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The convergence problem in mean field games with a local

coupling

P. Cardaliaguet∗

October 19, 2016

Abstract

The paper studies the convergence, as N tends to infinity, of a system of N coupled
Hamilton-Jacobi equations (the Nash system) when the coupling between the players be-
comes increasingly singular. The limit equation is a mean field game system with local
coupling.

In this paper we investigate the convergence of the Nash system associated with a differential
game to the mean field game (MFG) system as the number of players tend to infinity. In
differential game theory, the Nash system associated with a N´player differential game is a
coupled system of N Hamilton-Jacobi equations. In our previous work [3], co-authored with
Delarue, Lasry and Lions, we explained that the solution of the Nash system converges, as
N tends to infinity, to the solution of the MFG system, which consists in a coupling between
an Hamilton-Jacobi equation and a Fokker-Planck equation. We proved the result under the
key assumption that the “coupling” between the equations is nonlocal and regularizing. In the
present setting, we consider the case where this coupling is singular: in the Nash system, the
payoffs of a player depends in a increasingly singular way on the players which are very close to
him. We prove that, in this case, the solution of the Nash system converges to a solution of the
Nash system with a local coupling.

To better explain what we have in mind, let us consider the Nash system
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%

´BtvN,ipt,xq ´
N
ÿ

j“1

∆xj
vN,ipt,xq ` Hpxi,Dxi

vN,ipt,xqq

`
ÿ

j‰i

DpHpxj,Dxj
vN,jpt,xqq ¨ Dxj

vN,ipt,xq “ FN,ipxq

in r0, T s ˆ pRdqN ,

vN,ipT,xq “ Gpxiq in pRdqN .

(1)

In the above system, the N unknown maps vN,i depend on time and space in the form pt,xq
with x “ px1, . . . , xN q P pRdqN . The data are the horizon T , the Hamiltonian H : Rd ˆR

d Ñ R,
the terminal condition G : Rd Ñ R and the maps FN,i : pRdqN Ñ R. The maps FN,i are called
the coupling because they are responsible of all the interactions between the equations.

We are also interested in the associated system of N coupled stochastic differential equations
(SDE):

dYi,t “ ´DpH
`

Yi,t,DvN,ipt,Y tq
˘

dt `
?
2dBi

t , t P r0, T s, i P t1, . . . , Nu, (2)
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where Y t “ pY1,t, ¨ ¨ ¨ , YN,tq, pvN,iq being the solution to (1) and the ppBi
tqtPr0,T sqi“1,...,N being

d´dimensional independent Brownian motions. In the language of differential games, the map
vN,i is the value function associated with player i P t1, . . . , Nu while pYi,tq is his optimal trajec-
tory.

In order to expect a limit system, we suppose that the coupling map FN,i enjoys a symmetry
property:

FN,ipxq “ FN pxi,mN,i
x q

where FN : Rd ˆ PpRdq Ñ R is a given map and m
N,i
x “ 1

N´1

ř

j‰i δxj
is the empirical measure

of all players but i, PpRdq denoting the space of Borel probability measures on R
d. Note that

this assumption means that the players are indistinguishable: for a generic player i, players k

and l (for k ‰ i and l ‰ i) play the same role. Moreover, all the players have a cost function with
the same structure. This key conditions ensures that the Nash system enjoys strong symmetry
properties.

In contrast with [3], where FN does not depend on N and is regularizing with respect to the
measure, we assume here that the pFN q become increasingly singular as N Ñ `8. Namely we
suppose that there exists a smooth (local) maps F : Rd ˆ r0,`8q Ñ R such that

lim
NÑ`8

FN pxi,mdxq “ F pxi,mpxiqq, (3)

for any sufficiently smooth probability density mdx “ mpxqdx. This assumption, which is the
main difference with [3], is very natural in the context of mean field games. One expects (and
we will actually prove) that the limit system is a MFG system with local interactions:

$

&

%

´Btu ´ ∆u ` Hpx,Duq “ F px,mpt, xqq in r0, T s ˆ R
d,

Btm ´ ∆m ´ divpmDpHpx,Duqq “ 0 in r0, T s ˆ R
d,

upT, xq “ Gpxq, mp0, ¨q “ m0 in R
d

(4)

This system—which enjoys very nice properties—has been very much studied in the literature:
see [9, 10, 20, 21, 22] and the references therein. The typical assumptions ensuring the MFG
system to be well-posed are that F is monotone with respect to its second variable while H is
convex in its second variable (plus growth conditions on F and H).

