof, we shall need the following classical lemma, to which we provide
a proof for the reader’s convenience.

Lemma 2.4. For every N ∈ N, ε > 0, there exists N ′ ∈ N > 0 such that, for every
Banach space X and every subspace Y ⊂ X∗ of dimension ≤ N , there is a subspace
Z ⊂ X of dimension ≤ N ′ such that Y ∗ is (1 + ε)-isomorphic to a subspace of Z∗.

Proof. By compactness, there isN ′ such that for every Banach space Y of dimension
N , its unit sphere SY contains an ε-net F or cardinality ≤ N ′: SY ⊂ ∪x∈FB(x, ε).

Let X , Y be as in the lemma, and F ⊂ SY an ε-net as above. For every
y ∈ F , let xy ∈ X be a norm one element on which y almost attains its norm:
|〈y, xy〉| ≥ (1 − ε). Let y0 in the unit sphere of Y . There is y ∈ F such that
‖y0 − y‖ ≤ ε, and therefore

|〈y0, xy〉| ≥ |〈y, xy〉| − |〈y0 − y, xy〉| ≥ 1− 2ε.

In particular, if we define Z ⊂ X as the linear span of the xy’s, we have that
the norm on y0 in Z∗ is at least (1 − 2ε). In other words, the formal inclusion
(restriction of linear forms to Z) u : Y → Z∗ satisfies

(1 − 2ε)‖y‖ ≤ ‖u(y)‖ ≤ ‖y‖

for every y ∈ Y , and Y is (1 − 2ε)−1-isomorphic to a subspace of Z∗. This is the
Lemma, up to a change of ε. �

Proof of Lemma 2.3. Fix N ∈ N, ε > 0, and let N ′ be given by the preceding
lemma for ε/2. Pick ε′ > 0 such that (1 + ε/2)(1 + ε′) ≤ (1 + ε).

Let X ∈ EN ′,ε′ , and Y be a subspace of dimension ≤ N of Y ∗. The preceding
lemma provides a subspace Z ⊂ X of dimension ≤ N ′ such that Y is (1 + ε/2)-

isomorphic to a subspace of Z∗. But by the definition of EN ′,ε′ , Z is (1 + ε′)-
isomorphic to a subspace Z ′ of a space X ′ in E . This implies Z∗ is (1 + ε′)-
isomorphic to Z ′∗, which is a quotient of X ′∗. Putting everything together, Y is
(1 + ε/2)(1 + ε′)-isomorphic to a subspace of a quotient of X ′∗. This proves the
first part of the lemma.

The second part is immediate because a subquotient of the dual of a space in E
belongs to E if E is stable under subspaces and duals. �

2.6. Superreflexivity. ABanach spaceX (respectively a class E of Banach spaces)
is said to be superreflexive if every Banach space finitely representable in X (re-
spectively E) is reflexive. By a celebrated theorem of Enflo [10] (see also [22]), X is
superreflexive if and only if it carries an equivalent uniformly convex norm. Recall
that a Banach space is said to be uniformly convex if its modulus of uniform con-
vexity is strictly positive, and that the modulus of uniform convexity of a Banach
space X is the function

t ∈ (0, 1) 7→ inf

{
1− ‖

x+ y

2
‖ | x, y ∈ X, ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ t

}
.

By an ℓ2-direct sum argument, one obtains that a class of Banach spaces is super-
reflexive if and only if there is a constant C and of a function δ : (0, 1) → (0, 1) such
that every space in E is C-isomorphic to a uniformly convex space with modulus of
uniform convexity ≥ δ.
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3. A local characterization of (T) and its variants

3.1. Definition of Kazhdan projection. Let F be a class of representations of
G such that

sup
(π,E)∈F

‖π(g)‖B(E)

is bounded on compact subsets of G.
We define CF(G) as the completion of Cc(G) for the norm

‖f‖F = sup{‖π(f)‖B(E), (π,E) ∈ F}.

It is a Banach algebra for convolution. By construction, the map f ∈ Cc(G) 7→
π(f) ∈ B(E) extends uniquely to a bounded map on CF(G), that we still denote
by π. For example, if F is the class of unitary representations of G then CF(G) is
the full C∗-algebra of G.

Definition 3.1. A Kazhdan projection in CF (G) is an idempotent p belonging to
the closure of {f ∈ Cc(G),

∫
f = 1} such that π(p) is a projection on Eπ for every

(π,E) ∈ F .
A Kazhdan projection is called central if it belongs to the center of CF(G).

Remark 3.2. The assumption that p belongs to the closure {f ∈ Cc(G),
∫
f =

1} is just here to make a nontrivial definition in the case Eπ = {0} for every
(π,E) ∈ F (otherwise we could just take p = 0 ∈ Cc(G)). This assumption is
superfluous otherwise : if p ∈ CF(G) is such that π(p) is a projection on Eπ for
every (π,E) ∈ F , and if Eπ 6= {0} for at least one (π,E), then p belongs to the
closure of {f ∈ Cc(G),

∫
f = 1}. Indeed, if x ∈ Eπ \ {0} and fn ∈ Cc(G) converges

to p, we have

x = π(p)x = lim
n

π(fn)x = lim
n
(

∫
fn)x,

so that limn

∫
fn = 1, and p = limn

fn∫
fn

belongs to the closure of {f ∈ Cc(G),
∫
f =

1}.
We insist that for us Kazhdan projections are not necessarily central. One reason

is that, as indicated in Proposition 3.4, the question whether a Kazhdan projection
is central is essentially disjoint from the question whether there exists a Kazhdan
projection. Another reason is that there is a natural setting where non central
Kazhdan projections occur naturally. See Remark 5.10.

It is useful to realize that being a Kazhdan projection in CF(G) only depends on
the norm ‖ · ‖F , and not on the specific F .

Lemma 3.3. An element p ∈ CF(G) is a Kazhdan projection if and only if it
belongs to the closure of {f ∈ Cc(G),

∫
f = 1} and satisfies f ∗ p = (

∫
f)p for

all f ∈ Cc(G). It is a central Kazhdan projection if and only it moreover satisfies
p ∗ f = (

∫
f)p for all f ∈ Cc(G).

Proof. For every (π,E) in F , a vector x ∈ E belongs to Eπ if and only if π(f)x =
(
∫
f)x for all f ∈ Cc(G). Therefore, if p is a Kazhdan projection, we have that

π(f ∗ p) = π(f)π(p) = (
∫
f)π(p) for every (π,E) ∈ F , and hence f ∗ p = (

∫
f)p.

Conversely, if p belongs to the closure of {f ∈ Cc(G),
∫
f = 1} and satisfies f ∗ p =

(
∫
f)p, then p is an idempotent, and for every (π,E) ∈ F we have that π(p) acts

as the identity on Eπ (because every f ∈ Cc(G) with
∫
f = 1 does), and its

image is made of invariant vectors (because π(f)π(p) = (
∫
f)π(p) for every f ∈
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Cc(G)). Thus p is a Kazhdan projection. The statement about central projections
is immediate. �

3.2. To be central or not to be. We now discuss when a Kazhdan projection is
central.

Proposition 3.4. Assume that CF(G) contains a Kazhdan projection p. The fol-
lowing are equivalent.

(1) p is a central Kazhdan projection.
(2) for every representation (π,E) in F , Eπ has a π(G)-invariant complement

subspace in E.
(3) p is the only Kazhdan projection in CF(G).
(4) There is an element p′ in the closure of {f ∈ Cc(G),

∫
f = 1} such that

p′ ∗ f = (
∫
f)p′ for every f ∈ Cc(G).

(5) CF∗(G) contains a Kazhdan projection.

Proof. (1) =⇒ (2). If p is central, then ker(π(p)) is a complement subspace of Eπ,
and it is invariant by π(f) for every f ∈ Cc(G) because π(f)π(p) = π(p)π(f). By
strong continuity of π, ker(π(p)) is therefore invariant by π(g) for every g ∈ G.

(2) =⇒ (3). Assume that for every (π,E) ∈ F , Eπ has a π(G)-invariant com-
plement Fπ. Then for every f ∈ Cc(G) (and therefore for every f ∈ CF(G)),
π(f)Fπ ⊂ Fπ . In particular if p′ is a Kazhdan projection in CF (G), then π(p′)Fπ ⊂
Fπ ∩ Eπ = {0}, so that π(p′) is the projection on Eπ parallel to Fπ . In particular
π(p) = π(p′), and therefore p = p′.

(3) =⇒ (1) If p is a Kazhdan projection, then for every f ∈ Cc(G) with
∫
f = 1,

p ∗ f is another Kazhdan projection, so that by (3) p ∗ f = p = f ∗ p. By linearity
we deduce that p ∗ f = f ∗ p for every f ∈ Cc(G), and that p is central.

