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Abstract

This paper presents a study on the set of the digitizations generated by all the
translations of a planar body on a square grid. First the translation vector set
is reduced to a bounded subset, then the dual introduced in [BM16] linking the
translation vector to the corresponding digitization is proved to be piecewise
constant. Finally, a new algorithm is proposed to compute the digitization set
using the dual.
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1. Introduction

The digitization of a planar body depends on the digitization method and
also on the object relative position with respect to the digitization grid. As a
result, there is a variability in the resulting digital set and this variability may
in�uence the digital set geometrical and topological attributes. For instance,5

conditions have been given to preserve the topology during the digitization
step [TR02, SK05].

The focus of this paper is on the object relative position with respect to the
digitization grid. This issue has been studied on some geometrical primitives,
i.e. the straight segments and the discs. Straight segment digitizations have10

been discussed in function of the straight segment slope and its vertical position.
The function giving the digital straight segment from these two inputs is known
as the preimage. Several properties have been proved on the preimage and it is
widely used, e.g. for digital straight segment recognition [DS84]. The number
of oval and disc digitizations in function of their radius up to a translation was15

studied in [Ken48, Nag05, HZ06]. The number of digital discs including exactly
N points was treated in [HZ07] and an asymptotic bound on this number was
given in [HZ16]. Our study follows a previous work [BM16] which focused on
function graphs digitizations.

After introducing the dual de�nition in Section 2, its structure is investigated20

in Section 3 and it is proved to be piecewise constant. Two algorithms devoted
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to the computation of any digitization and to the computation of the digitization
set are presented and applied on a toy example in Section 4.

2. Notations and de�nitions

Let us consider a connected set S in R2 whose boundary is a simple closed25

(Jordan) curve Γ. Thanks to the Jordan curve theorem, we may assume a
real M > 0 and a continuous map f : R2 → R such that S ⊂ D = [−M,M ]2

and Γ, resp. S, is implicitly de�ned by Γ = {f(x) = 0 | x ∈ R2}, resp.
S = {x ∈ R2 | f(x) ≤ 0}.

The aim of this paper is to study the set of the digitizations of Γ obtained30

using the grids generated by the action of the group of translations on the
standard grid. Equivalently, we can consider a unique grid, the standard one,
and let the group of translations acts on S. This is the technical point of view
that we have adopted in the present article.

The common methods to model the digitization of the set S are closely35

related to each others. In this paper, we assume a Gauss digitization. This
method associates to the set S the digitization set D(S). The set D(S) contains
the grid points that lie inside S or, equivalently, it is a binary image de�ned on
Z2 whose 1's are the points inside S.

We write tu for the translation of vector u ∈ R2 and T for the group of
integer translations of Z2. Let u ∈ R2. The translate by −u of the set S,
t−u(S), is the set de�ned by fu ≤ 0 where

fu : R2 → R
x 7−→ f(x + u) .

Figure 1 exhibits the digitization sets for the set Sastro bounded by the �stretched�
astroid

((x + ux)/2)2/3 + (y + uy)2/3 = 1 .

40

The digitization set D(Su) is a �nite subset of Z2 and we are only interested
in the relative positions of its elements (in other words, Z2 is viewed as a geo-
metrical subset of the Euclidean plane without any preferential origin). Thus,
rather than the set D(Su), we will consider its equivalence class under inte-
gral translations [D(Su)]. The choice of a canonical representative in each class
could lead to surprising results. For instance, if we choose the set D0(Su) whose
barycenter lies in [0, 1)2 as a representative of [D(Su)], then a small translation
of the set can suddenly shift this representative if the set have long and thin
horizontal, or vertical, parts that can be missed by the digitization. Therefore,
we do not focus on a particular representative of the equivalence classes. We
set

DT(f) = {[D(Su)] | u ∈ R2}

and, for any u ∈ R2, ϕS(u) = D(Su). The goal of this paper is to describe and
compute DT(f).

