N
N

N

HAL

open science

The convergence problem in mean field games with a
local coupling

Pierre Cardaliaguet

» To cite this version:

Pierre Cardaliaguet. The convergence problem in mean field games with a local coupling. Applied
Mathematics and Optimization, In press, 216 (1), pp.1 - 62. 10.1007/s00245-017-9434-0 .

01384333v2

HAL Id: hal-01384333
https://hal.science/hal-01384333v2
Submitted on 10 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

hal-


https://hal.science/hal-01384333v2
https://hal.archives-ouvertes.fr

The convergence problem in mean field games with local coupling

P. Cardaliaguet*

October 10, 2017

Abstract

The paper studies the convergence, as N tends to infinity, of a system of N coupled
Hamilton-Jacobi equations, the Nash system, when the coupling between the players becomes
increasingly singular. The limit equation turns out to be a Mean Field Game system with a
local coupling.
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Introduction

In this paper we investigate the convergence of the Nash system associated with a differential
game to the mean field game (MFG) system as the number of players tends to infinity. In
differential game theory, the Nash system associated with a N—player differential game is a
coupled system of N Hamilton-Jacobi equations. In our previous work [2], co-authored with
F. Delarue, J.-M. Lasry and P.-L. Lions, we explained that the solution of the Nash system
converges, as N tends to infinity, to the solution of the MFG system, which consists in a
coupling between an Hamilton-Jacobi equation and a Fokker-Planck equation. We proved the
result under the key assumption that the “coupling” between the equations is nonlocal and
regularizing. In the present setting, we consider the case where this coupling is singular: in the
Nash system, the payoff of a player depends in an increasingly singular way on the players which
are very close to her. We prove that, in this case, the solution of the Nash system converges to
a solution of the Nash system with a local coupling.
To better explain what we have in mind, let us consider the Nash system

—o™ Z Ay oMt ) + H(zg, Dpo™ (8, 2))
J + Z DpH aj, Dy o™ (t, @) - Dy o™it 2) = FN(2) (1)
J#Fi
in [0,T] x (RHN
UN’i(T,w) = G(xz;) in (}Rd)N

In the above system, the N unknown maps v depend on time and space in the form (t,zx)
with & = (z1,...,zy) € (R)YN. The data are the horizon T, the Hamiltonian H : R? x R? — R,
the terminal condition G : R? — R and the map FN? : (RN — R. The maps (FN’Z')Z-:LM,N
are called the coupling functions because they are responsible of all the interactions between the
equations.

We are also interested in the associated system of N coupled stochastic differential equations

(SDE):
dY; = —DpH (Y, Dv™'(t,Y))dt + v2dB], tel0,T], ie{l,...,N}, (2)

where (v"%) is the solution to (1) and the ((Bg)te[o,T])i:Lm, ~ are d—dimensional independent
Brownian motions. In the language of differential games, the map v™* is the value function

associated with player ¢, i € {1,..., N} while (Y;;) is her optimal trajectory.

In order to expect a limit system, we suppose that the coupling maps FV'* enjoy the following
symmetry property:
FNi(g) = PN (23, m),

where FV : R? x P(RY) — R is a given map (P(R?) being the set of Borel probability measures
on ]Rd) and mi\” = ﬁ Zj 4i 0z; is the empirical measure of all players but i. Note that this
assumption means that the players are indistinguishable: for a generic player ¢, players k and [
(for k,l # i) play the same role. Moreover, all the players have a cost function with the same
structure. This key conditions ensures that the Nash system enjoys strong symmetry properties.
In contrast with [2], where FV does not depend on N and is regularizing with respect to the
measure, we assume here that the (FV) become increasingly singular as N — +oo. Namely we

suppose that there exists a smooth (local) map F : R? x [0, +00) — R such that
lim FY(z,mdx) = F(z,m(z)), (3)

N—+00



for any sufficiently smooth density m of a measure m(x)dx € P(R?). This assumption, which
is the main difference with [2], is very natural in the context of mean field games. One expects
(and we will actually prove) that the limit system is a MFG system with local interactions:

—0iu — Au + H(x, Du) = F(x,m(t, )) in [to, T] x R,
oem — Am — div(mD,H (x, Du)) = in [to, T] x RY, (4)
u(T,z) = G(x), m(ty,-) = mo in ]Rd.

This system—which enjoys very nice properties—has been very much studied in the literature:
see for instance [10, 21, 22]. Note that in these papers the terminal condition G may also depend
on the measure. For technical reasons we cannot allow this dependence in our analysis.

To explain in what extend the local framework differs from the nonlocal one, let us re-
call the ideas of proof in this later setting. The main ingredient in [2] for the proof of the
convergence is the existence of a classical solution to the so-called master equation. When
FNi(g) = F(x;,m3"), where F : R¢ x P(R?) — R is sufficiently smooth (at least continuous),
the master equation takes the form of a transport equation stated on the space of probability
measures:

_QU — AU + H(z, DoU)
_/ div, [DmU] dm(y / Dl - DyH(y, Dol) dm(y) = Fz,m)
R4

in [0,7] x RY x P(Rd)
U(T,z,m) = G(x) in R? x P(RY).

(5)

In the above equation, U is a scalar function depending on (¢, 2, m) € [0, T] x R? x P(RY), D,, U
denotes the derivative with respect to the measure m (see Section 1). The interest of the map
U is that the N—tuple (u™""), where

uNi(t ) = U(t, x5, mY), x=(x1,...,zy5) € (RHY, (6)

is an approximate solution to the Nash system (1) which enjoys very good regularity properties.
In [2] we use these regularity properties in a crucial way to prove the convergence of the Nash
system.

When F is a local coupling, i.e., F(x,m) = F(x,m(z)) for any absolutely continuous mea-
sure m, the meaning of the master equation is not clear: obviously one cannot expect U to be a
smooth solution to (5), if only because the coupling function F' blows up at singular measures.
So the master equation should be defined on a subset of sufficiently smooth density measures.
But then the definition of the map u™* through (6) is dubious and, even if such a definition
could make sense, there would be no hope that the u™V'* satisfy the regularity properties required
in the computation of [2].

Our starting point is the following easy remark: if the coupling FV remains sufficiently
smooth for N large, then the solution v should eventually become close to the solution of the
master equation associated with F¥—and thus to the solution of the MFG system with nonlocal
coupling FV. On the other hand, if FV is close to F (thus becoming singular), the solution
(u™N, m™) is also close to the solution (u,m) of the MFG system with local coupling. Thus if £V
converges very slowing to F' while remaining “sufficiently” smooth one can expect a convergence



of vN¥ to u. The whole point consists in quantifying in a careful way this convergence.

To give a flavor of our results, let us discuss a particular case. Let us assume for a while that
FN($7m) = F('7£EN * m()) * £EN7

where £€(z) = €% (2 /€), £ being a symmetric smooth nonnegative kernel with compact support
and (ey) is a sequence which converges to 0. Let v be the solution of the Nash system (1).
Given an initial condition (tg, mg) € [0, T] x P(R%), let (u, m) be the solution to the MFG system

—0iu — Au + H(z, Du) = F(z,m(t, )) in [to, T] x R,
orm — Am — div(mD,H (x, Du)) = in [to, T] x RY,
(Tv $) G(l‘), (t(]v ) mo in Rd-

In order to describe the convergence of v™V'* to u, we reduce the function v™V* to a function of a
single variable by averaging it against the measure mq: for i € {1,..., N}, let

wV (g, 2, M) :—/ / UN’i(tQ,:I})Hmo(de) where = (z1,...,2N).
Td Td £

Corollary 3.5 states that, if ey = In(N)™? for some 3 € (0, (6d(2d + 15))~1), then
[ (to, - mo) = uto, )], < An(N) "%,

for some constants A, B > 0. Moreover, we show that the optimal trajectories (Y;+) converge to
the optimal trajectory (X”) associated with the limit MFG system and establish a propagation
of chaos property (Proposition 3.7).

For a general sequence of couplings (F”), converging to a local coupling F as in (3), our
main result (Theorem 3.4) states that, if the regularity of FV does not deteriorate too fast, then
whV converges to u and the optimal trajectories converge as well.

Let us finally point out that, in order to avoid issue related to boundary conditions or prob-

lems at infinity, we will assume that the data are periodic in space, thus working on the torus
d _ Rd/Zd.

Mean field game theory started with the pioneering works by Lasry and Lions [18, 19, 20] and
Caines, Huang and Malhamé [15, 12, 13, 11, 14]. These authors introduced the mean field game
system and discussed its properties: in particular, Lasry and Lions introduced the fundamental
monotonicity condition on the coupling functions. They also discussed the various types of MFG
systems (with soft or hard coupling, with or without diffusion).