(1) =⇒ (4) is obvious (take p′ = p). For the converse, suppose (4). Then pp′

belongs to the closure of {f,
∫
f = 1} and satisfies f1pp

′f2 = (
∫
f1)(

∫
f2)pp

′, so
that by Lemma 3.3 pp′ is a central Kazhdan projection. By the already proven
implication (1) =⇒ (3) for pp′, we deduce that pp′ is the only Kazhdan projection,
so that p = pp′, and p is central (1).

(4) ⇐⇒ (5). For f ∈ Cc(G), define f̃ ∈ Cc(G) by the property that f̃dg is
the image of the measure fdg by the map g 7→ g−1. For every representation

(π,E) and f ∈ Cc(G), the equality ‖π(f)‖ = ‖ tπ(f̃)‖ holds because tπ(f̃) is
the restriction to the weak-* dense subspace tE ⊂ E∗ of the weak-* continuous

operator π(f)∗ ∈ B(E∗). The map f 7→ f̃ therefore extends to a surjective isometry

CF(G) → CF∗(G). It preserves {f ∈ Cc(G),
∫
f = 1} and satisfies f̃1 ∗ f2 = f̃2 ∗ f̃1.

It is immediate by Lemma 3.3 that an element p′ ∈ CF (G) satisfies (4) if and only

if p̃′ is a Kazhdan projection in CF∗(G). �

We say that F is weakly self-adjoint if the the norms ‖f‖F and ‖f‖F∗ are
equivalent on Cc(G). By the proof of (4) ⇐⇒ (5) in the preceding proposition, F

is weakly self-adjoint if and only if the map f 7→ f̃ extends to a bounded map on
CF(G) that we still denote by ·̃. An element a ∈ CF(G) is then called self-adjoint if
ã = a. For example, F is weakly self-adjoint if F∗ ⊂ F .

Corollary 3.5. If F is weakly self-adjoint, a Kazhdan projection in CF(G) is au-
tomatically central and self-adjoint.
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If moreover the map f 7→ f extends to a continuous map on CF(G), then a
Kazhdan projection is automatically central, self-adjoint and real.

Proof. Let p ∈ CF (G) a Kazhdan projection. Then p̃ satisfies (4) in the previous
proposition, so p is central (1). Then p̃ is another central Kazhdan projection, so
by the previous proposition again p = p̃ and p is self-adjoint.

If moreover f 7→ f extends by continuity to CF (G) then p is also a Kazhdan
projection so by the previous proposition again p = p and p is real. �

3.3. Examples of Kazhdan projections. The first example is for unitary repre-
sentations : it is classical that G has property (T) if and only if the full C∗-algebra
of G has a Kazhdan projection. More generally, if F is a class of isometric repre-
sentations on a superreflexive set of Banach spaces, then CF (G) has a (necessarily
central by Proposition 3.4 (2)) Kazhdan projection if and only if there exists ε > 0
such that maxg∈S ‖π(g)x − x‖ ≥ ε‖x‖E/Eπ for every (π,E) ∈ F and x ∈ E, i.e. if
and only if E/Eπ does not have almost invariant vectors uniformly in (π,E) ∈ F .
See [9, Theorem 1.2] (the argument in the case of a discrete group was previously
recorded in [15, Proposition 5.1]).

Let (π,E) be a Banach space representation of G. An argument of Guichardet,
originally used for unitary representations but valid for arbitrary Banach space
representations, shows that if H1(G;π) = 0 then E/Eπ does not have almost
invariant vectors3. We shall see (this was observed by Masato Mimura [20]) by
some ultraproduct argument that in several case, this holds uniformly in (π,E)
(Lemma 5.3). In particular, in §5.3 we will deduce the following result.

Proposition 3.6. Let E be a class of superreflexive Banach spaces, and denote by
F all isometric representations of G on a space in E. If G has (FE) then CF (G)
has a Kazhdan projection in the following situations:

• E is stable by finite representability,
• or E is the class of Lp-spaces for some 1 < p < ∞,
• or G is discrete and E is stable under ultraproducts.

Finally, examples where Kazhdan projections occur are in the definitions of Ba-
nach strong property (T) and its variant robust property (T). Let us recall the
definitions.

If E is a class of Banach spaces and m : G → (0,∞] is a function, we denote
F(E ,m) all equivalence classes of representations (π,E) such that E ∈ E and
‖π(g)‖ ≤ em(g) for all g.

Vincent Lafforgue’s strong property (T) [16] was defined in terms of Kazhdan
projection.

Definition 3.7. (Lafforgue) If E is a class of Banach spaces, one says that G has
strong property (T) with respect to E is there there is s > 0 such that for all C > 0,
CF(E,sℓ+C)(G) has a Kazhdan projection.

Lafforgue originally only considered the case when E is stable by duality, sub-
spaces and complex conjugation and wanted the Kazhdan projection to be self-
adjoint and real, but in that case the two definitions coincide by Corollary 3.5.

3The argument goes as follows : if H1(G; π) = 0, the map x ∈ E/Eπ 7→ (π(g)x − x)g∈G with

values in the Banach space Z1(G; π) with the norm supg∈S ‖b(g)‖ is continuous and bijective,
and hence invertible by the open mapping theorem. If C is the norm of the inverse we have
δπS(x) ≥ C−1‖x‖E/Eπ for every x ∈ E.
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Oppenheim [21] defined robust property (T) with respect to a class of Banach
spaces E , as an intermediate property between property (T) and strong property
(T) with respect to E . An almost 4 equivalent form of his definition is the following.

Definition 3.8. (Oppenheim) G has robust property (T) with respect to E if there
exists s > 0 such that CF(E,cℓ)(G) has a Kazhdan projection.

This is equivalent to the Kazhdan projection being central when F(E , cℓ) is
weakly self-adjoint, for example if E is stable by duality and made of reflexive
spaces.

3.4. The main theorem. If (π,E) is a representation of G, for every x ∈ X we
denote

(3.1) δπS(x) = max
g∈S

‖π(g)x− x‖.

Observe that by the triangle inequality, if g ∈ SN then

(3.2) ‖π(g)x− x‖ ≤ N sup
g∈S

‖π(g)‖N−1δπS(x).

We will also consider the quantity δσS(x) = maxg∈Q ‖σ(g)x−x‖ when σ is an affine
action of G on E with linear part π, and in that case (3.2) still holds in the form
‖σ(g)x− x‖ ≤ N supg∈S ‖π(g)‖N−1δσS(x).

The following is Theorem 1.2 generalized to arbitrary locally compact groups.

Theorem 3.9. The following are equivalent :

(1) CF (G) contains a Kazhdan projection.
(2) There is a compactly supported measure m with

∫
1dm = 1 such that

δπS(π(m)x) ≤ 1
2δ

π
S(x) for all (π,E) ∈ F and x ∈ E.

If these properties hold and if (σ,E) is an affine action of G whose linear part
belongs to F , then σ has a fixed point if and only if δσS(σ(m)x) ≤ 1

2δ
σ
S(x) for all

x ∈ E.

We first record an easy fact on the displacement (3.1), that we will often use.

Lemma 3.10. Let m be a compactly supported measure on G with
∫
1dm = 1.

There is a constant Cm such that

‖σ(m)x − x‖E ≤ CmδσS(x)

for every affine action σ of G with linear part (π,E) ∈ F and every x ∈ E.

Proof. Let N be such that the support of m is contained in SN , and ‖m‖TV the
total variation norm of m. Then (3.2) implies

‖σ(m)x− x‖E ≤

∫
‖σ(g)x− x‖E |dm| ≤ ‖m‖TV N sup

g∈S
‖π(g)‖N−1δπS(x).

This proves the lemma because supg∈S ‖π(g)‖N−1 is bounded independantly of
(π,E) ∈ F . �

4In his original definition, Oppenheim requests, as in [24], that the Kazhdan projection belong
to the closure of the symmetric functions on G. In view of Corollary 3.5, this is automatic if
F(E, cℓ) is weakly self-adjoint. This does not seem any more so relevant otherwise, so we prefer
to drop this condition.
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For the proof of the direction (1) =⇒ (2) we will need a uniform version of the
fact that the existence of a Kazhdan projection for (π,E) implies that (π,E) does
not almost have invariant vectors.

Lemma 3.11. If CF(G) contains a Kazhdan projection, then there exists c > 0
such that

δπS(x) ≥ c‖x‖E/Eπ ∀(π,E) ∈ F and x ∈ E.

Proof. Let p ∈ CF (G) be a Kazhdan projection and f ∈ Cc(G) such that
∫
f = 1

and ‖f − p‖F ≤ 1/2. Then for every x ∈ E,

‖x‖E/Eπ ≤ ‖x−π(p)x‖E ≤ ‖x−π(f)x‖E+‖π(f−p)x‖E ≤ ‖x−π(f)x‖E+
1

2
‖x‖E.