2



-3 -2 -1 0 1 2

-2

-1

0

1

u = (0.5, 0.5)

-3 -2 -1 0 1 2

-2

-1

0

1

u = (0.6, 0.55)

-3 -2 -1 0 1 2

-2

-1

0

1

u = (0.0, 0.6)

-3 -2 -1 0 1 2

-2

-1

0

1

u = (0.5, 0.9)

-3 -2 -1 0 1 2

-2

-1

0

1

u = (0.25, 0.95)

-3 -2 -1 0 1 2

-2

-1

0

1

u = (0.5, 0.0)

-3 -2 -1 0 1 2

-2

-1

0

1

u = (0.1, 0.25)

-3 -2 -1 0 1 2

-2

-1

0

1

u = (0.1, 0.75)

-3 -2 -1 0 1 2

-2

-1

0

1

u = (0.9, 0.25)

-3 -2 -1 0 1 2

-2

-1

0

1

u = (0.9, 0.75)

-3 -2 -1 0 1 2

-2

-1

0

1

u = (0.05, 0.85)

-3 -2 -1 0 1 2

-2

-1

0

1

u = (0.0, 0.2)

-3 -2 -1 0 1 2

-2

-1

0

1

u = (0.0, 0.0)

Figure 1: The thirteen digitizations of a set bounded by the stretched astroid
((x + ux)/2)2/3 + (y + uy)2/3 = 1 (the �rst one is the empty set).

The next obvious proposition will allow us to reduce the space of the trans-
lation vectors that has to be considered in our study.

Proposition 2.1. Let ∼ be the equivalence relation de�ned on R2 by u ∼ v ⇐⇒45

u− v ∈ Z2. Then the map u 7→ [D(Su)] is invariant under ∼.

Proof. Let u, v ∈ R2 s.t. w = u− v ∈ Z2.

D(Sv) = tv(S) ∩ Z2

= tu+w(S) ∩ tw(Z2)

= tw(tu(S) ∩ Z2)

= tw(D(Su)) .

Thus,
D(Sv) ∈ [D(Su)] .

From now, for any u ∈ R2, we write buc, resp. 〈u〉, for the vectors whose
coordinates are respectively the integer parts and the fractional parts of the
coordinates of u. Hence, buc ∈ Z2, 〈u〉 ∈ [0, 1)2 and u = buc + 〈u〉. Let T be50

the torus R2/ ∼. By abuse of notation, for any equivalence class t ∈ T, we also
write 〈t〉 for 〈u〉 where u ∈ t. The vector 〈t〉 is the canonical representative of
the class t.
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As a consequence of Prop. 2.1, the projection theorem on equivalence rela-
tions allows us to de�ne the dual of the set of digitizations.55

De�nition 1 (Dual by translation). The dual of DT(f) is de�ned on the torus
T as the unique function

ϕ̃S : T→ DT

t 7→ ϕS(u) ,

where u ∈ t.

We have the following commutative diagram:

u ∈ R2 //

[·]
��

ϕS ((

D(Su) ∈ P(Z2)

[·]
��

[u] ∈ T
ϕ̃S

// [D(Su)] ∈ P(Z2)/T

An example of dual is shown in Fig. 2 (deployed torus) and Fig. 3. It is
the dual of the set Sastro. Each point u ∈ [0, 1)2 in Fig. 2 corresponds to a
translation tu and the color of this point corresponds to the digitization D(Su).
All the points having the same color in the dual correspond to translations60

giving the same digitization.

Remark 2.1. B. Nagy represents in [Nag05] regions of the translation vector
set [0, 1)2 corresponding to distinct digitizations for the special case of the disc
with radius 2. The dual of the disc with radius 2 is shown on Fig. 4(a) (actually,
rather a gradient image than the dual itself). One can see that Nagy's represen-65

tation (Fig. 4(b)) is a sketch (using straight lines) of the dual �rst octant (in
red).

As seen in the example Sastro (Fig. 2), the cardinality of the digitizations is
far from constant. Therefore, we de�ne the cardinal map, that we denote #S ,
as follows:

#S : T −→ N
t 7−→ t ∩ S = cardD(St) .
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Figure 2: A deployed representation of the dual of Sastro. Note that the 7-points
digitization region contains only one point, so it is not perceptible.

Figure 3: The dual of Sastro.
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(a) (b)

Figure 4: (a) Dual gradient image of a disc with radius 2. (b) Fig. 4 in [Nag05].

3. Properties

The main property of the dual is that the plot of the curve Γ on the torus
T delineates regions on which the dual function ϕ̃S is constant. Before proving70

this property, we give some complementary notations related to the dual.
We de�ne the grid boundary B as the set of grid points that lie in the

(morphological) dilation of the boundary Γ of S by the unit square (−1, 0]2:

B = (Γ⊕ (−1, 0]2) ∩ Z2 ,

where ⊕ denotes the Minkowski sum (see Fig. 5).

-3 -2 -1 0 1 2

-2

-1

0

1

Grid boundary

-10 -5 0 5 10

-5

0

5

Grid boundary

Figure 5: The grid boundary of Sastro at two resolutions (×1 and ×5).