The link between the MFG system (which can be seen as a differential game with infinitely
many players) and the differential games with finitely many players has been the object of several
contributions. Caines, Huang and Malhamé [11], and Delarue and Carmona [4] explained how to
use the solution of the MFG system to build e—Nash equilibria (in open loop form) for N —person
games. The convergence of the Nash system remained a puzzling issue for some time. The first
results in that direction go back to [18, 20] (see also [6]), in the “ergodic case”, where the
Nash system becomes a system of N coupled equation in dimension d (and not Nd as in our
setting): then one can obtain estimates which allow to pass to the limit. Another particular
case is obtained when one is interested in Nash equilibria in open loop form: Fischer [7] and
Lacker [16] explained in what extend one can expect to obtain the MFG system at the limit.
For the genuine Nash system (1), a first breakthrough was achieved by Lasry and Lions (see



the presentation in [21]) who formally explained the mechanism towards convergence assuming
suitable a prior: estimates on the solution. For that purpose they also introduced the master
equation (equation (5)) and described (mostly formally) its main properties.

The rigorous derivation of Lasry and Lions ideas took some time. The existence of a classical
solution to the master equation has been obtained by several authors in different frameworks
(Buckdahn, Li, Peng and Rainer [1] for the linear master equation without coupling, Gangbo
and Swiech [9] for the master equation without diffusion and in short time horizon, Chassag-
neux, Crisan and Delarue [5] for the first order master equation, Lions [21] for an approach
by monotone operators). The most general result so far is obtained in [2], where the master
equation is proved to be well-posed even for problems with common noise. The main contribu-
tion of [2] is, however, the convergence of the Nash system: it is obtained as a consequence of
the well-posedness of the master equation. The present paper is the first attempt to show the
convergence for a coupling which becomes singular.

The paper is organized in the following way: we first state our main notation (in particular
for the derivatives with respect to a measure) and main assumptions. In section 2, we prove our
key estimates on the solution of the master equation and on the MFG systems. The whole point
is to display the dependence of the estimates with respect to the regularity of the coupling. The
last part collects our convergence results.

Acknowledgement: The author was partially supported by the ANR (Agence Nationale
de la Recherche) project ANR-16-CE40-0015-01. The author wishes to thank the anonymous
referee for the very careful reading and for finding a serious gap in the previous version of the

paper.

1 Notation and Assumptions

For the sake of simplicity, the paper is written under the assumption that all maps are periodic
in space. So the underlying state space is the torus T¢ = R?/Z?. This simplifying assumption
allows to discard possible problems at infinity (or at the boundary of a domain).

1.1 Notation

We will need the following notations for the derivatives in space or in time of a map.

For u = u(z) and | = (I1,...,l5) € N% we denote by D!u(z) the derivative D'u(z) =
()
oxlt .. oxld’
(D'u(x))jy=f- For k =1 and k = 2, Du(z) and D?u(x) denote the gradient and the Hessian of

u at .
For k € N and « € (0,1), we denote by C**< the set of maps u = u(x) which are of class C*
and such that D'u is a—Hoder continuous for any I € N¢ with |I| = k. We set

D! D!
[ullgra = 3 [D'ule + ) su p [Plu(@) = Dhuly)]

U<k <k 7 y o =yl

where |I| = Iy +...15. If K € N, D*u(x) denotes the collection of derivatives

When a map u depends on several space variables, say 2 for instance, we set in the same way

lvl’ / l7l/ /
‘Daz,x’u(‘r7 x ) - Dx,x/u@/? Yy )‘

L
lullk sk o := Z HD oo + Z sup
<k, V<K <k | <k (@) # W) |(z,2") = (y, )|



For p > 1, the LP norm of u is denoted by |ul|z». However, by abuse of notation, we denote by
|ul|oo the L® norm of u (instead of |u|rx). When ¢ is a distribution, we set

16 -(o+ay == sup [(u)].

lulktast

Finally, when u = u(t, ) is also time dependent, we denote by d;u the time derivative of u
and, as previously, by D'u its space derivative of order I € N¢. If o € (0,1), we say that u is in
Ca/2,a if

t —u(t'. o
luerne = o+ sup Ju(t, z) — u(', 2")|

< +o0.
(), () [T — 2|+ [t — 2]/

We say that v is in C1T¥/22+2 if 9,4 and D2u belong to C/2e.

1.2 Derivatives with respect to the measure

We follow here [2]. We denote by P(T¢) the set of Borel probability measures on the torus
T¢ := R?/Z%. Tt is endowed with the Monge-Kantorovitch distance:

di(m,m’) =sup [ ¢(y) dim —m')(y),
¢ J1a

where the supremum is taken over all 1—Lipschitz continuous maps ¢ : T — R.

Definition 1.1. Let U : P(T?%) — R be a map.

v : P(T9) x T¢ - R such that, for
om

o We say that U is C' if there exists a continuous map

any m,m’ € P(T9),

U/ / /T S0 (1 = sym + s y) d(m’ — m)(y)ds.

The map 6 U being defined up to an additive constant, we adopt the normalization conven-
tion

[, 3orm. )y o @

U
o If S is of class C1 with respect to the second variable, the intrinsic derivative D,,U :
P(T9) x T¢ — R? is defined by
oU
DpU(m, y) := Dy%(mvy)‘

It is know [2] that the map D,,,U measures the Lipschitz regularity of U:
U@m!) = U(m)| < sup | Dol (m", )ods (m,m)  m,m’ & PTY).

We will also need second order derivatives with respect to the measure. If U and 22 5., are of
class C'! with respect to the measure m, we denote by = & S0 P(T4) x T x T4 — R the derivative
of g% with respect to m. If &4 6 is sufficiently smooth, we also set

m
52U
2 2
DmmU<m7 Y, y,) = Dy,y’ Sm2 (m7 Y, y/)



1.3

Assumption

Throughout the paper, we suppose that the following conditions are in force.

The Hamiltonian H : T¢ x R? — R is smooth, globally Lipschitz continuous in both
variables and locally uniformly convex with respect to the second variable:

2 d d
Dy, H(x,p) >0 V(z,p) € T* x R% (8)
Moreover, D,H and its derivatives are globally Lipschitz continuous.

F T x [0,+00) — R is smooth, with bounded derivatives in both variables. Moreover,
oF
F is increasing with respect to the second variable, with — > § > 0 for some § > 0 (note

om
that g—f; stands for the usual derivative of the map F' = F(x, m) with respect to the last

variable).
The terminal cost G : T¢ — R is a smooth map.

For any N € N, FN : T x P(T?) — R is monotone:

/Td(FN(:E,m) — FN(z,m"))d(m —m/)(z) = 0 Ym, m' € P(T%).

(difference between FV and F) For any R > 0 and « € (0, 1), there exists kﬁ’o‘ such that
k]]\%[,a — 0 as N — +00 and

R,
|[FN (- mdx) = F(om() e < ky'™, 9)
for any density m such that |m|ce < R.

(uniform regularity of FV) For any R > 0 and a € (0, 1), there exists kg > 0 such that,
for any N € N,

‘FN(x,mdx) — FN(y,m’dx)‘ < KR, (\x —y|*+|lm — m’Hoo) (10)
for any density m,m’ with |m|ce, |[m/|ce < R.

(regularity assumptions on FV) For any N € N, F'V is of class C? with respect to the m
variable and, for any o € (0, 1), there exists a constant Ky o such that

52FN

SFN
5m2 ('7

LRI L ) < Kna (11)

(44+a,4+a,4+0)

(44+a,4+a) ’

for any m e P(T9).

Some comments are in order. The Lipschitz regularity condition of the Hamiltonian H is not
very natural in the context of MFG, but we do not know how to avoid it: if it is probably not
necessary in the estimates of Section 2, it is required for the convergence of the Nash system.
Let us just note that it simplifies at lot the existence of solutions for the Nash system (see, for
instance, [17]) as well as for the limit MFG system (see [20]): indeed, without the assumption
that D, H is bounded, existence of classical solution to (4) is related on a subtle interplay between



the growth of H and of F. Note however that [3] overcomes this issue for nonlocal couplings
functions.

The monotonicity of FV and F are natural to ensure the uniqueness of the solution to the
respective MF systems. However, the strict monotonicity of F' is unusual: it is used here to
give a good control between the MFG limit system (4) and the (nonlocal) MFG system with
coupling term FV (given in (15) below): see Proposition 2.3.

In MFG problems, one often assumes that the terminal cost also depends on the measure. It
seems difficult to allow this dependence in our context, since in this case the uniform regularity
of the solution of the MFG system (and hence of the master equation) near time 7" could be lost
(see Proposition 2.3).