By replacing x by x+y for y ∈ Eπ in the preceding equation, the term ‖x−π(f)x‖E
is unchanged because

∫
f = 1 and we get

‖x‖E/Eπ ≤ ‖x− π(f)x‖ +
1

2
‖x+ y‖E.

Taking the infimum over y ∈ Eπ we obtain ‖x‖E/Eπ ≤ 2‖x−π(f)‖E. We conclude
by Lemma 3.10 for the measure fdg. �

Proof of Theorem 1.2. (1) =⇒ (2). Let ε > 0 to be determined later. Let p ∈
CF(G) be a Kazhdan projection, and f ∈ Cc(G) such that

∫
f = 1 and ‖p−f‖F < ε.

We prove (2) for the measure m = fdg if ε is small enough. Define C by

C = sup
(π,E)∈F

max
g∈S

‖π(g)‖B(E).

Then for (π,E) ∈ F

δπS(π(f)x) = δπS(π(f − p)x) ≤ (1 + C)‖π(f − p)x‖E ≤ (1 + C)ε‖x‖E .

By applying this inequality to x + y for y ∈ Eπ and taking the infimum over all y
we get

δπS(π(f)x) ≤ (1 + C)ε‖x‖E/Eπ ,

which by lemma 3.11 is less than (1+C)ε
c δπS(x). This is less than

1
2 for ε < c

2+2C .

(2) =⇒ (1). Let (π,E) ∈ F . By iterating the inequality in (2), we get that
δπS(π(m)nx) ≤ 2−nδπS(x). If Cm is the constant given by lemma 3.10 for m, we
obtain ‖π(m)n+1x− π(m)nx‖ ≤ 2−nCmδπS(x). By bounding

δπS(x) ≤ (1 + sup
(π,E)∈F

max
g∈S

‖π(g)‖)‖x‖E = (1 + C)‖x‖E ,

we get ‖π(m)n+1−π(m)n‖ ≤ Cm(1+C)2−n. This implies that π(m)n is a Cauchy
sequence in B(E), and hence has a limit Pπ ∈ B(E) and ‖π(m)n − Pπ‖B(E) ≤

2−nC′, for C′ = 2Cm(1+C). Then δπS(Pπx) = limn δ
π
S(π(m)nx) = 0 and Pπx ∈ Eπ

because S generates G. Since for x ∈ Eπ, Pπ(x) = limn π(m)nx = limn x = x, we
get that Pπ is a projection on the invariant vectors. We are almost done, except
that m∗n = m ∗m ∗ . . .m might not be absolutely continuous with respect to the
Haar measure. This can be fixed by choosing a function f0 ∈ Cc(G) with

∫
f0 = 1,

and observing that f0 ∗m
∗n belongs to Cc(G) and is Cauchy in CF(G). Its limit p

satisfies π(p) = π(f0)Pπ = Pπ, i.e. p is a Kazhdan projection.
Now assume that (1) and (2) hold, and let (σ,E) be an affine action of G,

the linear part of which belongs to F . If σ has a fixed point, then σ is just a
representation in F in which the origin has been renamed, so that the inequality
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δσS(σ(m)x) ≤ 1
2δ

σ
S(x) is immediate from (2). Conversely, if δσS(σ(m)x) ≤ 1

2δ
σ
S(x) for

all x ∈ E then the proof of (2) =⇒ (1) shows that σ(m∗n)x is a Cauchy sequence,
and hence converges to a point y satisfying δσS(y) = limn δ

σ
S(σ(m

∗n)x) = 0, i.e. to
a fixed point. �

Finally, we record the following corollary of the proof of Theorem 1.2, which is
essential for applications to dynamics [6] (see also the analogous discussion below
for positive Kazhdan constants).

Corollary 3.12. If CF(G) contains a Kazhdan projection, then there are C, s > 0
and a Kazhdan projection p ∈ CF(G) such that p is at distance ≤ Ce−sn from the
continuous functions supported in Sn.

Proof. In the proof of (2) =⇒ (1) in Theorem 1.2, we constructed p as the limit of
f0 ∗ m∗n, where f0 ∈ Cc(G), m is a compactly supported measure and ‖p − f0 ∗
m∗n‖ ≤ C′2−n. This proves the corollary. �

3.5. Positive Kazhdan projections. A natural variant of Definition 3.1 is to
require additionally that p belongs to the closure of the nonnegative functions {f ∈
Cc(G), f ≥ 0,

∫
f = 1}. This variant is particularily relevant to the applications to

dynamics, see [6]. To our knowledge, in all examples where a Kazhdan projection
is known to exist (for examples strong property (T), or Corollaries 5.5 -5.11), it
belongs to the closure of the nonnegative functions. However, we do not know if
this is the case in general.

We can note that the proof of Theorem 1.2 shows in full generality that CF (G)
contains such a “positive” Kazhdan projection if and only if there is a positive
compactly supported probability measure m such that δπS(π(m)x) ≤ 1

2δ
π
S(x) for all

(π,E) ∈ F and x ∈ E. Moreover, in that case there are C, s > 0 and a Kazhdan
projection p ∈ CF(G) such that p is at distance ≤ Ce−sn from the continuous
nonnegative functions supported in Sn.

Also, we can give a positive answer to the previous question for central Kazhdan
projections and isometric representations.

Proposition 3.13. Assume that F is made of isometric representations and is
stable by complex conjugation. If CF(G) contains a central Kazhdan projection, then
this central Kazhdan projection belongs to the closure of the nonnegative functions.

Proof. Assume that CF (G) contains a central Kazhdan projection p. By Proposition
3.4, p is real and there is a real valued function f ∈ Cc(G) with

∫
f = 1 and

‖f − p‖ ≤ 1
2 . Moreover, by replacing every (π,E) ∈ F by (π |ker p , ker p) (which is

indeed a representation because the projection is central, see Proposition 3.4) we
can assume that p = 0. Let f = af+ − bf− be a decomposition of f with f+ and
f− nonnegative with integral 1, and a, b are nonnegative real numbers such that

a− b = 1. Then 1/2 ≥ ‖f‖ ≥ a‖f+‖ − b‖f−‖. This implies that ‖f+‖ ≤ 1/2+b
a < 1

(here we use that π is isometric to ensure ‖π(f−)‖ ≤ 1). Then the sequence of n-th
power convolutions of f+ is a sequence of nonnegative functions of integral 1 which
also converge to 0 = p. �

4. A topology on the space of representations

The purpose of this section is to define a natural topology on sets of (equivalence
classes of) Banach space valued representations of locally compact groups, and to
characterize this topology in terms of ultraproduct representations.
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4.1. Definition of the topology. Let G be a locally compact group and R be a
set of equivalence classes of Banach space representations of G.

For every (π,E) ∈ R, every x1, . . . , xn ∈ E, every compact subset Q ⊂ G and
every ε > 0 we define Wx1,...,xn,Q,ε(π,E) ⊂ R as the set of all representations
(π′, E′) ∈ R such that there is x′

1, . . . , x
′
n ∈ E′ such that

(4.1) sup
f1,...,fn

|‖

n∑

k=1

π′(fk)x
′
k‖ − ‖

n∑

k=1

π(fk)xk‖| < ε

where the supremum is over all f1, . . . , fn ∈ Cc(G) supported in Q and with
‖fk‖L1 ≤ 1.

The sets Wx1,...,xn,Q,ε(π,E) form a basis for a topology on R. This topology is
not Hausdorff (every subrepresentation of (π,E) belongs to the closure of {(π,E)}).
IfR contains the trivial representation on the 0-dimensional Banach space, then it is
compact-but-not-Hausdorff for the stupid reason that R is the only neighbourhood
of 0.

Remark 4.1. Because we are dealing with strongly continuous representation, (4.1)
implies

sup
m1,...,mn

|‖

n∑

k=1

π′(mk)x
′
k‖ − ‖

n∑

k=1

π(mk)xk‖| < ε

where the supremum is over all measures m1, . . . ,mn supported in the interior of Q
and with total variation≤ 1. Conversely, (4.1) follows from the preceding inequality
where the supremum is over all measures m1, . . . ,mn with finite support contained
in Q and with total variation ≤ 1.

The restriction to unitary representations of this topology is not exactly the
usual Fell topology [5, Appendix F], since for example the trivial representation of
G onC2 does not belong to the closure of the trivial representation onC, whereas it
belongs to the Fell topology closure of it. The next lemma in particular shows that
a unitary representation π belongs to the closure of another unitary representation
ρ if and only if π is weakly contained in the sense of Zimmer in ρ [30] (see also [5,
Appendix F]).