It is plain that B contains all the points of Z2 whose value can change when
we shift the set S by a translation tu, u ∈ [0, 1)2 and that S \B is the �set core�:
the points that are in any digitization. In our set instance Sastro, the core is75

empty, which results in an empty digitization (see Fig 1).
Let Γ̃ be the �plot of Γ on T � :

Γ̃ = {[u] | u ∈ Γ} .
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For any p ∈ Z2, we de�ne the function

f̃p : T→ R
t 7→ fp(〈t〉) = f(〈t〉+ p) .

We also de�ne the restriction Γp of the curve Γ to the square {p}⊕[0, 1)2 and the
corresponding restriction Γ̃p on T by the implicit equations fp = 0 and f̃p = 0.
Then,

Γ̃ =
⋃
p∈B

Γ̃p =
⋃
p∈Z2

Γ̃p .

Indeed, let t ∈ Γ̃. By de�nition of Γ̃, there exists u ∈ t s.t. u ∈ Γ. Then,
buc ∈ B. Moreover,

u ∈ Γ ⇐⇒ f(u) = 0

⇐⇒ fbuc(〈u〉) = 0

⇐⇒ f̃buc(t) = 0

⇐⇒ t ∈ Γ̃buc .

Thereby, we have Γ̃ =
⋃

p∈B Γ̃p and by de�nition of B, the set Γ̃p is empty
whenever p /∈ B.

In other words, using the canonical plane representation of the torus T as
the square [0, 1)2, the plot of Γ on the torus, Γ̃, is the superposition of the plots80

of the implicit functions fp = 0 on [0, 1)2, that is, the superposition of the plots
of Γ on the squares {p} ⊕ [0, 1)2, p ∈ B.

Alike, the cardinal map #S can be de�ned by means of the local functions
f̃p. For any p ∈ Z2, we de�ne 1̃p as the indicator function of the set f̃p(t) ≤ 0.
Then,

#S =
∑
p∈Z2

1̃p =
∑

p∈B∪S
1̃p .

Indeed, let t ∈ T. One has

#S(t) = card t ∩ S

= card{p ∈ Z2 | p + 〈t〉 ∈ S}
= card{p ∈ Z2 | fp(〈t〉) ≤ 0}
= card{p ∈ Z2 | f̃p(t) ≤ 0}

=
∑
p∈Z2

1̃p(t) .

Moreover, it is plain that p + 〈t〉 ∈ S implies p ∈ B ∪ S. It is worthy to observe
that

ϕ̃S(t) =
[
{p ∈ Z2 | 1̃p(t) = 1}

]
.
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Figure 6: Left: a point p in the grid boundary and the square {p} ⊕ [0, 1)2.
Right: the curve Γ̃p (in red) and the indicator function 1̃p (white: the region
1̃p = 0, blue: the region 1̃p = 1). The curve 1̃p = 0, which is closed at its left
extremity and open at its right extremity, is included in the blue region.

We introduce other curves on the torus T, the outer equator Γ̃x which is
the quotient space of the x axis of R2, and the prime meridian Γ̃y which is the
quotient space of the y axis of R2.85

We now establish the main property of the dual.

Proposition 3.1. Let S be a compact subset of R2 whose boundary Γ is a
Jordan curve.

• The dual ϕ̃S is constant on the connected components of T \ Γ̃.

• For any p ∈ Z2, the function 1̃p is constant on the connected components90

of T \ (Γ̃p ∪ Γ̃x ∪ Γ̃y).

Proof. Let t ∈ T \ Γ̃. Then, for any u ∈ t, f(u) 6= 0. Since f is continuous, the
sets f > 0 and f < 0 are open. Then, for any u ∈ t s.t. buc ∈ B, there exists
εu ∈ (0, 1/2) such that the open ball B(u, εu) does not intersect the curve Γ.
As B is �nite, we can set

ε = min
u∈t,[u]∈B

εu

and, by de�nitions of ε and B, no ball B(p + u, ε), (p, u) ∈ Z2 × t, intersects Γ.
Hence, thanks to the intermediate value theorem, for any u ∈ t and any integer
point p ∈ Z2, the map

v ∈ B(u, ε) 7→ sign(fv(p))

is constant.