Note that Ky — +00 as N — 400 because FV(z,m) blows up if m is a singular measure.
So FN becomes closer and closer to F for smooth densities while its regularity at general proba-
bility measures deteriorates. However, assumption (10) states that the IV are uniformly Hoder
continuous when evaluated at probability densities which are Hoder continuous. Assumption
(11) explains how fast the regularity of FN degrades as N — +o0. One could have had differ-
ent constants for FV, %
simplicity of presentation.

2N . . .
and %—WIQT: the choice to have a unique constant is only made for

1.4 Main example

Here is a typical example for FV when F satisfies our standing conditions. We assume that F'V
is of the form FN = FN where (ey) is a positive sequence which tends to 0 and

Fé(z,m) = (£ * F(-,§" = m())) (z), (12)

with £¢(z) = e~ %(x/e), & being a symmetric smooth nonnegative kernel with compact support.
This example was introduced in [21].

Proposition 1.2. If FV is defined by (12), then FN is monotone and satisfies (10). Moreover
the constants k:f,’a and K o associated with FN as in (9) and in (11) can be estimated by

kN <C(1+ R)e%,  Kya < Cepd1273e) (13)
where C' depends on F' and €.

Proof. Under the monotonicity assumption on F, it is known that the F'¢ are monotone (see
[21]). Next we prove that the F€ satisfy (10). Let mdx, m’dx € P(T%) with |m/ca, |m'|ce < R.

Then
|F(z, mdx) — F*(z', m'dx)|

<sup [Pz —y,m=E(x —y)) — Fa' —y,m' = £(2" —y))|
< CZup [l —2'| + |m=*&(xz—y) —m' =« (2" —y)]
< CsupJo — /| + Rla — [ + lmx €5’ — y) — m €@’ — )]
<C [}Jﬂx — /| + [m —m/|»].
We now estimate the constants kf,’o‘ and Ky . It is enough to estimate k‘f “* and K o, where

kit = sup [F€(,mdx) — F(,m() oo,
m
the supremum being taken over the densities m such that |m|ce < R, and
Koo = max{K), K1) K3},

€,07 e

8



with

oF*€
KO .— sup ||F°(-,m , KU .= sup My,
Y mep(Ta) G " mep(nd) o (4+ad+a)
and )
0°F°©
KE(QQ = sup |y (-,m, ) .
meP(T?) || 0T (44+a,4+a,4+a)

Let m € P(T%) be such that ||m|, < R and z € T As |m|, < R, we have:

Jo¢ em —mlle < Re® [ ol < ORe,

so that
IF(-,€ = m()) = F(,m(-))| < CRe®,

because F' is Lipschitz continuous. Thus

|F¢(x,mdx) — F(x,m(z))|

<€ * F(-, & «m(-))(z) — F(x, & = m(x))| + |F(x,£ = m(x)) — F(x,m(x))| < CRe".

Therefore
kR < O(1+ R)e®

where C' depends on the Lipschitz constant of ' and on &.
For any [ € N¢, we have

DLF(am) = [ Pl xm(u) D~ )iy,
Hence
DLF(z,m) — DiFE(fﬂ’,m)‘ < /Rd |F(y,& = m(y))| [D'€(x—y) — D'E(2' —y)| dy.

As F' is Lipschitz continuous, it has a linear growth:

|F(y, & =m(y))| < C(1+ & =m(y)).

Thus, as &€ has a support with a uniformly bounded diameter,
|DLF(m)la < CDE() a1 + / €% m(y)|dy) < Ce(FHIITe),
R4

So

On the other hand,
OF€ . oF . .
@z = [ ¥ == D5 m)E @ )y

and

52F5 ! € €
5m2 x m, 2, z / —Z— )fe( — & = k')é’fan(y,g * m(y))£ (517 - y)dy.
RY k’eZd



Hence, for any [,1’ € N,

e (x,m, 2)

<C [ D D"y —z— k)| |D'E(x - y)ldy,

R? kezZd

where C' is the Lipschitz constant of F. Thus, if |I|, |lI'| < 4 and if the support of £ is contained
in the ball Bgr, we have

1O m, 2) e~z —k) Dl - )

L% (BRe(z))

where Bg(z) is the ball centered at z and of radius Re. In the same way,

‘ 52Fe

Sm2 ('7 m,-, ) < 0672d712.
m
We can estimate in the same way the Hoder norms of 6F¢/dm and 62 F€/dm?. O

4,44

2 Regularity estimates

In this section, we prove estimates on the solutions of the MFG systems and on the solutions
of the master equation with the smoothen coupling FV: the whole point is to keep track of the
dependence with respect to N in these estimates.

Let UV be the solution to the master equation

—o,UN (t,z,m) — ALUN + H(z, D,UN (t, z,m))
—/ divy [DmUN(t,:E,m,y)] dm(y)
d

< *f DU (t,2,m,y) - DyH (y, D,UY) dm(y) = F™ (@, m) (14)
R

d
in [0,7] x R? x P(T9),
| UN(T,z,m) = G(x) in R? x P(T?).

The existence and the uniqueness of the classical solution UV to (14) are established in [2].
Namely:

Theorem 2.1 ([2]). Assume that FN, G and H satisfy our standing assumptions. Then the
first order master equation (14) has a unique classical solution which is of class C? with respect
to the m variable.

As the coupling FV becomes increasingly singular as N — +00, so does UY. The next result
collects the upper bounds on the derivatives of UV .

Theorem 2.2. Under our standing assumptions, we have, for any (to,mo) € [0,T] x P(T%) and
for any a € (0,1):
HU(t07 "y mO)H4+a < CK]%/,av

+ ||DmUN(t07 Mo, )
(k+a,k+a)

ifk:e{l,...,él}, and, if k = 2,3
’52UN

W(t(b Mo, - )
where C' depends on « and on the data but not on N, tg or my.

< C«K]3Vk;2’

” (k+a,k—1+a) =

5UN
—~ t07 » O, )

+ ||D2nmUN(t07 -, Mo, -, )
k+a,k—1+a,k—1+a

12k
” k+o,k—2+a,k—2+a S OKN,O”

10



As the bound on the derivative D,,U" (respectively D2, UY) provides a bound on the
Lipschitz continuity of UY (respectively D,,U™), we have:

UM (¢, -,m1) = UN (¢, -, ma < CKRF2dy(my, mo)

)HkJra

and

| DU (#,-ymi, ) = Dy UN (-, g, - < CENhdy (my,ma),

)Hk-i-a,k—2+a [

for any mi, ms € P(T?) and k = 2, 3.

The proof of Theorem 2.1 consists in estimating carefully the various steps in the construction
of UV in [2]. It is given through a series of statements: Proposition 2.5 for the space regularity
of UN, Corollary 2.8 for the bound on % and Corollary 2.10 for the estimate on 5;—%;.

Let us recall [2] that the map U” is given by the representation formula:

UN(t(]v €, mO) = uN(t07 33‘)

for any (to,r,mg) € [0,T] x T¢ x P(T¢), where (u”,m") is the unique solution to the MFG
system
—opuY — AuN + H(z, Du™) = FN(z,m" (t)) in [to,T] x T¢,
om™ — AmY — div(mN D, H (z, Du™)) =0 in [to, T] x T, (15)
uN(T,z) = G(x), m" (to,-) = mo in T¢.

2.1 Estimates on the MFG systems for smooth initial conditions
Fix an initial condition (ty,mg) € [0,T] x P(T¢). We consider the MFG system:
—0u — Au+ H(xz,Du) = F(z,m(t,z)) in [to, T] x T¢,

orm — Am — div(mDpH (z, Du)) = 0 in [to, T] x T¢, (16)
’LL(T,$) = G(l‘), m(t07 ) =mo in Tda

and compare its solution with the solution to the MFG system (15).

Proposition 2.3. Under our standing assumptions, let to € [0,T], mo € P(T?) be a positive
density of class C% (where o € (0,1)) and (u’¥,m") and (u,m) be the solution to the MFG
systems (15) and (16) respectively. Then there exists B € (0,a] such that the (u’¥,m") are
bounded in CY+P/22+8 « OB/28 independently of N. Moreover,

vt t' € [to, T, dy (m™ (), mN (¢')) + di(m(t), m(t')) < C|t — ¢/ (17)
and
sup [u™ (t,+) — u(t, )| g1 (pay + [m™ —mlp2 < CkRS, (18)
te[0,T]

where the constants C' and R depend on the data and on mg, but not on N. In particular,

_2
Sup ”uN(tv ) - u(t7 ')”Wl,oo <C <k1137,a) (d+2) )
te[0,T]

Proof. Existence of a solution to (15) and to (16) is well-known: see [20]. Estimates (17) is a
known consequence of the L* bound on D,H.