Lemma 4.2. Assume that R is a set of unitary representations of G. A repre-
sentation (π,H) ∈ R belongs to the closure of A ⊂ R if and only if for every
orthonormal family ξ1, . . . , ξn ∈ H, every compact subset Q ⊂ G and every ε > 0,
there is a representation (ρ,K) ∈ A, an orthonormal family η1, . . . , ηn ∈ K such
that maxi,j maxg∈Q |〈π(g)ξi, ξj〉 − 〈π(g)ηi, ηj〉| < ε.

Proof. Clear, because if π is a unitary representation,

‖
∑

k

π(mk)ξk‖
2 =

∑

k,l

∫∫
〈π(h−1g)ξk, ξl〉dmk(g)dml(h).

�

Remark 4.3. If (π,E) belongs to the closure of F ⊂ R, then

• ‖π(m)‖ ≤ sup(π′,E′)∈F ‖π′(m)‖ for every compactly supported measure on

G. In particular CF(G) and CF (G) are isometric. By Lemma 3.3, this
implies that if CF(G) has a Kazhdan projection, then so has CF (G).
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• E is finitely representable in {E′, (π′, E′) ∈ F}. In particular if G = {1}
is the trivial group, we have just defined a (classical) topology on sets of
Banach spaces which is characterized as follows : X belongs to the closure
of a subset E if and only if X is finitely representable in E . Hence (Subsec-
tion 2.5) this topology can be characterized in terms of ultraproducts. In
the rest of this section we show such a characterization in the case of an
arbitrary group G. This will be rather straightforward for discrete groups,
and technically more involved in the general case.

Before that we investigate strong neighbourhoods for this topology in the sense
of Definition 2.2.

4.2. Examples of strong neighbourhoods. Here we characterize, in several ex-
amples, the strong neighbourhoods of subsets ofR. We need to recall some notation.
If E is a class of Banach spaces and m : G → (0,∞] is a function, we denote F(E ,m)
(respectively F(E ,m)) the set of all equivalence classes of representations (π,E) in
R such that E is isometric to a space in E (respectively E is finitely representable
in E) and ‖π(g)‖ ≤ em(g) for all g. Recall the definition of EN,ε in §2.5.

Proposition 4.4. Let E be a class of Banach spaces and m : G → (0,∞] a function.
Every strong neighbourhood of F(E ,m) contains F(EN,ε,m+ εℓ) for some N ∈ N

and ε > 0.

Proof. Let F ′ be a strong neighbourhood of F . Assume by contradiction that
for every pair α = (N, ε) of an integer N and a positive number ε there is a
representation (πα, Eα) which belongs to F(EN,ε,m+εℓ) by not to F ′. Then every
accumulation point of this net (for the order (N, ε) ≤ (N ′, ε′) if N ≤ N ′ and ε ≥ ε′)
belongs to F(E ,m) (see Remark 4.3). This is a contradiction with (2) in Lemma
2.1. �

A particular case of the preceding proposition is worth mentioning.

Proposition 4.5. Let H be the class of Hilbert spaces and m : G → (0,∞] a
function. Every strong neighbourhood of F(H,m) contains F(E(ε),m + εℓ) for
some ε > 0, where E(ε) is the class of Banach spaces such that

1

2

(
‖x+ y‖2 + ‖x− y‖2

)
≤ (1 + ε)

(
‖x‖2 + ‖y‖2

)
∀x, y ∈ E.

This is indeed a particular case because, since the parallelogram inequality char-
acterizes the Hilbert spaces, for every N, ε there is ε′ > 0 such that HN,ε contains
E(ε′).

If E is a class of Banach spaces and m : G → (0,∞] is a function, we denote
G(E ,m) the set of all equivalence classes of representations (π,E) ∈ R which are
equivalent to a subrepresentation of (π′, E′) where E′ ∈ E and ‖π′(g)‖ ≤ em(g) for
all g in G.

Proposition 4.6. Let E be a class of Banach spaces stable by ultraproducts and
m : G → (0,∞] a function. Assume that G is discrete. Then G(E ,m) is closed and
every strong neighbourhood of G(E ,m) contains G(E ,m+ εℓ) for some ε > 0.

Proposition 4.7. Let 1 < p < ∞. Then G(Lp, 0) is closed and every strong
neighbourhood of G(Lp, 0) contains ∪q∈[p−ε,p+ε]G(Lq, εℓ) for some ε > 0.

We postpone the proof of these propositions to the end of the section, because
their proof requires the material in the rest of the section.
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4.3. Ultraproduct of Banach space representations. Let G be a locally com-
pact group. We define ultraproducts in the category of continuous Banach space
linear representations of G in the same way as for unitary representations in [7].

Let (πi)i∈I be a family of representations of G on Banach spaces Ei. Assume also
that supi ‖πi(g)‖B(Ei) is bounded on compact subsets of G. Let U be an ultrafilter
on I. Let

∏
U Ei be the Banach space ultraproduct of Ei, and, for g ∈ G, π(g) the

ultraproduct of πi(g), which makes sense because supi ‖πi(g)‖B(Ei) < ∞ (§2.5).
For f ∈ Cc(G) we define π(f) as the ultraproduct of πi(f), which makes sense
because supi ‖πi(g)‖B(Ei) is bounded on the support of f .

Then π is a group morphism from G to the invertible operators on
∏

U Ei.
However it is in general not strongly continuous, and to fix this we consider EU the
subspace of

∏
U Ei defined as the closure of the space spanned by

{π(f)x, x ∈
∏

U
Ei, f ∈ Cc(G)}.

It is straightforward (see Lemma 4.8 for a stronger statement) that the space EU
is invariant by π(g) for all g ∈ G, and the restriction of π to EU is a strongly
continuous representation of G. We define the ultraproduct of (πi, Ei) with respect
to U as (πU , EU ), where πU is the restriction of π to EU .

We also have the following characterization of EU (see §2.1 for the terminology).

Lemma 4.8. Let fn ∈ Cc(G) be an approximate unit, and let x ∈
∏

U Ei with
representative (xi)i ∈

∏
i Ei. Then the following are equivalent

(1) x ∈ EU .
(2) limn ‖π(fn)x− x‖ = 0.
(3) For every ε > 0, there is a neighbourhood U of e in G such that

lim
U

sup
g∈U

‖πi(g)xi − xi‖ ≤ ε.

Proof. The (2) =⇒ (1) direction is obvious : if limn ‖π(fn)x − x‖ is equal to 0,
then x = limn π(fn)x belongs to EU . So is (3) =⇒ (2) because if Qn denotes the
support of fn,

‖π(fn)x− x‖ = lim
U

‖πi(fn)xi − xi‖ ≤ lim
U

sup
g∈Qn

‖πi(g)xi − xi‖.

Let us prove the implication (1) =⇒ (3). Assume that x ∈ EU . Fix U0 a
compact neighbourhood of the identity in G, and define M0 = supg∈U0

supi ‖πi(g)‖.

Let ε > 0, and take y =
∑

k π(hk)y
(k) with hk ∈ Cc(G) and y(k) ∈

∏
U Ei such

that ‖y − x‖ < ε. Let (y
(k)
i )i ∈

∏
iEi be a representative of y(k), so that (yi =∑

k πi(hk)y
(k)
i )i is a representative of y. Then for every g ∈ G,

‖πi(g)xi − xi‖ ≤
∑

k

‖π(λghk − hk)y
(k)
i ‖+ (1 + ‖π(g)‖)‖yi − xi‖

where λghk(g
′) = hk(g

−1g′). Let also Q ⊂ G a compact subset which contains the
support of hk and λghk for all g ∈ U0 and all k. Let M = supg∈Q supi ‖πi(g)‖, so
that ‖πi(λghk − hk)‖ ≤ M‖λghk − hk‖L1(G). For g ∈ U0 the previous inequality
becomes

‖πi(g)xi − xi‖ ≤ M
∑

k

‖λghk − hk‖L1(G)‖y
(k)
i ‖+ (1 +M0)‖yi − xi‖.
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By continuity of the translations on L1(G), there exists U ⊂ U0 a neighbourhood
of the identity such that

M
∑

k

‖λghk − hk‖L1(G)‖y
(k)‖ ≤ ε

for every g ∈ U . Taking the supremum on U and taking the limit in the preceding
inequality we get

lim
U

sup
g∈U

‖πi(g)xi − xi‖ ≤ (2 +M0)ε.

This proves (3). �

Lemma 4.9. Let xk ∈ EU , 1 ≤ k ≤ n be a finite family with representative (xk,i)i,
and Q ⊂ G a compact subset. If M(Q)1 denotes the set of all complex measures
supported in Q and with total variation ≤ 1, we have

lim
U

sup
m1,...,mn∈M(Q)1

|‖

n∑

k=1

πi(mk)xk,i‖ − ‖

n∑

k=1

πU (mk)xk‖| = 0.