• Since, for any integer point p ∈ Z2 and any u ∈ t, the map v ∈ B(u, ε) 7→
sign(fv(p)) is constant, ϕS is constant on the open ball B(u, ε) for any
u ∈ t. Therefore, the set Bt of T which is the (common) projection of the95

balls B(u, ε), u ∈ t, on the torus T is open and ϕ̃S is constant on Bt :
ϕ̃S is locally constant on T \ Γ̃. We conclude that ϕ̃S is constant on any
connected component of T \ Γ̃.

8



• From now, we assume that t does not lie on the outer equator nor on the
prime meridian, we take u = 〈t〉 and we consider some p ∈ Z2. Then, we
can choose ε〈t〉 such that the open ball B(〈t〉 , ε〈t〉) does not intersect the
grid lines. Thereby,

B(〈t〉 , ε〈t〉) ⊆ [0, 1)2

and, with ε′ = min(ε, ε〈t〉), for any v ∈ B(〈t〉 , ε′),

fv(p) = fp(v) = f̃p([v]) .

Since the map v ∈ B(〈t〉 , ε) 7→ sign(fv(p)) is constant, we derive that 1̃p

is constant on the open neighborhood [B(〈t〉 , ε′)]) of t. Thereafter, 1̃p is100

locally constant, which achieves the proof.

For instance, the region boundaries of the dual of the set Sastro (Fig. 3) are
obtained by the following sage program whose raw result is shown in Fig. 7.

f(x,y) = ((x/2)^2+y^2 - 1)^3 + 27*(x/2)^2*y^2105

p = polygon([(0,0), (1,0), (1,1), (0,1)], fill=false)

for i in range(-3, 3):

for j in range(-2, 2):

g(x,y)= f(i+x, j+y)

p += implicit_plot(g,(x,0,1),(y,0,1))110

p.show()

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Figure 7: Region boundaries for the dual of our set instance Sastro.

In order to precise the relationship between neighboring �at regions of the
dual, we now establish that crossing the curve Γ̃ on the torus T generally
amounts to remove, or to add, a particular point in the digitization of the
set.115
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Lemma 3.1. Let p ∈ B and t ∈ Γ̃p. If t /∈
(⋃

q 6=p Γ̃q

)
∪ Γ̃x ∪ Γ̃y, then there

exists a neighborhood N of t on which the functions 1̃q, q 6= p, are constant and
1̃p is not constant.

Proof. Let p ∈ B and t ∈ Γ̃p \

( ⋃
q 6=p

Γ̃q

)
∪ Γ̃x ∪ Γ̃y

.

Let v ∈ {p} ⊕ (0, 1)2 such that v ∈ t. We write G for the grid in R2

(G = Z× R ∪ R× Z). In R2, let de�ne

E =
(
Γ ∪G

)
\
(
{p} ⊕ (0, 1)2

)
.

Note that
[E] =

( ⋃
q 6=p

Γ̃q

)
∪ Γ̃x ∪ Γ̃y .

The set E is a closed set and B is �nite. Then there exists ε > 0 such that,
for any u ∈ t, the open ball B(u, ε) does not intersect the set E. Let N be the
common projection of the balls B(u, ε) on the torus: N is an open neighborhood
of t that is included in

T \
(
Γ̃x ∪ Γ̃y

⋃
q 6=p

Γ̃q

)
.

From the second part of Prop. 3.1, we derive that, for any r ∈ Z2, r 6= p, the120

function 1̃r is constant on N . Moreover, since Γ is a Jordan curve, the ball
B(v, ε) intersects both the interior and the exterior of the set S. Then, 1̃p is not
constant on N .

Thus, if the set S is gradually translated and the corresponding translation
vector on T crosses once Γ, the corresponding digitization will change in one125

point. Let see what happens when the meridian or the outer equator is crossed.
Let i = (1, 0) and j = (0, 1). Let p ∈ Z2 and t ∈ Γ̃y \ Γ̃p. Since f is

continuous, there exists a neighborhood N of p+ 〈t〉 on which f does not vanish
(see Fig. 8). Then, Prop. 3.1 allows us to de�ne 1̃p−i(t

−) as the value of 1̃p−i
on the connected component of

T \ (Γ̃p−i ∪ Γ̃x ∪ Γ̃y)

which contains the projection on the torus of the set

N ∩ ({p− i} ⊕ (0, 1)2) .

By the intermediate value theorem, the value of 1̃p−i(t
−) is also the value of

1̃p(t), which in turn is the value of 1̃p on the connected component of

T \ (Γ̃p ∪ Γ̃x ∪ Γ̃y)

which contains the projection of the set

N ∩ ({p} ⊕ (0, 1)2) .