We now check the regularity of m”. As D, H is bounded and my is in C%, standard estimates
for parabolic equations in divergence form (Theorem III.10.1 of [17]) state that the m® are
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bounded in C#/2# for some § € (0,a]. Note that the bound and 3 depend on «, |D,H |4 and
HmoHca only.
We now plug this estimate into the parabolic equation for uV. For this we note that the

map (t, ) — FN(z,m™(t)) is uniformly Hoder continuous. Indeed, in view of assumption (10)

and the uniform regularity of m?",

FN (e, m (1) = F¥ @ mY @) < sng (Jo =27+ Im¥ () = m (7)o )

< KRg ‘x—m/‘ﬁ—i-‘t—ﬂﬁﬂ)

where R := supy |m"|s/2.6 + |m|cs/zs. Since the terminal condition G is C**# and is in-
dependent of m” and since H is Lipschitz continuous, standard estimates on Hamilton-Jacobi
equations imply that the vV are bounded in C118/2:2+5,

We now establish (18): following [19, 20], we have

IRGE —m>]T

/ / H(z, Du™) — H(z, Du) — DpH (2, Du) - D(u — u))
/ /Td H(z, Du) — H(z, Du™) — DpyH (z, Du™) - D(u — ™))
_/0 /T (FN (2, m™ (8)) — P, m(t,2))(m" (£, 2) — m(t, 7).
Note that, on the one hand, m"(0) = m(0) = mg and vV (T) = uw(T) = G. So the left-hand
side vanishes. On the other hand, by strong maximum principle, m is bounded below by a

positive constant since myg is positive. As the "V and u are uniformly Lipschitz continuous and
assumption (8) holds, we obtain:

T T
-1 N u2 < - N T mN o 2. m(t. x mN ) — m(t. ).
C /0 /Td\Du Dul® < /0 Td(F (z,m™N (t)) — F(z,m(t,z))(m" (t,z) (t,z))

As F = F(z,m) is increasing in the second variable with g—gj > ¢ and as assumption (9) holds,

we have:
/ [ @ 0) = Pt ) (1) = mit.2)
/ /T N (a,m (1) — P, (1)) (™ (1,2) = m( )
//T (e, m (t,2)) = Fz, m(t,2)))(m" (t,2) = m(t, )
> —CRE mY — |y + 6 / /T mit, )2
We obtain therefore

T T
ot / DU — Duf?+6 / / (" (&, 2)=m(t, 2))° < CKP ™ —m| 1 < kTP
0 JTd 0 JTd

m™N —m| 2.

Hence
IDu™ — Dul gz + |m® — ml;2 < CKES.
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In particular

|F¥ N(t))—F(wm(t Nlez
HF( M) = F(,m" (¢, ))Hoo+HF( Nt, ) = F(omi(t, )] 2

<
éC’k‘ +C||m —mlr2 < C’k‘

N

Therefore the difference w := v*¥ — u satisfies

—drw — Aw = h(t,x)

with h(t,z) = FN(z,m™ (t)) — F(z,m(t,z)) — H(xz, Du™ (t,2)) + H(x, Du(t,x)). By our previous
bounds, we have |h|r2 < Ck;]}\%,’ﬁ , so that standard estimates on the heat equation imply that

sup [u™(t,) = ult, )| 1 (pa) < Oy’
te(to, T

As, for any smooth map ¢ : T — R, one has: [¢]e, < C’HQSHZ D] ‘“2, and since vV and u
are bounded in C1+F/22+8 e get

2
[u™ =l + [DUY = Dull, < € (k7)™

We conclude by recalling that kﬁ,’ﬁ < kff’a. O

A straightforward consequence of Proposition 2.3 is the following estimate on optimal tra-
jectories associated with the MFG systems (15) and (16).

Corollary 2.4. Let mg € P(T%), (uN,m") and (u,m) be the solution to the MFG system (15)
and (16) respectively. Let to € [0,T) and Z be a random variable independent of a Brownian
motion (By). If (X;) and (X)) are the solution to

{ dXt = —DpH<Xt, DU(t, Xt))dt + \/§dBt in [t(), T],

Xto = Z7
and
dXt = —DyH(Xy, Dul (t, X}¥))dt + v/2dB;  in [to, T),
XN =2,
then

2
E [ sup | X; — XtN‘] <C (k;]}\%[va> =
te[to,T]

where C' and R are as in Proposition 2.3.

Proof. By Proposition 2.3, we have

_2
|Du” — Dul, < C (kf,“) e

The conclusion follows easily since D,H is Lipschitz continuous. O
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2.2 Estimates on the MFG systems for general initial conditions

We now establish regularity estimates for the MFG system which are valid for any initial con-
ditions.

Proposition 2.5. Let UY be the solution to the master equation (14), (u™N,m") be the solution
to (15) for an arbitrary initial condition (tg,mg) € [0,T] x P(T?). Then, for any o € (0,1), we
have

sup [[u (t)[ara < KR q
te[to,T]

where C' depends on «. In particular,

UN t, -, < CK3 )
te[O,T]S,:lnI;P(’]I‘d) ” ( m)H4+a N,

Proof. Assumption (11) implies:

sup HDZFN(',mN(t))H < Kna for any 1 € N, with |I| < 4.
te[0,T] o

By maximum principle we have
[u¥lo < C(IH (- 0)loe + [Gllec + [F¥]0) < Ko

Standard Lipschitz estimates for Hamilton-Jacobi equations (with a globally Lipschitz continu-
ous Hamiltonian H) lead to

|DuN oo < C (14 [DGlloo + Do FN|o) < CEiy o

For any | € N¢ with lI| = 1, the map w; := DN solves the linear equation with bounded
coefficient:

— 0wy — Awy + DyH(x, DuY) - Dwy = DLFN (2, mY) — DLH (2, Du™)  in (t5,T) x T¢,
wy(T,z) = D'G(z)  inT%

So, for any « € (0,1), we have (Proposition 4.1 in appendix)

sup_Jui(®)]1+a < o[HD;FN<-,mN)1OO+ \p'a) +|DLH(, DuY)|

| <o
te(to, T

1+o 0

This implies that

sup [[u? (t)2+a < CKn,a-
te[to,T]

We now estimate the second order derivative. Let w; := D' with | = I; + lo, I1,1> € N and
|l1] = |lo] = 1. Then w; solves the linear equation with bounded coefficients:

—dpwy — Awy + DyH - Dwy = DL, FN(z,m") — DU,%,pHel1 - Dy,
—D:%,p];[el2 - Dwy, — D]%pHlel - Dwy, — D2, Hey, - ey, in (ty,T) x T,
wy(T,z) = D'G(z)  in T

(where H = H(z, Du®)) so that
sup [wi(t)1va < C[IDZF oo + | D2 H 0| D*u™ oo + | Dpp H oo [ D™ |7,

te[to,T]
HIDZH(, Du™) oo + [D'G(Yiva | < CRRr o,
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where we used our previous estimate on sup, [u’Y (¢)|24o. We infer that

sup [ (1) [0 < ORR .
te[0,T7]

Finally, for I € N® with |I| = 3, one can prove in the same way that w; := D'u/V satisfies

o lwi®lisa < C[IDZeFN oo + [ D2 H o | D0 o + | Dy H oo D*u™ oo | D oo
€lto,

+||DmpHHooHDz glloo+ HDxpleloolle gllqﬁ | D HHooIID;’u]JVVHoo .
+HDxppHHooHD 1% + 1 p%plivaooHD Hoo+H oo 00| D*u™ oo | D*u™ oo
+HDmmmHHOO + HDmmpHHOOHD HOO] CKN,a‘

Therefore
sup |ul 40 < CKY .
tefto,T] ’
O
2.3 Estimates for a linearized system
We consider systems of the form
. SFN N . d
(i) =0z —Az+V(t,z) Dz = ——(x,m" (t))(p(t)) + b(t,z) in [to, T] x T¢,

(i1) Oyp— Ap —div(pV (t,z)) — div(m T Dz +¢) =0 in [to, T] x T¢,
(i) 2(T,x) =0, p(to) =po  in T

where V : [tg, T]xR% — R?is a given vector field, m"¥ € C°([0,T], P(T%)), " : [0, T]xT¢ — R4
is a continuous map with values into the family of symmetric matrices and where the maps
b:[te,T] x T - R and c : [tg,T] x T? — R are given. We assume that, for any o € (0,1),
there is a constant C' > 0 (depending on «) such that

|D*V | < CK3F,  Vke{0,...,3}, (20)
Y(t,z) € [to, T] x Td 0<T(t,x) < Cly.

Typically, V(t,x) = D,H(z, Du™(t,x)), T(t,x) = DIQ,pH(:I:,DuN(t,:E)) for some solution
(u™N,m") of the MFG system (15) starting from some initial data m(tq) = mg. Proposition 2.5
then implies that (20) holds.