To explain in what extend the local couplings differs from the nonlocal ones, let us recall
the ideas of proof in this later setting. The main difficulty is the complete lack of estimate
independent of N for the solution of the Nash system (note that in our local setting, things
are even worse since terms like FN pxi,mN,i

x q blow up unless m
N,i
x is very close to a regular

density). To overcome this problem, the main ingredient in [3] is the existence and uniqueness
of a classical solution to the so-called master equation. When FN,ipxq “ F pxi,mN,i

x q, where
F : Rd ˆ PpRdq Ñ R is sufficiently smooth, the master equation takes the form of a transport
equation stated on the space of probability measures:

$

’

’

’

’

&

’

’

’

’

%

´BtU ´ ∆xU ` Hpx,DxUq
´
ˆ

Rd

divy rDmU s dmpyq `
ˆ

Rd

DmU ¨ DpHpy,DxUq dmpyq “ F px,mq
in r0, T s ˆ R

d ˆ PpRdq
UpT, x,mq “ Gpxq in R

d ˆ PpRdq

(5)

In the above equation, the unknown U is a scalar function depending on pt, x,mq P r0, T s ˆR
d ˆ

PpRdq, DmU denotes the derivative with respect to the measure m (see [3]). The interest of the
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map U is that the N´tuple puN,iq defined by

uN,ipt,xq “ Upt, xi,mN,i
x q, x “ px1, . . . , xN q P pRdqN , (6)

is an approximate solution to the Nash system (1) which enjoys very good regularity properties.
Then the whole point in the proof in [3] consists in transferring the regularity of uN,i to vN,i by
integrating both functions along the same (and carefully chosen) path.

When F is a local couplings, i.e., F px,mq “ F px,mpxqq for any absolutely continuous mea-
sure m, the meaning of the master equation is not clear: obviously one cannot expect U to
be a smooth solution to (5), if only because the coupling blows up at singular measures. As a
consequence, the definition of the maps uN,i through (6) is dubious and, even if such a definition
could make sense, there is no hope that the uN,i satisfy the regularity properties required in the
computation of [3].

As the master equation for the limit problem does not seem to make much sense, we present
here a completely different approach for the proof of the convergence (see Theorem 3.1 and its
proof): it consists in comparing directly the solution of the Nash system to the solution of the
MFG system without using the master equation. Although the argument are presented here for
a local coupling, they easily adapt to the framework of [3], thus providing a simpler and more
direct proof of some convergence results in [3]. Let us point out, however, that we do not recover
all the convergence results in [3] and that the convergence rate is also sharper in [3]. In order to
compare directly the solution of the Nash system vN,i and the u component of the MFG system
(or, actually, a variant of this system), we build different and well chosen paths along which these
functions behave in a same way. Then we overcome the difficulty that the paths are different
(as well as the lack of estimate for vN,i) by using the structure of the equation (convexity of the
Hamiltonian and monotonicity of the map F ), somehow reproducing the uniqueness argument
for the MFG system [20] at the level of the difference vN,i ´ u.

We now give a flavor of our result in a particular case. Let us assume that

FN px,mq “ F p¨, ξǫN ‹ mp¨qq ‹ ξǫN ,

where F “ F px,mq is globally Lipschitz continuous and increasing in m, ǫN :“ N´β (for
some β ą 0), ξǫpxq “ ǫ´dξpx{ǫq, ξ being a symmetric smooth nonnegative kernel with compact
support. In order to describe the convergence of the solution vN,i “ vN,ipt, x1, . . . , xN q of the
Nash system (15) to the solution u “ upt, xq of the MFG system (4), we reduce the function vN,i

to a function of a single variable by averaging it against the measure m0: for i P t1, . . . , Nu, let

wN,ipt0, xi,m0q :“
ˆ

. . .

ˆ

vN,ipt0,xq
ź

j‰i

m0pdxjq where x “ px1, . . . , xN q.