Alike, we de�ne 1̃p(t−) when t ∈ Γ̃x \ Γ̃p and we state

10
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Figure 8: A point on the torus prime meridian is used to link two successive
indicator functions.

Lemma 3.2. Let p ∈ Z2.

• For any t ∈ Γ̃x \ Γ̃p, one has, 1̃p(t) = 1̃p−j(t
−).

• For any t ∈ Γ̃y \ Γ̃p, one has, 1̃p(t) = 1̃p−i(t
−).130

Lemma 3.2 expresses the fact than crossing the prime meridian, resp. the
outer equator, on the torus results in a unit horizontal, resp. vertical shift, on
the indicator functions (provided the cross does not occur on a boundary point).

In the next section, we use the previous results to propose two algorithms
for the generation of the digitization classes.135

4. Algorithms

4.1. Pointwise determination of the dual

Starting from a set S and a point t ∈ T, it is obviously possible to translate
the set S of t and to compute the corresponding Gauss digitization with one of
the existing algorithms. The following algorithms show that it is possible to �nd140

any digitization by overlapping the grid squares p ⊕ [0, 1)2, p ∈ Z2, containing
the plot of the boundary of S provided each square is labeled by its reference
point p.
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Algorithm 1: Computing a digitization class

Input: The family of curves Γ̃p, p ∈ Z2 and a point t ∈ T.
Output: The digitization class ϕ̃S(t).

if t ∈ Γ̃ then

C ← {p ∈ Z2 | t ∈ Γ̃p};
Replace t by some point of a connected component of T \ Γ̃ whose
boundary contains t;

Plot a loop ∆ with base-point t on T crossing once Γ̃y, oriented like
Γ̃xwhich is not crossed and avoiding the extremities of the curves Γ̃p ;
A← {p ∈ Z2 | ∆ crosses an odd number of times Γ̃p after crossing Γ̃y};
B ← {p ∈ Z2 | ∆ crosses an odd number of times Γ̃p before crossing Γ̃y};
for j = −∞ to +∞ do

b← 0;
for i = −∞ to +∞ do

if (i, j) ∈ A then 1̃(i,j)(t)← 1− b;
else 1̃(i,j)(t)← b;
if (i, j) ∈ B then b← 1− 1̃(i,j)(t);
else b← 1̃(i,j)(t);

return ϕ̃S(t) =
[
C ∪ {p ∈ Z2 | 1̃p(t) = 1}

]
;

Proof. Recall that, for any t ∈ T, ϕ̃S(t) is a subset of Z2, that is a function from
Z2 to {0, 1} whose value in p ∈ Z2 is 1̃p(t). Let t0 be the intersection point of145

∆ with the prime meridian. Let j ∈ Z. The proof is made par induction on i.
We set p = (i, j) and q = (i+ 1, j). When i is small enough, say i < −M − 1, it
is plain that 1̃p(t) = 1̃p(t−0 ) = b = 0. Let us assume that for some i, b = 1̃p(t−0 ).
Then, by Lemma 3.2, 1̃q(t0) = b. If q ∈ A, from Lemma 3.1 we derive that
1̃q(t) = 1 − b. Otherwise, 1̃q(t) = b. This is the value of 1̃q(t) calculated150

by the algorithm. Alike, if q ∈ B, Lemma 3.1 implies 1̃q(t−0 ) = 1 − 1̃q(t).
Otherwise, 1̃q(t−0 ) = 1̃q(t). Then, in any case, the next value of b computed by
the algorithm is equal to 1̃q(t−0 ) which achieves the induction.

In this algorithm, the value of b propagates until a point in A∪B is encoun-
tered and this value codes for the membership of the points to the set. Then,155

when a point in A∪B is reached, depending whether the point is in A\B, B \A
or A ∩ B, the value of b is changed, or/and the membership rule is violated.
Fig. 9 and Tab. 1 exempli�es Algo 1 on our set instance Sastro.
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(a) (b)

Figure 9: (a) A loop (in red) whose base-point is the black point in the region
1, runs through the connected components of T \ Γ̃. The numbers on the �gure
label these components according to the traveling order. The ordered list of
the curves Γ̃p crossed by the red loop before, resp. after, crossing the prime
meridian, labeled according to the dictionary shown in (b), is

[
1, 8, 5, 1, [5, 7],

[2, 7], 2, 4, 2, 8, 7, 2, 9, 2, [6, 9], [4, 6], [4, 8], 4
]
, resp. [4]. Then, in Algorithm 1,

A = {4} and B = {2, 7, 8}. Table 1 is the trace of the execution of Algo 1.

j i label A B b in 1̃(i,j) b out
-1 -2 6 0 0 0

-1 7 x 0 0 1
0 8 x 1 1 0

-1 1 9 0 0 0
-2 5 0 0 0
-1 4 x 0 1 1
0 2 x 1 1 0
1 1 0 0 0

0 2 0 0 0 0
1 0 3 0 0 0

Table 1: Values of the variables used in Algo 1 during the iteration process (if
(i, j) /∈ B, b = 1̃(i,j) = 0).