Also, for every x = (xi)i ∈ EU and every compactly supported complex measure
on G,

∫
πU (g)xdm(g) = (

∫
πi(g)xidm(g))U . In particular πU (f) = (πi(f))U for

every f ∈ Cc(G).

Proof. The formula πU (mk)xk = (πi(mk)xk,i)U is obvious by linearity when mk is
a finitely supported measure by definition of πU , and it implies

lim
U

‖

n∑

k=1

πi(mk)xk,i‖ = ‖

n∑

k=1

πU (mk)xk‖.

The convergence is easily seen to be uniform among all measures of total variation
≤ 1 and support contained in a fixed finite subset of G. We will reduce to finitely
supported measures with the help of the preceding lemma. Let ε > 0. By (3) in
Lemma 4.8 there is a neighbourhood U of the identity such that

lim
U

sup
g∈U

‖πi(g)xk,i − xk,i‖ ≤ ε

for every k ∈ {1, . . . , n}. By compactness of Q there exists a finite subset Q′ =
{g1, . . . , gt} ⊂ Q such that Q ⊂ ∪t

s=1gsU . Let us extract a partition Q = Q1∪· · · ∪
Qt with Qs ⊂ gsU . If we denote M = sup(π,E)∈R supg∈Q ‖πi(g)‖, we deduce that

lim
U

sup
g∈Qs

‖πi(g)xk,i − πi(gs)xk,i‖ ≤ Mε.

Let mk be a complex measure supported in Q and with total variation less than 1,
and define m′

k =
∑

p mk(Qp)δgp . It is a signed measure supported in Q′ and with
total variation less than 1. We have

‖πi(mk)xk,i − πi(m
′
k)xk,i‖ ≤ max

k
sup
g∈Qk

‖πi(g)xk,i − πi(gk)xk,i‖,

and therefore we get (using also the same estimates for πU )

lim
U

sup
m1,...,mn∈M(Q)1

|‖
∑

k

πi(mk)xk,i‖ − ‖
∑

k

πU (mk)xk‖|

≤ lim
U

sup
m′

k
∈M(Q′)1

|‖
∑

k

πi(m
′
k)xk,i‖ − ‖

∑

k

πU (m
′
k)xk‖|+ 2nMε = 2nMε.
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The last equality is because Q′ is finite. By taking the limit as ε goes to 0 we get

lim
U

sup
m1,...,mn∈M(Q)1

|‖

n∑

k=1

πi(mk)xk,i‖ − ‖

n∑

k=1

πU (mk)xk‖| = 0.

We can now move to the second part. Take m′ a finitely supported measure such
that ‖πU (m)x− πU (m′)x‖ < ε. Then since πU (m′)x = (πi(m

′)xi)U

‖πU (m)x− (πi(m)xi)U‖ ≤ ‖πU (m)x− πU (m
′)x‖ + ‖(πi(m

′)xi − πi(m)xi)U‖ ≤ 2ε,

because ‖(πi(m
′)xi − πi(m)xi)U‖ = ‖πU(m)x − πU (m′)x‖ by the first part of the

lemma with n = 1. We conclude by taking the limit ε → 0. �

We will use the following standard Banach algebraic lemma.

Lemma 4.10. Assume that
∏

U Ei is reflexive. Then EU is M -complemented in∏
U Ei, where M is the infimum over all neighbourhoods V of the identity in G of

limU supg∈V ‖πi(g)‖.

Proof. Let (fn) be an approximate unit in Cc(G), and Qn the support of fn. Then
‖π(fn)‖ ≤ limU supg∈Qn

‖πi(g)‖. Therefore lim supn ‖π(fn)‖ ≤ M . Since
∏

U Ei is
reflexive, the balls in B(

∏
U Ei) are compact for the weak operator topology. So

there exists P ∈ B(
∏

U Ei) an accumulation point, in the weak operator topology,
of the net (π(fn)). It has norm ‖P‖ ≤ M . The image of P is contained in EU
because this is the case for π(fn) for all n. Moreover, the restriction of P to EU is
the identity because (Lemma 4.8) π(fn)x converges in norm to x for every x ∈ EU .
Therefore P is a projection in EU of norm M , as requested. �

We deduce the following.

Proposition 4.11. Let 1 < p < ∞. Assume that Ei is an Lpi
-space with limU pi =

p, and that limU ‖πi(g)‖ = 1 uniformly on compact subsets of G. Then (πU , EU ) is
an isometric representation on an Lp-space.

Proof. It is clear that πU is an isometric representation. It is well-known that∏
U Ei is an Lp space. For example the proof of [13, Theorem 3.3 (ii)] applies

without a change. In particular it is reflexive, and by the preceding lemma, EU is a
1-complemented subspace of an Lp space, and therefore is isometric to an Lp space
by [28]. �

4.4. Ultraproducts of affine actions. Let (σi)i∈I be a family of affine actions of
G on a Banach space Ei, with linear part πi and translation part bi : G → Ei. This
means that σi(g)x = πi(g)x + bi(g) for all x ∈ Ei. We assume that supi ‖πi(g)‖
is bounded on compact subsets of G. Let U be an ultrafilter on I. We wish to
define the ultraproduct of σi as the continuous affine action with linear part the
ultraproduct of πi and translation part b(g) = (bi(g))U ∈

∏
U Ei. An obvious

necessary condition is that (bi(g))i∈I is bounded and that b is continuous at 0. The
following proposition shows that this is not far from being sufficient.

Proposition 4.12. Let πi be a family of representations of G on Banach spaces Ei,
with supi ‖πi(g)‖ bounded on compact subsets of G, and let (σi)i be affine actions
of G on a Banach space Ei, with linear part πi and translation part bi : G → Ei.
Assume that the cocycles bi are pointwise bounded :

∀g, sup
i

‖bi(g)‖ < ∞
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and equicontinuous at the identity of G :

(4.2) ∀ε > 0, ∃U ⊂ G neighbourhood of the identity, sup
i

sup
g∈U

‖bi(g)‖ < ε.

Let U be an ultrafilter on I. There is a continuous affine action σU of G on EU
with linear part πU and translation part b(g) = (bi(g))U .

Moreover for every x = (xi)U ∈ EU , we have

(4.3) δσU

S (x) = lim
U

δσi

S (xi).

Proof. From the assumption supi ‖bi(g)‖ < ∞, the element b(g) = (bi(g))U is well-
defined in

∏
U Ei, and it is clear that b(g) satisfies the cocycle relation b(gh) =

b(g) + (πi(g))U b(h), so the only things that deserve a proof are that b(g) belongs
to EU and that b is continuous.

Fix g ∈ G and ε > 0. Let U be neighbourhood of the identity in G. From the
cocycle relation we deduce that πi(h)bi(g)−bi(g) = πi(g)bi(g

−1hg)−bi(h) and that

sup
h∈U

‖πi(h)bi(g)− bi(g)‖ ≤ (1 + ‖πi(g)‖) sup
h∈U∪g−1Ug

‖bi(h)‖.

By (4.2) there is a choice of U such that the preceding is less than ε. Since ε is
arbitrary Lemma 4.8 implies that b(g) ∈ EU .

The continuity of b at the identity is immediate from (4.2). From the relation
b(g)−b(g0) = πU (g0)b(g

−1
0 g) the continuity of b at the identity implies the continuity

of b at every point g0 ∈ G. This concludes the proof that b ∈ Z1(G;πU ).
By writing

δσU

S (x) = sup
s∈S

‖πU(s)x + b(s)‖ and δσi

S (xi) = sup
s∈S

‖πi(s)x + bi(s)‖,

the last assertion follows from Lemma 4.9 and the equicontinuity of the maps bi
that we just established. �

4.5. Topology and ultraproducts. We now characterize (when ultraproducts
make sense) the topology defined in §4.1 in terms of representation ultraproducts.
For ultraproducts to make sense, we assume in this part that R is a set of equiv-
alence classes of Banach space representations of G such that sup(π,E)∈R ‖π(g)‖ is
bounded on compact subsets of G.

Theorem 4.13. The closure of a subset A ⊂ R coincides with all equivalence
classes belonging to R of subrepresentations of an ultraproduct (πU , EU ) of repre-
sentations in A.

Proof. We have two inclusions to prove. First assume that (π,E) ∈ R is equivalent
to a subrepresentation of an ultraproduct (πU , EU ) of a family (πi, Ei)i∈I ∈ AI . Let
u : E → EU the corresponding G-equivariant isometry. Let x1, . . . , xn ∈ E, Q ⊂ G
a compact subset. Pick representatives (xk,i)i ∈

∏
I Ei of u(xk) ∈ EU . Define a

linear map ui : F → Ei by ui(xk) = xi,k. Lemma 4.9 implies that for every ε > 0,
(πi, Ei) belongs to Wx1,...,xn,Q,ε(π,E) for U-almost every i. In particular, every
neighbourhood of (π,E) intersects A, thereby proving the first inclusion.