If β is not too large (namely β P p0, p3dpd ` 1qq´1q), then
›

›wN,ipt0, ¨,m0q ´ upt0, ¨q
›

›

L1pm0q
ď CN´γ,

where the constants C and γ P p0, 1q depend on the regularity of the initial measure m0 and
β (see Corollary 3.6). Moreover, we show that the optimal trajectories pYi,tq converges to the
optimal trajectory pX̃i,tq associated with the limit MFG system and establish a propagation of
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chaos property.

For a general sequence of couplings pFN q, converging to a local coupling F as in (3), our
main result (Theorem 3.4) states that, if the Lipschitz regularity of FN does not deteriorate too
fast, namely LippFN q “ opN´1{p3dqq in space dimension d ě 3, then wN,i converges to u and the
optimal trajectories converge as well. The space dimension arises here through the convergence
rate in the law of large number [1, 6]. Let us point out that, in order to avoid issue related to
boundary conditions or problems at infinity, we will assume that the data are periodic in space,
thus working in the torus Td “ R

d{Zd.

Mean field game theory started with the pioneering works by Lasry and Lions [18, 19, 20]
and Caines, Huang and Malhamé [11, 12, 13, 14]. These authors introduced the mean field game
system and discussed its properties: in particular, Lasry and Lions introduced the fundamental
monotonicity condition on the coupling functions. They also discussed the various types of MFG
systems (with local or nonlocal coupling, with or without diffusion).

The link between the MFG system (which can be seen as a differential game with infinitely
many players) and the differential games with finitely many players has been the object of several
contributions. Caines, Huang and Malhamé [14], and, later on, Delarue and Carmona [4] and
Kolokoltsov, Troeva and Yang [15], explained how to use the solution of the MFG system to
build ǫ´Nash equilibria in the N´player game (in open loop form). The convergence of the Nash
system (1) remained a puzzling issue for some time. The first results in that direction go back to
[18, 20], in the “ergodic case”, where the Nash system becomes a system of N coupled equation
in dimension d (not Nd as in our setting): then one can obtain estimates which allow to pass to
the limit. Another particular case is obtained when one is interested in Nash equilibria in open
loop form: Fischer [7] and Lacker [16] discussed in what extend one can expect to obtain the
MFG system at the limit. For the genuine Nash system (1), a first breakthrough was achieved by
Lasry and Lions (see the presentation in [21]) who formally explained the mechanism towards
convergence under suitable a priori estimates on the solution. For this they introduced the
master equation and described (again mostly formally) its main properties.

The rigorous derivation of Lasry and Lions ideas took some time. The existence of a classical
solution to the master equation has been obtained by several authors in different frameworks
(Buckdahn, Li, Peng and Rainer [2] for the linear master equation without coupling, Gangbo
and Swiech [8] for the master equation without diffusion and in short time horizon, Chassag-
neux, Crisan and Delarue [5] for the “first order” master equation, Lions [21] for an approach by
monotone operators). The most general result so far is obtained in [3], where the second order
master equation is proved to be well-posed even for more complex problems with common noise.
The first convergence result for the Nash system is also obtained in [3] as a consequence of the
well-posedness of the master equation. Its holds for Nash systems with common noise as well.
The convergence is expressed in two ways: by comparing the vN,i to the solution of the master
equation, or, as we do so here, by comparing the averaged function wN,i to the solution of the
MFG system. The present paper is the first attempt to show the convergence for a coupling
which becomes singular. It also provides an alternative approach of the convergence—without
using the master equation.

The paper is organized in the following way: we first state our main notation and assump-
tions. In section 2, we prove uniform regularity estimates on the solution puN ,mN q of the
perturbed MFG system (4) in which the right-hand side is replaced by FN . We also compare
puN ,mN q with pu,mq. Section 3 is the core of the paper. The key step is the comparison
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between the solution of the Nash system vN,i and uN along well-chosen paths (Theorem 3.1).
Then we collect all the estimate to obtain a rate of convergence between the averaged function
wN,i and u (Theorem 3.4).

Acknowledgement: The author was partially supported by the ANR (Agence Nationale
de la Recherche) project ANR-16-CE40-0015-01.