Following [2], given py € C~#+)(T) (b, ¢) € CO([to, T], C*+(T¢) x C~*=1+2)(T4)) (where
ke {1,...,4}), there exists a unique solution (z, p) to system (19) in the sense of distribution
in CO([0, T], CF+o(T4) x C~(k+a)(Tdy),

Proposition 2.6. For any k € {1,...,4} and any a € (0,1), we have,

_ 3(k—1
sup [2(t)|psa < CKF-2M;,  and sup p(D)]-(kra) < CEae My,
te[0,T] te[to,T]

where C depends on C and o, but not on N, V., T, m", and where
My, := [poll-(k+a) + sup_[lc(@)-(k-14a) + sup_[b6(t)[k+a-

te[to, T te(to, T
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Proof. To simplify the notation, we argue as if the solution (z, p) is smooth. The general estimate
is obtained by approximation (see [2]).
Step 1: Structure estimate. Computing % de zp, we find:

% [ 20= _/w {<%(m,mN)(p) + b> p+ (m TDz +¢) - Dz}.

So, using the initial and terminal conditions for z and p and the fact that FV is monotone, we

get
T T
/ m™MT'Dz- Dz < / z(to)p(to) — / / {bp+c- Dz}. (21)
to JTd Td to JTd

Step 2: Estimate for a linear backward equation. In order to estimate p, we use a duality method
requiring estimates on a backward system: given t; € (t9, 7] and w' € C®, let w solve

{ —diw — Aw + V(t,z) - Dw =0 in [to,t1] x T,

w(ty, ) = wh(z) in T (22)

where w' € C®(T?). Proposition 4.1 in the Appendix states that there exists a constant C
depending on |V, d, a only such that

sup [[w(t)|1+a < Clw'|i+a-
te[0,T]

Note that, for any I € N% with k := |I| € {1,...,3}, the map @ := D'w solves an equation of

the form:
—0ub — A+ V(t,x)- D =g in [to,t1] x T,
w(ty,z) = Dw!(z) in T¢,

where g; is a linear combination of the D"w with 1 < |I’| < k and where the coefficient in
front of D' w is proportional to a derivative of order k — || +1 of V in the space variable. By
Proposition 4.1 and (20) we get therefore

sup | D'w®)l1sa < C|ID"w f1sa + |ailo]
te[0,T7]

3(k—|U'|+1) | I/
< C|IDw e+ Y. Ky YD ),
1<V |<k
By induction, this implies that, for k € {1,...,4},

3(k—1
sup Juw(t)|isa < CKae w! sa. (23)
te[0,T

Step 3: Estimate of p by duality. Let us fix t1 € (to, T], w' € C® and let w be the solution
0 (22). As p solves (19), we have, for k € {1,...,4},

/Td w'p(t) = /1rd w(to)po — /t:l /Td (mT'Dz + ¢) - Dw

1

T 1 t1 1
<ol rwlwllra + ([ [ m¥tDz-D3 ([ [ m¥rDw- Du)’
to JTd t Td

0
+C5up |e(t)] 1140y 0D [ D11

T 1
< Il sa o) lisa + C1Dule ([ [ m¥TD2 - D2)’
to

+COsup [e(t) |- (r-1+0) SUP [ D140
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where we used the fact that I' is bounded and [ m¥(t) = 1 in the last inequality. Recalling
(23), we get:

(k— 1
/T wlpln) < Clek+a{K3 (Ipoll—ge ) + 50D le(®) 1) + / [ m"TDz. Dz)?}
to

Taking the supremum with respect to ¢; and to w! with |w!|s; < 1, we obtain therefore

T 2
5 [0 evay < ORI (I0l-guray + 500|100y ) + € ([ [ m¥rDz-D2)"
0

Td

For r = 1, we plug (21) into the above estimate:

3(k—1 PR E
Sp [P0 —re) < CKY >(Hpou(k+a)+sgp c<t>(k1+a>)+cz<to>ﬁupou%

RIS

).

3(k—1 1 i
sup [ p(t)|_(hra) < CKne "My +C sup [z(1)]? (HpoH + osup [e()]?, 1)>,
te[to,T] te[to,T] te[to,T]

1 1 1
+C <Sgp D) o 5UP 12 1y + sUP D)2,y sup 2(D)]

Rearranging we find:

where M, is defined in the Proposition.
Step 4: Estimate of z. Fix | € N% with k := |I| € {0,--- ,4}. In view of the equation satisfied by
z, the map % := D'z solves an equation of the form

—0iZ2—AZ+V - -Dz = Dl‘SF (z,m™ ())(p(t)) + D'b + g in [to, T] x T,
2T,z)=0  inT9

where g; is as in step 2 with z replacing w. Proposition 4.1 thus implies that

SFN S i
sup [D'2(O)ira < C [ 10— (mN () (0O | + 1D+ Y5 Ko "VID 2] |

te[O,T] 1<‘l/|<k)

where, from assumption (11) and Step 3 for r =k + 1 + =

sup ||p(t) Hf(k+1+a)

Et+ok+14+a t
1

SFN
DI
H om

(¥ )| < sup

0 m

1 1
. 1 1 1
< CK]%’;rleH + CKnq Slzp 1274140 ”POHE(HHQ) + sgp e(t) H2(k+a)> )
So we find

1 1
k s s
2 (Ol < O | KE Mo s K st O 1 (101 1) + 00 101 )
€0,

k—n
Hole + Y. Ko ™ sup Hz<t>n+a].

1<n<k te O,T]
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We rearrange the expression to obtain

S[lgl;] lz() k1140 < C {K%T;AMk+l + KX o <”p0—(k+l+a) + sup ”C(t)”—(k+a)>
te[o,

3(k—n+1
ol + Y5 Kyg " sup Z(t)||n+a]
1<TL<I€ tE[O,T]

< C [K]?(;?-i-leJr + Z K3(k n+1) S[[SI;] HZ(t)n_i_a] .
1<’I’L<k )

By induction we infer that, for k € {1,...,4},

sup [ 2(t) ke < CKYo>Mp.
te[0,T]

Plugging this inequality into our estimate for p (in step 3) gives:

k—
sup [p(t)|-ksa) < CENG " M.
te[to,T]

2.4 Estimates for %L

In this section we provide estimates for % where UV is the solution of the master equation

(14). Following the construction of [2], we can express this derivative in terms of a linearized

system. Let us fix (tg,mg) € [0, 7] x P(T¢) and let (m®,uV) be the solution to the MFG system

(15) with initial condition m(ty) = mg. Recall that, by definition, U (tg, 2, mq) = u” (to, x).
For any 1o € C®(T%), we consider the solution (z, p) to the linearized system

N

—0;2 — Az + DyH(z, Du™) - Dz = oF (z,m™ (t))(p(t)) in (0, T) x T,

m
0ip — Ap — div(pDy H (x, Du™)) — div(mNDf)pH(x, DuMYDz) = 0in (0,T) x T, (24)
2(T,-) =0, p(to,-) = po in T%

We proved in [2] the identity

SUN
t = — (¢ dy.
“ttone) = [ ot o))y
In order to estimate 2 %m-> which just need to estimate z: this is the aim of the next statement.

Proposition 2.7. The unique solution (z,p) of (24) satisfies, for k € {1,...,4} and any « €
(0,1),

sup [2(t, ira < CKF-2pol— (s (25)
te[to,T]
3(k—1
sup o) —grra) < CEne ool —(ksa), (26)
te(to, T

where the constant C' does not depend on (ty, mg) nor on N.

Proof. 1t is a straightforward application of Proposition 2.6, with V' (¢,z) = D, H (z, Du™N (t,x)),
L(t,x) = D2 H(z, Du™(t,z)) and b = ¢ = 0. O
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As in [2] we can derive from the Proposition an estimate on the first order derivative of U
with respect to the measure:

Corollary 2.8. For any (to,mq) € [0,T] x P(T?) and k € {1,...,4}, we have:

+ HDmUN<t07 Mo, )
(k+a,k+a)

3k—2
t07 , Mo, * ) < CKN,a .

5UN
H(k-‘ra,k—l-i—a)

2.5 Estimate for 5;2;“

We now estimate the second order derivative with respect to m of the solution U” to the master
equation (14). Let us fix (tg,mg) € [0,T] x P(T?) and let (m”,u) be the solution to the MFG
system (15) with initial condition m(tg) = mg. Let (z, p) be a solution of the linearized system
(24) with initial condition py. The second order linearized system reads

N SFN N
0w — Aw + DypH (@, Du) - Dw = = (,m" (£)) (u(2))
2 N
+55£2 (@, mN () (p(t), p(t)) — D2, H(x, Du™)Dz - Dz in (0,T) x T¢, (
) 27)

Orpr — Ap — div(uDy H (x, Du®)) — div(mNDlz)pH(:E, Du)Dw)
= div (m" D}, H(z, Du™)DzDz) + 2div (pD2,H(z, Du™)Dz) in (0,T) x T¢
?,U(T, ) =0, M(t07 ) =0in ’]I‘d‘

Following [2], we have

w(t //62UNta:m "Yoo(y)po(y')dydy'
07 d 5m2 07 » 10, Y, Y )pol\Y)poly Jayay .