Let us move to the second inclusion. Assume that (π,E) belongs to the closure
of A. Consider I, the set of all triples (F,Q, ε) where F = (x1, . . . , xn) is a finite se-
quence of elements of E, Q ⊂ G is compact containing a neighbourhood of the iden-
tity and ε > 0. It is a directed set for the order (F,Q, ε) ≤ (F ′, Q′, ε′) when F ⊂ F ′,
Q ⊂ Q′ and ε ≥ ε′. For every i = (F,Q, ε) ∈ I, there is (πi, Ei) ∈ A∩WF,Q,ε(π,E).
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Let ui(x1), . . . , ui(xn) ∈ Ei be a witness of this inclusion. Note in particular that
(since e ∈ Int(Q)) taking mk ∈ {0, δe} in the definition ofWF,Q,ε(π,E) (see Remark
4.1) we have

(4.4) |‖ui(x)‖ − ‖x‖‖ ≤ ε for all x ∈ F,

and taking mk a multiple of δe

(4.5) ‖ui(x+ λy)− ui(x) − λui(y)‖ ≤ εmax(1, |λ|)

for all x, y ∈ F and λ ∈ C such that x+ λy ∈ F . Similarly, taking mk ∈ {0, 12 (δe −
δg), g ∈ Int(Q)} we get that for all U ⊂ Int(Q),

(4.6) sup
g∈U

‖πi(g)ui(x)− ui(x)‖ ≤ 2ε+ sup
g∈U

‖π(g)x− x‖ for all x ∈ F.

Finally taking mk ∈ {0, δg, g ∈ Int(Q)} we have

(4.7) ‖πi(g)ui(x)− ui(π(g)x)‖ ≤ ε

for all x ∈ F and g ∈ Int(Q) such that π(g)x ∈ F . We extend ui to a map
ui : E → Eα(i) by setting ui(x) = 0 is x /∈ F . Finally let U be a cofinal ultrafilter
on I : {i ∈ I, i ≥ i0} ∈ U for all i0 ∈ I. Consider the ultraproduct (πU , EU ). For
every x ∈ X , define u(x) = (ui(x))U ∈

∏
U Ei. Since U is cofinal, (4.4) and (4.5)

imply that u is linear isometric, (4.6) and Lemma 4.8 imply that u takes its values
in EU , and (4.7) implies that it satisfies u(π(g)x) = πU (g)u(x) for all x ∈ E and
g ∈ G. Therefore, u realizes (π,E) as a subrepresentation of (πU , EU ). This shows
the second inclusion. �

We can now give the

Proof of Proposition 4.6. As in the proof Proposition 4.4, we have to show that
every accumulation point (π,E) of a sequence (πn, En) ∈ G(E ,m + o(1)ℓ) belongs
to G(E ,m). For every n, realize (πn, En) as a subrepresentation of (π′

n, E
′
n) with

E′
n ∈ E and ‖π′

n(g)‖ ≤ em(g). By Theorem 4.13, (π,E) is a subrepresentation of an
ultraproduct (πU , EU ) of a family (πni

, Eni
)i∈I with limU ni = ∞, which is itself a

subrepresentation of the ultraproduct (π′
U , E

′
U ) of (π′

ni
, E′

ni
)i∈I . Then ‖π′

U(g)‖ ≤

limU ‖π′
ni
(g)‖ ≤ em(g) for every g. Moreover, since G is discrete, E′

U =
∏

U Eni
,

which belongs to E because E is stable by ultraproducts. So (π,E) ∈ G(E ,m). �

Proof of Proposition 4.7. The same proof applies, except that instead of using that
G is discrete, use Proposition 4.11. �

5. Applications

5.1. Choice of R. In the previous section R could be an arbitrary set of equiv-
alence classes of Banach space representations, but in the applications we need R
to be large enough. For this we fix M > 1 and take for R the set of all equivalence
classes of Banach space representations (π,E) on a separable Banach space and
such that supg∈S ‖π(g)‖ ≤ M for all g ∈ G.

The reason why we impose a bound on ‖π(g)‖ is that this ensures that ultra-
products of representations in R make sense. The reason why we have to bound
the dimensions of the spaces in R is because otherwise R would not be a set. The
separability is enough for our purposes because R is stable by ultraproducts in the
following sense : for every ultraproduct (πU , EU ) of a family (πi, Ei)i ∈ RI and
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every continuous function f : G → EU , there is a πU (G)-invariant closed subspace
E ⊂ EU containing f(G) such that the equivalence class of (π,E) belongs to R.

5.2. Proof of Theorem 1.3. We now prove the following precise form of Theorem
1.3, in the general setting of locally compact compactly generated groups.

Theorem 5.1. Let F ⊂ R. Assume that CF(G) has a Kazhdan projection and that
H1(G, π) = 0 for all (π,E) ∈ F . Then there is a strong neighbourhood F ′ of F such
that CF ′(G) has a Kazhdan projection and that H1(G, π) = 0 for all (π,E) ∈ F ′.

Remark 5.2. As we shall see in §5.5, it is not true that if one moreover assumes that
CcF (G) has a central Kazhdan projection, then CF ′(G) has a Kazhdan projection.

Proof. By Theorem 3.9, there is a a compactly supported measure m with
∫
1dm =

1 such that δσS(σ(m)x) ≤ 1
2δ

σ
S(x) for every affine action σ on E with linear part in F

and every x ∈ E. We shall find another measure m′ and a strong neighbourhood F ′

of F such that δσS(σ(m
′)x) ≤ 1

2δ
σ
S(x) for every affine action σ with linear part (π,E)

in F ′ and every x ∈ E. By the converse direction in Theorem 3.9 this will imply
that CF ′(G) has a Kazhdan projection and that H1(G, π) = 0 for all (π,E) ∈ F ′,
and prove the first part of the theorem.

The proof is particularily simple in the case when the group is discrete, and in
that case we can take m′ = m (and replace 1

2 by 1√
2
, say). In the general case

we fix a nonnegative function f0 ∈ L1(G) with compact support Q0 and
∫
f0 = 1

which will be used for regularization (if G is discrete just take f0 = δe). By Lemma
3.10 there is C > 0 such that

(5.1) δσS(σ(f0)x) ≤ CδσS(x)

for every affine action σ on a Banach space E with linear part in R and every
x ∈ E. Take k ∈ N such that C

2k < 1
2 , and denote m′ = m∗k ∗ f0. Define F ′ as the

set of representation classes (π,E) ∈ R such that δσS(σ(m
′)x) ≤ 1

2δ
σ
S(x) for every

affine action σ with linear part (π,E) and every x ∈ E.
To prove that F ′ is a strong neighbourhood of F we use the characterization

in Lemma 2.1: we consider a net (πi, Ei)i∈I contained in R \ F ′, and we have
to construct an accumulation point of this net which does not belong to F . By
definition of F ′, for every i ∈ I, there is an affine action σi of G on Ei with linear
part πi and xi ∈ Ei such that

δσi

S (σ(m′)xi) >
1

2
δσi

S (xi).

By normalizing we can assume that δσi

S (xi) = 1. The formula

bi(g) = σi(g)σi(f0)xi − σi(f0)xi

defines a cocycle with values in πi, cohomologous to the cocycle g 7→ σi(g)0. By
(5.1), it satisfies supg∈S ‖bi(g)‖ ≤ C, and therefore by the cocycle relation we have
supi ‖bi(g)‖ < ∞ for every g ∈ G. Moreover, we have

‖bi(g)‖ ≤ ‖λgf0 − f0‖L1(G) sup
h,h′∈Q0

‖σi(gh)xi − σi(h
′)xi‖.

Since limg→e ‖λgf0 − f0‖L1(G) = 0, this implies that the bi are equicontinuous on
the neighbourhood of e. Take U a cofinal ultrafilter on I. By Propostion 4.12,
b(g) = (bi(g))U is a cocycle with values in (πU , EU ), and defines an affine action σ.
Since G is separable, there is a separable closed subspace E ⊂ EU that is invariant
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under π and σ. Then (πU , E) ∈ R and by Theorem 4.13 and the cofinality of U ,
(πU , E) is an accumulation point of the net (πi, Ei)i. On the one hand we have
δσS(0) = supg∈S ‖b(g)‖ ≤ C, and on the other hand by (4.3) in Proposition 4.12,

δσS(σ(m
k)0) = lim

U
δσi

S (σi(m
k)σi(f0)xi) = lim

U
δσi

S (σi(m
′)xi) ≥

1

2
.