13



4.2. Global determination of the dual

Thanks to Lemma 3.1, we easily derive from Algo 1 a propagation algorithm160

that provides any digitization encountered when performing the torus loop.

Algorithm 2: Digitization propagation

Input: ϕ̃S(t), LΓ, LCC,
where ϕ̃S(t) is the digitization class return by Algorithm 1 (under the
form of a boolean function over B),
LΓ is the ordered list of the curves crossed by the loop in Algorithm 1,
before crossing the prime meridian for the indices less than N and after
crossing the prime meridian for the indices greater than, or equal to N ,
LCC is the list of the connected components of T \ Γ̃ crossed by the loop
such that LΓ[i] contains the curve(s) Γ̃p crossed to go from LCC[i] to
LCC[i + 1].
Output: The list LD of the LCC element digitization classes.

LD[0]← ϕ̃S(t);
for i = 1 to N do

LD[i]← LD[i− 1];
foreach p ∈ LΓ[i− 1] do LD[i](p)← ¬LD[i](p);

LD[length(LΓ)]← ϕ̃S(t);
for i = length(LΓ)− 1 to N do

LD[i]← LD[i + 1];
foreach p ∈ LΓ[i] do LD[i](p)← ¬LD[i](p);

Table 2 shows the execution of Algo 2 on Sastro.
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i LCC[i] LΓ[i− 1] 0 1 2 3 4 5 6 7 8 9
0 1 0 0 1 0 1 0 0 0 1 0
1 2 1 0 1 1 0 1 0 0 0 1 0
2 3 8 0 1 1 0 1 0 0 0 0 0
3 4 5 0 1 1 0 1 1 0 0 0 0
4 5 1 0 0 1 0 1 1 0 0 0 0
5 6 5, 7 0 0 1 0 1 0 0 1 0 0
6 7 2, 7 0 0 0 0 1 0 0 0 0 0
7 8 2 0 0 1 0 1 0 0 0 0 0
8 9 4 0 0 1 0 0 0 0 0 0 0
9 10 2 0 0 0 0 0 0 0 0 0 0
10 11 8 0 0 0 0 0 0 0 0 1 0
11 12 7 0 0 0 0 0 0 0 1 1 0
12 13 2 0 0 1 0 0 0 0 1 1 0
13 14 9 0 0 1 0 0 0 0 1 1 1
14 15 2 0 0 0 0 0 0 0 1 1 1
15 16 6, 9 0 0 0 0 0 0 1 1 1 0
16 17 4, 6 0 0 0 0 1 0 0 1 1 0
17 18 4, 8 0 0 0 0 0 0 0 1 0 0
18 19 4 0 0 0 0 1 0 0 1 0 0

i LCC[i] LΓ[i]

19 1 0 0 1 0 1 0 0 0 1 0
18 19 4 0 0 1 0 0 0 0 0 1 0

Table 2: Execution of Algorithm 2 on the output of Algorithm 1: the digi-
tizations associated to the 19 visible regions of the dual of the set Sastro are
computed by propagation. The numbers in Columns 2 (regions) and 3 (points
in B - also in the �rst line of Column 3) refer to the labeling of regions and
points in Fig. 9. Observe that we obtain two distinct digitizations for the region
19 (LCC[18]) but they are in the same class of digitizations composed by two
points vertically aligned (see Fig. 2).
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5. Conclusion

We present in this paper a theoretical study on the digitizations obtained
from a planar set under translation. The dual linking a translation vector class165

to a digitization class is de�ned. The dual is a piecewise constant function and
the link between the dual constant region boundaries and the set frontier is
established. Two other properties allow us to give two proved algorithms for
the digitization class generation. The dual can be used as a visualization tool
for the digitization variability under the action of the translation group and it170

allows an estimation of the weights of the di�erent digitizations.
Future works on the digitization dual include its extension to the (non-

trivial) action of the rotation group and its application in the study of the
digitization combinatorial properties.
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