1 Notation and Assumptions

1.1 Notation

We sake of simplicity, the paper is written under the assumption that all maps are periodic in
space. So the underlying state space is the torus T

d “ R
d{Zd. This simplifying assumption

allows to discard possible problems at infinity (or at the boundary of a domain). We denote by
| ¨ | the euclidean norm in R

d and—by abuse of notation—the corresponding distance in T
d. The

ball centered at x P T
d and of radius R is denoted by BRpxq.

For k P N and α P p0, 1q, we denote by Ck`α the set of maps u “ upxq which are of class Ck

and Dku is α´Holder continuous. When u “ upt, xq is time dependent and α P p0, 1q, we say
that u is in C0,α if

}u}C0,α :“ }u}8 ` sup
pt,xq,pt1,x1q

|upt, xq ´ upt1, x1q
|x ´ x1|α ` |t ´ t1|α{2

ă `8.

We say that u is in C1,α if u and Du belong to C0,α. Finally C2,α consists in the maps u such
that D2u and Btu belong to C0,α. It is known that, if u is in C2,α, then u is also in C1,α.

We denote by PpTdq the set of Borel probability measures on the torus T
d :“ R

d{Zd. It is
endowed with the Monge-Kantorovitch distance:

d1pm,m1q “ sup
φ

ˆ

Td

φpyq dpm ´ m1qpyq,

where the supremum is taken over all 1´Lipschitz continuous maps φ : Td Ñ R.

1.2 Assumption

Throughout the paper, we suppose that the following conditions are in force.

• The HamiltonianH : TdˆR
d Ñ R is smooth, H andDpH are globally Lipschitz continuous

in both variables and H is locally uniformly convex with respect to the second variable:

D2

ppHpx, pq ą 0 @px, pq P T
d ˆ R

d. (7)

• F : T
d ˆ r0,`8q Ñ R is smooth, globally Lipschitz continuous in both variables and

increasing with respect to the second variable with BmF ě δ ą 0 for some δ ą 0.

• The terminal cost G : Td Ñ R is a smooth map.

• For any N P N, FN : Td ˆ PpTdq Ñ R is monotone:
ˆ

Td

pFN px,mq ´ FN px,m1qdpm ´ m1qpxq ě 0 @m,m1 P PpTdq.

5



• (difference between FN and F ) For any R ą 0 and α P p0, 1q, there exists k
R,α
N Ñ 0 as

N Ñ `8 such that
}FN p¨,mdxq ´ F p¨,mp¨qq}8 ď k

R,α
N (8)

for any density m such that }m}Cα ď R.

• (uniform regularity of FN for regular densities) For any R ą 0 and α P p0, 1q, there exists
κR,α ą 0 such that, for any N P N,

ˇ

ˇFN px,mdxq ´ FN py,m1dxq
ˇ

ˇ ď κR,α

`

|x ´ y|α ` }m ´ m1}8

˘

(9)

for any density m,m1 with }m}Cα , }m1}Cα ď R.

• (regularity assumptions on FN for general densities) For any N P N, there exists a constant
KN ě 1 such that

ˇ

ˇFN px,mq ´ FN px,m1q
ˇ

ˇ ď KN @x P T
d, @m,m1 P PpTdq. (10)

A few comments are in order. Note that KN Ñ `8 as N Ñ `8 because FN px,mq blows up
if m is a singular measure. So FN becomes closer and closer to F while its regularity at general
probability measures deteriorates. However, assumption (9) states that the FN are uniformly
Holder continuous when evaluated at probability densities which are Holder continuous.

The monotonicity assumptions on F and FN and the convexity of H are known to ensure
the uniqueness of the solution in the MFG systems: they are therefore natural in our study. The
global Lipschitz regularity assumption on H is not completely natural in the context of MFG,
but we do not know how to avoid it: it is required at every key step of the paper. Let us just
note that it simplifies at lot the existence of solutions for the Nash system (see, for instance,
[17]) as well as for the limit MFG system (see [20]): indeed, without the assumption that DpH

is bounded, existence of classical solution to (4) is related on an subtle interplay between the
growth of H and of F .

We explain in Remark 3.2 that the strong monotonicity condition on F can be avoided (F
non decreasing suffices), but the convergence rates in Theorems 3.1 and 3.4 then deteriorates a
little.