Proposition 2.9. We have, for k = 2,3,

sup [w(t)k+a < CERGI0012 (1 +a)-
te[to,T]

As a consequence, we have:

Corollary 2.10. For any (tg,mg) € [0,T] x P(T%) and k = 2,3, we have:

Proof of Proposition 2.9. We apply Proposition 2.6 to (w, ) with initial condition u(tg) = 0
and

s2uN

W(to,wmo, ) + ||D72nmU CKI%

k+o,k—1+o,k—1+a

N
(to, 510, ° ')||k+a,k72+a,kf2+a

2 FN
b(1) = S ™ (0)(p(0), (1) — D3 H (2, DuN) D= - D=,
= (m"D},,H(z,Du™)D2Dz) + 2pD2,H(z, Du™)D=.
We have, for any k € {1, .3}

N

sup [o(t)le+a < CEnasup [P (—14a) + C'sup | DR H DuN(t))Hk+a sup l=(®)R 4140

1+6k 2 3k+23k+1
CEN D0l 1 ey + O S g2 )

<
< C'KQIH2||,00H2 (k—1+a)’
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where we used Proposition 2.5, (25) and (26). Next we estimate ¢ for k € {2, 3}:

le@ll—(k=140) < C  sup ( mN¢D pppH(:z:,DuN)DzDz~|—/ gprI%pH(:E,DuN)Dz)
|\¢Hk712+a<1 T4 N Td
< C||DZ||oo+C'H ” sup  ||¢Dy,H(z, Du )Dsz—l+asuP P —k-1+a)
¢lr—1+a<1
3(k—1)— k—1)+3k—2+3(k—2)
< CK( [l po]l2 (h— 1+a)+CKN(a ) o] (k+a)llPoll —(k—14a)
9(k—1)—
< OKN(a 21001 (t—1 1)

Therefore, by Proposition 2.6, we obtain, for k € {2, 3}:

Sltlp Hw<t) HkJra < CK]?#T;2 |:Slip Hb(t)HkJra + Slip H ( )H (k—1+« :| < CK]IV%I;H/)OH%(kflJra)'

3 Convergence

In this section, we consider, for an integer N > 2, a classical solution (v" 7"),~€{1,m7 ny of the Nash
system:

S RYLE ZA N “(t,x) +H(xZ,szv i(t,:c))
+ZDpH %D:cjv Ni(t,®)) - Dy o™t @) = FN (@, mg") in [0,T] x (TN, (28)

Jj#i
?)N’i(T, x) = G(z;) in (Td)N

- 1
where we have set, for = (z1,...,zx) € (TN, md¥ = N_1 Z Oz, -
J#i
As H is Lipschitz continuous, system (28) has a unique classical solution [17]. By uniqueness,
the v™V* enjoy strong symmetry properties. On the one hand, v™"!(t,zy,...,zy) is symmetric
with respect to the variables (;);.;. On the other hand, for j # i, v™V¢(¢t,z) = vV (¢, y), where
x = (x1,...,2n) and y is obtained from « by permuting the z; and x; variables.

Our aim is to quantify the convergence rate of vV to the solution U of the master equation
(14) as N tends to oo.

3.1 Finite dimensional projections of U

Let UN = UN(t,z,m) be the solution of the second order master equation (14). For N > 2 and
ie{l,...,N} we set

u™Ni(t,x) = UN(t, 25, mY?)  where x = (z1,...,25) € (THYN, mbé = N— 25%
J#t
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Following [2], we know that the u”"* are of class C? with respect to the space variables and C*
with respect to the time variable, with, for 4, j, k distinct:

o™ (t, @) = UM (t, 2, mE), DxiuN’i(tvw) DyUN (t, i, my™),

. , 1 .
D?EixiuN’Z(t,:c) = D2 UN(t, 2, md), ijuN’Z(t,:c) = ﬁDmUN(t,xi,mg’l,mj),

DrznmUN(t7 T, mé\/,i7 Zy, xk)a
1
N -1

D:%]:Ek ’i(t7 m) =

1
(N —1)?

(N —1)?

D? ’i(t,az) = D%ImUN(t,xi,miV’i,xj,:Ej) +

Ty 5‘33

D2 UN(t,xi,miV’i,xj).
(29)
We estimate how far (uN’i)ie{l,m,N} is to be a solution to the Nash system (28):

Proposition 3.1. The map (vV?) satisfies
( — o™t — Z ijuN’i + H(x;, DmiuN’i)

j
+ Z ijuN’i(t, x) - DpH (z;, ijuN’j(t, x)) = FN(zg,mdH) 4+ Nt @) (30)
J#
a.e. in (0,T) x TN,

uNHT, z) = G(z;) in TN,

where vVt e CO([0,T] x T9) with

C
< 5 I || D U o + D75 U™ o) -

HTN’Z o

Proof. As UV solves (14), one has at a point (¢, z;, ma"):

— o UN = A UN + H(xi, D,UY) —/ divy [Dp UN | (t, 2, my y)dmZ (y)
Td

+ DmUN(t,:Ei,miV’i,y) D H(y,D UN(t,y,m ))dm f(y) = FN($Z, NZ)
Ta

So v satisfies:
— ot — AmiuN’i + H(x;, DwiuN’i) — » divy [DmUN] (t, i, mg’i, y) dmgl(y)

ZD UN(t Ty My, ,x]) (xj,DmU (¢, :EJ,mNZ)) FN (2, md).
1z

_I_

Note that, by (29), for any j # i, we have:

N—D mUN (8,25, mE" 2;) = D, u it x).

In particular,

; 1
| Dy u™ |0 < NHDmUNHOO. (31)

By the Lipschitz continuity of DU with respect to m, we have

; C
DU (¢, 2,mg ") = DoU™N (¢, 25, m5 )| < | Dina UM oodi (mg*, mg ) < NHDm,xUNHooa
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so that, by Lipschitz continuity of D,H,
N,j c N
|DpH (x5, D,UN (t, 5, m3")) — DyH (x, Dy, u™7 (t,2))| < N\\Dm,xU loo- (32)

Therefore

ZD UN (t, 2, mi" xj) - DpH (x5, DyUN (8,25, m5"))
J#Z

—ZD R - DypH (27, Dy, u™3 (t,2)) + 11" (t, &) = 0,
J#i

where, by (31) and (32),
N,i c
\rl < 5 1PmU™ oo D 2 U™ oo

On the other hand, by (29), we have

N
Z ijuN’i — ALUN(t, 25, mY) ZleyD UN(t, 5, mY, x;)

N N J;«ez
_1 Ztr W UN (&, mdt xy )) = rd (8, @),
j#i
where
I e < 1D U o
Therefore
— otV ZAm]u (t,x) —I—H(xZ,Dmlu Z'(t,ac))
+ Z ijuN”(t, x)- DpH(xj,ijuN’j(t,w)) = F(a:,,miw) + riv’i + rév’i,
J#i
which shows the result. O

3.2 Estimates between vV and UV

Let us fix tgp € [0,7). Let (Zi)ie{l,...,N} be an ii.d family of N random variables. We set
Z = (Zi)iequ,..,ny- Let also ((B})e[o,1])ief1,...,n} be a family of N independent d-dimensional
Brownian Motions which is also independent of (Z;);e(1,..., v} We consider the systems of SDEs
with variables (X = (Xit)ieq1,...N})teo,r] and (Y = (Yit)ieq1,... N} elo,1]:

dXiy = —DyH (X, Dy u™Ni(t, Xy))dt + v2dB]  te [to, T, (33)
Xl,to = ZZ7
and , .
{ dYiy = —DpH (Yiy, Do o™ (t,Y))dt + v2dB]  te [to,T], (34)
Y;:,t() = ZZ

Note that, by the symmetry properties of the (qui)ie{17___7N} and of the (vai)ie{l,,,,7N}, the
processes (X ¢, Yi ¢ )iefto,1])ief1,....n} are exchangeable.
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Let us finally introduce notations for the error terms:

o = sup HDgcl.uN’Z BN = supsup| D, uNi||oo and V= sup [rV .,  (35)
i I E ) 7
where V" is the error term in Proposition 3.1. In the same way, we set
aN = Sup HDxl,ml N 0> BN = Supsup ”Dml x; U
)
Finally,
oY = (1+ (™) + (NBY)?), 0V :=(1+aN + NBY). (36)

Note that, by symmetry, the sup; in the above expressions is actually superfluous. Theorem 2.2
implies that ™ and 6" are of the following order:

CK}? .
N < % N <CKY,, 0N <CKE,.
Theorem 3.2. We have, for any i€ {1,--- N},
[ui — N < CrN (0V) 2 exp(CON), (37)
E[ sup |YViy— Xis|] < CrN(0N0N) 2 exp(C(0N + 7)) (38)
te[to,T]
and -
E[ / | Dy, o™ (t,Y ) — Dy u(t, Yt)\zdt] < O(rV)20N exp(COM), (39)
to

where C' is a (deterministic) constant that does not depend on ty, my and N.