By the definition of k we therefore have δσS(σ(m
k)0) > 2−kδσS(0). This implies that

(πU , E) /∈ F and concludes the proof of the first half of the theorem. �

5.3. Fixed point and Kazhdan projections. The next lemma, a form of which
has been proved by Masato Mimura, gives an improvement on Guichardet’s argu-
ment that H1(G;π) = 0 implies that E/Eπ does not have almost invariant vectors.
We provide a proof for completeness.

Lemma 5.3. Let F ⊂ R be closed with the property that for every (π,E) ∈ F and
every continuous affine action of G on E with linear part π has a fixed point. There
exists ε > 0 such that δπS(x) ≥ ε‖x‖E/Eπ for every (π,E) ∈ F and x ∈ E.

Proof. If (π,E) is a Banach space representation of G, we denote by ε(π, S) the
associated Kazhdan constant, i.e. the best (=largest) ε such that δπS(x) ≥ ε‖x‖E/Eπ

for every x ∈ E. If the lemma was not true, there would exist a sequence (πn, En) ∈
E such that limn ε(πn, S) = 0. Denote εn = ε(πn, S). As recalled above, εn is
strictly positive. Let U be a free ultrafilter on N and (πU , EU ) the ultraproduct
of (πn, En). Let xn ∈ En such that δπS(xn) = 1 and ‖xn‖En/E

πn
n

> 1
2εn

. Let

f0 ∈ Cc(G) nonnegative with
∫
f0 = 1 and yn = π(f0)xn. By Lemma 3.10 there is

C > 0 such that ‖xn − yn‖ ≤ C for all n, so that

‖yn‖En/E
πn
n

≥ ‖xn‖En/E
πn
n

− ‖yn − xn‖En
≥

1

3εn

for all n large enough. Moreover, if we define bn(g) = π(g)yn − yn, then as in the
proof of Theorem 5.1 b(g) := (bn(g))U defines an affine action σ with linear part
(πU , EU ) and there is a closed subspace E ⊂ EU that is invariant under πU and
σ such that (πU , E) ∈ R. By Theorem 4.13 (πU , E) belongs to F because F is
closed. This affine action therefore has a fixed point z = (zn)U ∈ E, so that the
class of (bn(g)) in the ultraproduct coincides with the class of (π(g)zn − zn)n for
some z = (zn)U ∈ E. By proposition 4.12, we get limU δπn

S (yn − zn) = 0, whereas
‖yn− zn‖En/Eπ

n
≥ ‖yn‖En/Eπ

n
−‖zn‖ ≥ 1

4εn
for all n large enough. This contradicts

the definition of εn. �

We can now prove Proposition 3.6

Proof of Proposition 3.6. If E is stable by finite representability, then F , the set of
all isometric representations (π,E) ∈ R on a space in E , is closed (Remark 4.3).
By Lemma 5.3 and [9] CF(G) has a Kazhdan projection.

If E is only closed by ultraproducts and G is discrete, then the same proof
applies to F = G(E , 0) (see Proposition 4.6). If E = Lp the same proof applies with
F = G(Lp, 0) (Proposition 4.7). �

5.4. Application to fixed point properties. Recall that if E is a class of Banach
spaces, we denote by F(E ,m) the set of all equivalence classes of representations
(π,E) ∈ R such that E is isomorphic to a space in E and such that ‖π(g)‖B(E) ≤

em(g) for all g ∈ G.
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Corollary 5.4. Let E be a class of Banach spaces closed under finite representabil-
ity and m : G → (0,∞). If CF(E,m)(G) has a Kazhdan projection and every affine

action with linear part in F(EN,ε,m) has a fixed point, then there exists N ∈ N, ε >
0 such that the same is true for F(EN,ε,m+ εℓ).

If moreover m is symmetric and E is stable by duality, then there exists N, ε such
that the Kazhdan projection in CF(EN,ε,m+εℓ)(G) is central.

Proof. By Theorem 5.1 there is a strong neighbourhood F ′ of F(E ,m) such that
CF ′(G) has a Kazhdan projection and every affine action with linear part in F ′

has a fixed point. By Proposition 4.4 F ′ contains F(EN,ε,m′) for some ε,N , with
m′ = m+ εℓ.

It remains to prove that, if N, ε is replaced by some N ′ > N, ε′ < ε, the Kazhdan
projection can be taken central if E is stable by duality. By Corollary 3.5 it is
enough to show that for some N ′, ε′, F(EN ′,ε′ ,m′) is contained in a weakly self-
adjoint subset of F ′. But by Lemma 2.3 there is N ′ ≥ N and ε′ < ε such that X∗

belongs to EN,ε for all X ∈ EN ′,ε′ . Since m and m′ are symmetric, this implies that
the set of representations in F(EN,ε,m′) such that all separable subrepresentations

of its dual representation belong to F(EN,ε,m′) contains F(EN ′,ε′ , ε′). But this set
is clearly weakly self-adjoint. This concludes the proof. �

We can now prove the following corollaries, mentioned in the introduction.

Corollary 5.5. If G has property (T), then there exists ε > 0 and a central
Kazhdan projection in CF(E(ε),εℓ)(G), and every affine action with linear part in
F(E(ε), εℓ) has a fixed point, where E(ε) is the class of all Banach spaces E satis-
fying

(5.2)
1

2

(
‖x+ y‖2 + ‖x− y‖2

)
≤ (1 + ε)

(
‖x‖2 + ‖y‖2

)
∀x, y ∈ E.

Proof. This is Corollary 5.4 for E the class of Hilbert spaces (recall Proposition
4.5). �

Corollary 5.6. Let E be a class of superreflexive Banach spaces closed under finite
representability. If G has (FE) then there exists N ∈ N and ε > 0 such that
CF(EN,ε,εℓ)(G) has a Kazhdan projection and every affine action with linear part in

F(EN,ε, εℓ) has a fixed point. The Kazhdan projection is central if E is stable by
duality.

Proof. Combine Proposition 3.6 and Corollary 5.4. �

Remark 5.7. The (proof of the) preceding corollary says that if a class of super-
reflexive Banach spaces E is stable by finite representability then (FE) implies robust
property (T) with respect to E (and more generally to EN,ε for some N, ε), see §3.3
for the definition of Oppenheim’s robust property (T). Oppenhein proved that the
converse holds for every set E such that every space X ∈ E there is X ′ ∈ E isometric
to X ⊕p C for some 1 ≤ p ≤ ∞. Together, this shows that (FE ) is equivalent to
robust (T) with respect to E if E is the class of Hilbert spaces, or the class of spaces
C-isomorphic to Hilbert spaces, or (for some 1 < p < ∞) the class of subspaces of
Lp spaces, or the class of subquotients of Lp spaces... We can also replace Lp spaces
by non-commutative Lp spaces because non-commutative Lp spaces are closed un-
der ultraproducts [23]. Corollary 5.9 will also imply that (FLp

) is equivalent to
robust (T) with respect to Lp spaces.
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Recall that one says that G has (FE) if every affine action on a space in E whose
linear part is a uniformly bounded representation has a fixed point.

Corollary 5.8. Let E be a class of superreflexive Banach spaces closed under finite
representability. The following are equivalent :

(1) G has (FE).
(2) For every C > 0, there exists N ∈ N and ε > 0 such that CF(EN,ε,εℓ+C)(G)

has a Kazhdan projection and H1(G;π) = 0 for every (π,E) ∈ F(EN,ε, εℓ+
C).

(3) For every C > 0, there exists ε > 0 such that CF(E,εℓ+C)(G) has a Kazhdan

projection and H1(G;π) = 0 for every (π,E) ∈ F(E , εℓ+ C).
(4) (If E contains a space of infinite dimension) For every C > 0, there exists

ε > 0 such that CF(E,εℓ+C)(G) has a Kazhdan projection.

In that case, and if E is stable by duality, then CF(E,εℓ+C)(G) has a central Kazhdan
projection.

Proof. (1) =⇒ (2) is Corollary 5.4. The implications (2) =⇒ (3) =⇒ (4) and
(3) =⇒ (1) are obvious.