Proof. We follow closely the proof in [2] and so indicate only the main changes. We will use the
following notations: for t € [to, T],

UtNJ' = UN7i(ta Yt)v V:‘,NJ = UN’i(t Yt)7
DUtN,i,j _ ijuN’i(t,Yt), D‘/tN,i,j _ ij’l)N’i(t, Yt)

As the (UN’i)ie{l,...,N} solve equation (28), we have by It6’s formula that, for any i € {1,..., N},
dvNt = [H(Y,t,D VN Y L)) = D™ (4, YY) - DpH (Yig, Dy ™ (1, YY)

— PN (Vi myf)) |t (40)
+v2) Dy Nt YY) - dB.
i
Similarly, as (uN’i)ie{l,m’N} satisfies (30), we have:

AU

_ N,i N,i N,i

- [H(Yivt,Dxiu W(t,Y)) — Dot (8, Y1) - DyH (Yig, Dy u™(1,Y))

— FN (Y, mg’) rMi, Yt)] dt

—ZD%U (1Y 1) - (DpH (Vi Do (8, Y1) = DpH (Y, Doyu™ (Y1) )t

+\/—ZD Wit Y ) - dBY.
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Computing the difference between (40) and (41), taking the square and applying It6’s formula
again, we obtain:

d[UtN,i _ ‘/tN,i]Q
_ [2(UtN,i _ VtN,z') ) (H(Yi’tjDUtN,i,i) _ H(E-,t,DV;N”"iD
— (UM — N (DUN W[ DpH (Y;y, DUN) — D,H (Y, DV m)])
Q(UtN’Z V; ) . ([DUtN,i,i _ DVtN’i’i] . DpH(Yvi’t’DVtN,i,i)>
—2(UN — vV N, Yt)]dt
—2(U — v ZDUN“' : <DpH(Yj7t,DVtN’j’j) —~ DpH(YM,DUtN’j’j))dt
n [22 |DUtN,i,j _ DVtN,i,j|2 + \@(UtNZ _ V;N,i) Z[(DUtN,i,j _ DVtN,i,j) ,ng]_
J J
Recall now that H and Dp,H are Lipschitz continuous in the variable p. Recall also the notation

N BN and rV in (35). Integrating from ¢ to T in the above formula and taking the conditional
expectatlon given Z (with the shorten notation E4[-] = E[-|Z]), we deduce:

EZUUtN,z o V;N’Z|2] + 2ZEZ [/t |DU8]V,Z,] _ DVSN’Z’J|2dS}
J

. . T . .
<EZ[|JUp" = VY P) + rN/t EZ[|UN* — VN |ds

+C(1+a) / EZ[\U;W — VN [DUNS — DVSNM]ds
t
¥ Y, [ B2[UN - v pUX s - DV s
it
Recall that U%V "t = VQ{V e (Yi 7). By Young’s inequality, we get
. . T . . ..
EZ[|UM - VY?) + B2 U |DUN — DVSN’“|2ds}
t
T . .
SCOVP4C (14 (@ + (V%)) [ B[N - VN Pds (14)
t
1 z[ [T N.j,j N,j,j 2
~—YE \DUN3I — DYNII12ds |.
N > ¢
Summing over ¢ we obtain:
N 1 T . .
ZEZ Ny Vt ,1‘2] + §ZEZ[/ ‘DUSN’M o DVSN,Z,ZPdS}
~ t
' (45)

T
<SCN@EM?+C (1 + (a™)? + (NY)?) / DIEZ[|UN - VN P]ds
to
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By Gronwall’s Lemma, this leads to:

sup [ZEZ[\U ’—vtN’iF]} < CN (V)% exp(CON), (46)

to<t<T

where 6% is given in (36). Plugging (46) into (45), we deduce that

ZEZ [/ |DUN-3 — DVSN’j’j|2d8] < CN ()20 exp(CHM).

Inserting this bound in the right-hand side of (44) and applying Gronwall’s lemma once again,
we finally end up with:

sup EZUUtN,z _ V;N,Z|2] + EZ |:/ |DUSN,2,2 _ D‘/SN,Z,Z|2dS:|
te[to, T to

< C(rV)20N exp(CON).

(47)

This gives (39). By the definition of UY:* and V' this implies that
[uNi(to, Z) — v (to, Z)] < CrV(OV) 2 exp(COY)  ace.
Then choosing Z; with a uniform law on T¢ implies, by continuity of u™>* and v™>* that
‘u (to,x) — v i(to,w)‘ < CrV(OM)2 exp(CON) v e (THN
which shows (37).

We now estimate the difference X;; — Y; 4, for t € [to,T] and i € {1,..., N}. In view of the
equation satisfied by the processes (Xit)se[t,, 7] and by (Yi1)e[s,,7], We have

t
| Xis = Yiel < / |DyH (Xi,5, Dy, u™(3, X 5)) — DpH (Vi Dav™ (5, Y ,))|ds

to

<C <1+HDxlxl )|XZS_}/;S|+Z“Dx1xJ j75_3/3'78‘d3
to J#
t
+/ \DpH(YZ-,S,DmuNﬂ'(s,YS)) DypH (Y5, Dyv™(5,Y ) |ds (48)
to

<OdN |X7,s_ ZS|dS+CﬁNZ/ |st_ js|d8
J#

+C \DU;W — DV ds.

to

Computing as before the inequality satisfied by the sum . | X; ; —Y; |, using the exchangeability
of the (XN, YN:#) and (47), we obtain (38) thanks to Gronwall inequality.
O

Following exactly the same argument as for Theorem 2.13 in [2], we deduce:
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Corollary 3.3. Fiz N > 1 and (tg,mg) € [0,T] x P(T¢). For any i€ {1,...,N} and z € T,
let us set

wN’i(to,xi,mo) = / (g, x Hmo dx;) where = (z1,...,2N).
(’]l‘d)(Nfl) i
Then
CrN(ON)12 exp(CON) + C||Dp UN || oo N—1/4 if d >3,
[w™ (to, -, mo) = UN (to, -y mo)|,, < § CrY(ON) 2 exp(CON) + C|DpUN oo N 72 1og(N) if d = 2,
CrN (N2 exp(CON) + C|| Dy UN | o N~1/2 if d=1.

where the constant C' does not depend on ty, mg, i and N and where 8V and 6N are defined
before Theorem 3.2.

Proof. We use the the Lipschitz continuity of U and a result by Fournier and Guillin [8] to
deduce that, for d > 3 and for any x; € T,

/ﬂ‘d(Nl) ‘uN,i(t, x)— UN(t, xi,mo)| HmO(de)

J#i
= / |U (t, xz,m 1) — UN(t i, Mo \Hmo (dx;)
Td(N—1) i
< 1Du0™ . | %, mo) [ T mo(dxs) < ClDRUY N7V
Td(Nfl) i

If d = 1 (respectively d = 2), the N~1/% has to be replaced by N~2 (respectively N ~1/21log(N)).
Combining Theorem 3.2 with the above inequality, we obtain therefore, for d > 3,

[w™N (o, 25, mo) — U™ (to, 23, mo)|

N, N

vt (o | |m dx;) —U" (t,z;,m
/Td(Nl) ( ( ])) s 0( ]) ( 0)

= HvN’i - uN’iHOO + / [ (¢, ) — UN (¢, 24, mo)| Hmo(dxj)
TdN £

< CrN(OM)2 exp(CON) + C|| D UN | o N7V,

As above, the last term is N~Y2 if d = 1 and N~2log(N) if d = 2. O

3.3 Putting the estimates together

Here we fix a initial condition (ty,mg) € [0, T] x P(T?), where my is a smooth, positive density.
Let vV be the solution of the Nash system (28). Following the averaging procedure of Corollary
3.3, we set

*(to, z, M) / / Ni(ty, x) Hmo (dx;) where = (z1,...,2N).
Td Td i

Let u be the solution to the MFG system (16).
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Theorem 3.4. We have
( 1 L
CN™ KR, exp(CKS )+ C (k)™ ifd>3
1
Mi(to, mo) —ulto. )|, < ON"T (V)KL exp(CKS ) + C (kN)? ita=2 (19)
. p
CN™2KR, exp(CKS, )+ C (k") if d=1.

[0

\

where R and o do not depend on N (but depends on my).