Assume (4). By an argument of Lafforgue [17, §5.3], this implies that H1(G;π) =
0 for every uniformly bounded representation (π,E) with E isomorphic to a hyper-
plane in a space in E . So (1) is a consequence of the following claim: every separable
space E in E is isomorphic to a hyperplane in another space E′ in E . If E is finite
dimensional this is obvious because we assumed that E contains a space of infinite
dimension, and in particular a subspace of dimension dim(E) + 1. Otherwise, let
En ⊂ E be an increasing sequence of finite dimensional subspaces such that ∪nEn

is dense in E. Let U be a cofinal ultrafilter in N. Then E is isometric to a subspace
of
∏

U En by sending x ∈ ∪nEn to (1x∈En
x)U and extending by continuity. It is a

strict subspace because
∏

U En is not separable, so if x ∈
∏

U En \E, we have that
the linear span of x and E belongs to E and contains E as a hyperplane. �

The point (4) is almost strong property (T) with respect to E , except on the
order of the quantifiers, which should be ∃ε, ∀C instead of ∀C, ∃ε. This “small”
difference is a bit unfortunate, because Shalom conjectured that hyperbolic groups
do not have (Fℓ2), whereas Lafforgue [16] proved that hyperbolic groups do not
have strong property (T) with respect to Hilbert spaces.

5.5. Application to Lp spaces. We now prove the following result for property
(FLp

).

Corollary 5.9. Let 1 < p < ∞. The following are equivalent.

(1) G has property (FLp
).

(2) there exists ε > 0 such that CF({Lq,q∈[p−ε,p+ε]},εℓ)(G) has a Kazhdan projec-
tion and every affine action with linear part in F({Lq, q ∈ [p−ε, p+ε]}, εℓ)
has a fixed point.

(3) there exists ε > 0 such that CF(Lp,εℓ)(G) has a Kazhdan projection.

In that case, and for all ε small enough, the projection in (2) and (3) are central if
and only if G has (FLp′

) where p′ = p
p−1 is the conjugate exponent of p.

Remark 5.10. This Corollary provides natural examples where there is a Kazhdan
projection, but not a central Kazhdan projection. Indeed, consider Γ a discrete
Gromov-hyperbolic group with property (T) (for example a cocompact lattice in
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Sp(n, 1), or a suitable random group). It was proved by Bader, Furman, Gelander
and Monod [2] that, as every group with property (T), Γ has (FLp

) for every
1 < p ≤ 2. On the other hand, Yu [29] proved that every hyperbolic group with
property (T) has a proper action on ℓp′ for some 1 < p ≤ 2, and in particular does
not have (FLp′

). By the above corollary, there is ε such that CF(Lp,εℓ)(G) has a
Kazhdan projection, but not a central Kazhdan projection.

Proof. (2) =⇒ (3) is obvious, and (3) =⇒ (1) is [21]. (1) =⇒ (2) is not formally
a consequence of Corollary 5.6 because Lp spaces are not stable under subspaces.
However, for the first part, the same proof works with Proposition 4.4 replaced by
Proposition 4.7.

For the second part, if G has (FL′
p
) and (FLp

) then by the first part there is

also, for all small enough ε1, a Kazhdan projection for F({Lq′ , q ∈ [p − ε1, p +
ε1]}, ε1ℓ), which is the dual of F({Lq, q ∈ [p − ε1, p + ε1]}, ε1ℓ). By replacing
ε by min(ε, ε1), the implication (5) =⇒ (1) in Proposition 3.4 implies that the
Kazhdan projection for F({Lq, q ∈ [p− ε, p+ ε]}, εℓ) is central, and hence also for
F({Lp, εℓ). Conversely, assume that CF(Lp,εℓ)(G) has a central projection for some
ε > 0, then by Proposition 3.4 CF(Lp′ ,εℓ)

(G) has a Kazhdan projection and hence

G has (FLp
). �

Similarly using Proposition 4.6.

Corollary 5.11. Let E be a class of superreflexive Banach spaces stable by ultra-
products. Then, for discrete groups, (FE) implies robust (T) with respect to E.

Recall [21] that the converse holds if for every X ∈ E , there is 1 ≤ p ≤ ∞ such
that X ⊕p C ∈ E .

5.6. From compactly generated to compactly presented. We can now state
a result, which is an extension to Banach space representations of a result proved
for unitary representations by Shalom [25] for discrete groups, and Fisher–Margulis
[11] for locally compact groups.

A locally compact group G with a compact generating set S is said to be com-
pactly presented if, as an abstract group, G has a presentation with S as a set of
generators and with relators of bounded length (this does not depend on S).

If H is a quotient of G and F ⊂ R we denote F[H] the set of all equivalence
classes of representations in F which factor through H .

Theorem 5.12. Assume that G is compactly presented, that H is a quotient of G
by a discrete normal subgroup, and let F ⊂ G be closed. If CF[H]

(H) has a Kazhdan

projection and H1(H ;π) = 0 for every (π,E) ∈ F[H], then there is a compactly
presented intermediate quotient G → H ′ → H such that CF[H′]

(H ′) has a Kazhdan

projection and H1(H ′;π) = 0 for every (π,E) ∈ F[H′].

Proof. The theorem is proved exactly as Theorem 5.1, so we only give a short
sketch. By Theorem 3.9 there is a measure m with

∫
1dm = 1 and such that

(5.3) δσS(σ(m)x) ≤
1

2
δσS(x)

for every affine action σ of H on E with linear part in F[H] and every x ∈ E. Let

f0 ∈ L1(G), C > 0, k ∈ N and m′ = m∗k ∗ f0 as in the proof of Theorem 5.1.



A LOCAL CHARACTERIZATION OF KAZHDAN PROJECTIONS AND APPLICATIONS 29

Since G is compactly presented, it has a presentation G = 〈S,R〉 with relations
of length ≤ n0. For n ≥ n0, let Rn be the set of words of length less than or equal
to n in the letters S which are trivial in H , and define a sequence of intermediate
compactly presented intermediate quotients Hn by

Hn = 〈S,Rn〉.

Assume by contradiction that for every n, there is an affine action σn of Hn on
En with linear part in F[Hn] and xn ∈ En such that δσn

S (σ(m′)xn) >
1
2δ

σn

S (xn) =
1
2 . Consider the cocycle bn(g) = σn(g)σn(f0)xn − σn(f0)xn. Let U be a cofinal
ultrafilter on N. Then there is a separable subaction σ of the ultraproduct action
which factors through H (because it factors though Hn for all n), with linear part
in F (because F is closed) and with translation part b(g) = (bn(g))U . Therefore by
using successively Proposition 4.12, (5.3) and (5.1) we get

1

2
≤ lim

U
δσn

S (σn(m
′)xn) = δσS(σ(m)k0) ≤ 2−kδσS(0) ≤ 2−kC,

a contradiction with the definition of k. �

An example of consequence is the following result. However, as Masato Mimura
pointed out to us, there is a more direct and easy proof, that he attributes to
Gromov–Schoen [12] (see also [27]), of this corollary which works without the as-
sumption that E is superreflexive.

Corollary 5.13. Let E be a class of superreflexive Banach spaces closed under
finite representability. If a locally compact group compactly generated group H has
(FE), then H is the quotient by a discrete normal subgroup of a compactly presented
locally compact group with (FE).

Remark 5.14. For discrete groups, the same conclusion holds under the weaker
assumption that E is a class of superreflexive Banach spaces closed under ultra-
products.

Proof. For convenience of notation we only give the proof when H is separable.
It was essentially proved in [1] and rediscovered in [11] that there is a compactly
presented group G and a continuous surjective group homomorphism G → H with
discrete kernel. Moreover if one follows the proof, G is separable. Take R as
defined in §5.1 for this group G and some M > 1, and let F = F(E , 0). It is
closed (see Remark 4.3). By Proposition 3.6 CF[H]

(G) has a Kazhdan projection

and H1(G;π) = 0 for every (π,E) ∈ F[H]. By the previous theorem, there is a
compactly presented intermediate group G → H ′ → H such that the same holds
for F[H′]. In particular H ′ has (FE ). �

One can imagine other results of this kind. Let us state one that we will use in
a forthcoming work with Gomez-Apparicio and Liao.

Corollary 5.15. Let E be a class of Banach spaces stable by finite representability
and containing an infinite dimensional space. Assume that G is compactly pre-
sented, and that H is a quotient by a discrete subgroup such that H has strong
property (T) with respect to E. Then for every C > 0 there is s > 0 and a com-
pactly presented intermediate quotient G → H ′ → H such that CF(E,sℓ+C)(H

′) has
a Kazhdan projection, which is self-adjoint if E is stable by duality.
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Proof. Since H has strong (T) with respect to E , there exists s > 0 such that
CF(E,sℓ+C)[H]

(H) has a central Kazhdan projection for everyC > 0. By an argument

of Lafforgue [17, §5.3], this implies that H1(H ;π) = 0 for every (π,E) with E a
hyperplane in a space in E and with a constant C such that ‖π(g)‖ ≤ esℓ(g)+C

for all g in G. So the corollary is a consequence of Theorem 5.12 and of the fact,
already proved in the proof of Corollary 5.8, that every separable space E in E is
isomorphic to a hyperplane in another space E′ in E . �
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