In particular, if Ky = O ((In(N))?) for some 6 € (0,1/(6d)), then w™"(ty, -, mo) converges
uniformly to u(tg, -).

Proof. For N € N, let vV be the solution to the MFG system (15). Recalling Proposition 2.3,
we have

2
™ (to,) = ulto, oo < € (k) T,
where R is a bound on the C® norm of the m” (Proposition 2.3). As
UM (to, z,mo) = u™(to, z),
Corollary 3.3 implies that (for N > 3),
[ (to, - mo) = uM(to, )], < CrN(ON)'2 exp(CON) + CIDRUN [N~

-4 15 6
S ONTdKy ,exp(CKY ).

We now consider a particular case:

Corollary 3.5. Assume that
FN(z,m) = F(-, &N «m(") = £(2),

where £ are as in the example in Proposition 1.2. If one chooses ex = In(N)™8, with § €
(0, (6d(2d + 15))~1), the convergence in (49) is of order A(In(N))~YE for some constants A, B.

3.4 Convergence of the optimal solutions

We complete the paper by a discussion on the convergence of the optimal solutions and a
propagation of chaos.

Let us explain the problem. Let mg € P(T?) with a smooth, positive density. Let (v™V?) be
the solution to the Nash system (28) and, for to € [0,7), mg € P(T%), (u,m) be the solution
to the MFG system (16) starting at time to from mg. Let (Z;) be an i.i.d family of N random
variables of law mg. We set Z = (Z1,...,Zn). Let also ((B})wefo,r))ieq1,...n} be a family of
N independent Brownian motions which is also independent of (Z;). We consider the optimal
trajectories (Y= (Y1,t,- -, YN1t))ie[to,] for the N—player game:

{ dY;r = —DpH (Y4, Dpv™Ni(t, Y y))dt + +/2dBY, t e [to, T,
}/i,t() = ZZ

27



and the optimal solution (X ;= (X'M, . ,X' N,t))te[to 7] to the limit MFG system:
{ dX@t = —DpH (X@b Dxu(t, Xi,t)) dt + ﬁde, te [to, T],
Xis = Zi.

The next result provides an estimate of the distance between the solutions. To fix the ideas, we
work in dimension d > 3.

Theorem 3.6. Under our standing assumptions, for any N = 1 and any i € {1,..., N}, we
have )
E{ sup |Yi;— X@t ] <C {K?\}r’fN_l/d exp{C’Kﬁ;a} + (k:f,’a> dﬁ] ,
te[to,T] ’ ’

where the constant C > 0 is independent of ty and N, but depends on my.

In particular, if Ko = O ((In(V))?) for some 6 € (0,1/(6d)), then the optimal trajectories

(Yi+) converge to the (X;;) and become asymptotically i.i.d.
In order to illustrate the result, let us come back to our main example:

Proposition 3.7. Assume that FV are of the form (12). Then, for ey = In(N)™? for g €
(0, [6d(2d + 15)]71), we have

E{ sup |Yi:— Xi,t
te(to,T]

] < A(In(N))"V",

for some constants A, B > 0.

Proof of Theorem 3.6. Let UYN be a solution to the master equation (14) and set u™"(t,z) =
UN(t,z;,mp"). Let (Xi;) be the solution to

{ dX;y = —DyH (X4, Dyu™i(t, X)) dt + v/2dB; t e [to, T,
Xi,to = Zi7

and (X; ) be the solution to

{ dXiy = —D,H <Xi,t,DxuN (t,fg@) dt +v2dBi  te [to, T],
Xi,to = Z;

where (uN,m") is the solution of the MFG system (15). Note that the (X;,) are i.i.d. with law
(m™N(t)). As, for any t € [to, T,

uM(t,) = UN(t,-,mN (1)),
the (X; ;) are also solution to

dXi, = —D,H <Xi,t,DxUN (t, Xip, m¥ (t))> dt +v2dBi  te [to, T,
Xity = Zi.

The main step of the proof is the following claim:

E| sup [Xi0 — Kigl| < CRnaN "V exp{CKna}. (50)
te(to, T
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Let us fix i € {1,..., N} and let
plt) = B[ sup |Xis - Xi|
s€[to,t]

Then, for any ty < s <t < T, we have

‘Xi,s - Xi,s‘ < / ‘_DpH(Xi,TWDSL‘UN(Ta Xi,?”um%’j)) + DpH(X’imaDZ‘UN(Ta Xi,T’amN(T)))’dr
0/ X — Xig| + [ DU (r, X, m") — DU (r, Xy, m™ () |,

where we have used the fact that D,H is globally Lipschitz continuous. As the map (z,m) —
D,UN(r,z,m) is Lipschitz continuous with constant CKy , (Theorem 2.2), we get

S
| Xis — Xi | <0KN,Q/ (1% = Xl + di (m¥],my?) + i (ml m” (1) ) dr,

to
where
dy(my!,my") < 2 X — Xl (51)
]752
Hence
|1 X5 — Xis| < CKN,a/t <|Xi,r . ty o1 Z X — Xjo| + di(m X, 7mN(7’))>d7" (52)
0

J#z

As the (X;,) are i.i.d. and d = 3, we have from [8] that
E[dl (mil, mN(T))] < CN~V4,

So, taking the supremum over s € [t, t] in (52) and then the expectation, gives, since the random
variables (X, — Xj;)jeq1,..,ny have the same law:

t
,O(t) = E[ sup ‘Xz s Xi,s‘] < CKN,Q/ p(s)ds + OKN,QN_l/d.
to

Se[t() t

Then Gronwall inequality gives (50).

We now complete the proof by recalling that, from Theorem 3.2,

E[ sup [Viy — Xiol] < CrN(070N) 2 exp(C (0" + 67)),
te[to,T]
where K
V< % N <CKY,, 0N <CKE,.

On the other hand, Corollary 2.4 states that

2
E [ sup ‘Xt Xt‘ <C <k:f,’a) e ,

tE to T
Therefore
2
E{ sup |Yip — Xiy } <C {KN,QN—l/d exp{CKn o} + K22N~exp(CKS ) + (;ﬁ@a) M} '
te(to, T > )

O
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4 Appendix

In the appendix, we state an estimate for equations of the form:

dow — Aw + V(t,z) - Dw = f in [0,7] x T,
w(0,z) = wo(x) in T¢,

where V is a fixed bounded vector field.

Proposition 4.1. If w is a solution to the above equation with wy € C1T%, then

sup [w(t)1+a < Cllwolira + [ flleo],
te[0,T]

where C' depends on |V |w, T, o and d only.

This kind of estimate is standard in the literature: for instance Theorem IV.9.1 of [17] (and
its Corollary) states that Dw is bounded in C#/28 for any 8 € (0,1). However the bound might
depend on the vector field V' and not only on its norm. We only check this is not the case.

Proof. Let us first check that the result holds for an homogenous initial datum. More precisely,
we prove in a first step that, if w solve (53) with w(0,-) = 0, then [|[Dwls < C|f]w, where the
constant C depends on ||V |, T and d only. For this we argue by contradiction and assume for
a while that there exists V,, and f,,, bounded in L*, and w,, such that

Orwyn — Awy, + Vi, - Dwy, = [y in [0,T] x ¢
w,(0,2z) =0 in TY

with &y, := |Dwy|w — +00. We set W, := wy/ky, fr = fn/kn. Then @, solves the heat
equation with a right-hand side f,, — V,, - Dib,, which is bounded in L®. By standard estimates
on the heat potential (see (3.2) of Chapter 3 in [17]), 6;, and D?i,, are bounded in LP for any
p independently of n. Then a Sobolev type inequality (Lemma I1.3.3 in [17]) implies that D,
is bounded in C#/2# independently of n for any 8 € (0,1). On the other hand, (f,) tends to 0 in
L? and, by standard energy estimates, (D0,,) tends to 0 in L?. This is in contradiction with the
fact that | D, = 1 and that Db, is bounded in C#/2#. So we have proved that there exists
a constant C, depending on |V, d and T only, such that the solution to (53) with w(0,-) =0
satisfies |Dw| o < C| f|loo- Using the same argument on the the heat potential as above yields
to
|1Dwllcprzs < Cplf =V - Dw|oy < Cs f]oo,

where Cg depends on |V, d, T and £ only.

We now remove the assumption that wg = 0. We rewrite w as the sum w = wy +wsy where wq
solves the heat equation with initial condition wgy and wg solves equation (53) with right-hand
side f —V - Dwy and initial condition w9 (0,-) = 0. By maximum principle, we have

sup | Dwy(t)|a < C[Dwola-
te[0,T]

By the first step of the proof, we also have, for any 5 € (0, 1),
|Dwa| sz < Cpllf =V - Dwillo < Ca([[flloo + [ Dwolla)-

Choosing 8 = «a then gives the result. O
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