1.3 Main example

Given F satisfying the above conditions, a typical example for the regularization FN is the
following:

Proposition 1.1. Assume that FN “ F ǫN with

F ǫpx,mq :“ F p¨, ξǫ ‹ mp¨qq ‹ ξǫpxq (11)

where ǫN Ñ 0 as N Ñ `8 and ξǫpxq “ ǫ´dξpx{ǫq, ξ being a symmetric smooth nonnegative
kernel with compact support. Then, for any N , FN is monotone and satisfies (9).

Moreover the constants k
R,α
N and KN can be estimated by

k
R,α
N ď Cp1 ` RqǫαN , KN ď Cǫ´d´1

N , (12)

where C depends on the regularity of F and of ξ.
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Proof. We prove the result for F ǫ with the transparent notations k
R,α
ǫ and Kǫ. Under the

monotonicity assumption on F , one easily checks that the F ǫ are monotone. Next we prove that
the F ǫ satisfy (9). Let mdx,m1dx P PpTdq with }m}Cα , }m1}Cα ď R. Then

ˇ

ˇF ǫpx,mdxq ´ F ǫpy,m1dxq
ˇ

ˇ

ď sup
y

ˇ

ˇF px ´ y,m ‹ ξǫpx ´ yqq ´ F px1 ´ y,m1 ‹ ξǫpx1 ´ yqq
ˇ

ˇ

ď C sup
y

“

|x ´ x1| ` |m ‹ ξǫpx ´ yq ´ m1 ‹ ξǫpx1 ´ yq|
‰

ď C sup
y

“

|x ´ x1| ` R|x ´ x1|α ` |m ‹ ξǫpx1 ´ yq ´ m1 ‹ ξǫpx1 ´ yq|
‰

ď CpR ` 1q sup
y

“

|x ´ x1|α ` }m ´ m1}8

‰

.

We now estimate the constants kR,α
ǫ defined by

kR,α
ǫ :“ sup

m
}F ǫp¨,mdxq ´ F p¨,mp¨qq}8,

where the supremum is taken over the densities m such that }m}Cα ď R. Recall that, if φ is
Holder continuous with }φ}Cα ď R, then

|ξǫ ‹ φpxq ´ φpxq| ď Rǫα
ˆ

Rd

ξpyq|y|α.

One easily derive from this that
kR,α
ǫ ď Cp1 ` Rqǫα

where C depends on the Lipschitz constant of F and on ξ.
Finally, we have to estimate Kǫ, which is the Lipschitz constant of F ǫ with respect to the

measure m. Following [3], we know that

Kǫ “ sup
mPPpTdq

›

›

›

›

Dy
δF ǫ

δm

`

¨,m, ¨
˘

›

›

›

›

8

(we refer to [3] for the definition of the derivative δF ǫ

δm
). As

δF ǫ

δm
px,m, yq “

ˆ

Rd

ÿ

kPZd

ξǫpz ´ y ´ kqBmF pz, ξǫ ‹ mpzqqξǫpx ´ zqdz

we have
ˇ

ˇ

ˇ

ˇ

Dy
δF ǫ

δm
px,m, yq

ˇ

ˇ

ˇ

ˇ

ď }BmF }8

ˆ

Rd

ÿ

kPZd

|Dξǫpz ´ y ´ kq| |ξǫpx ´ zq|dz.

Assuming that the support of ξ is contained in the ball Bρ, we have therefore

ˇ

ˇ

ˇ

ˇ

Dy
δF ǫ

δm
px,m, yq

ˇ

ˇ

ˇ

ˇ

ď }BmF }8

ÿ

kPZd

}Dξǫp¨ ´ z ´ kq}L8pBρǫpxqq }ξǫpx ´ ¨q}
1

ď Cǫ´d´1.
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2 Regularity estimates

Let pt0,m0q P r0, T s ˆPpTdq and let puN ,mN q and pu,mq be respectively the unique solution to
the MFG systems

$

&

%

´BtuN ´ ∆uN ` Hpx,DuN q “ FN px,mptqq in rt0, T s ˆ T
d,

BtmN ´ ∆mN ´ divpmNDpHpx,DuN qq “ 0 in rt0, T s ˆ T
d,

uN pT, xq “ Gpxq, mN pt0, ¨q “ m0 in T
d

(13)

and
$

&

%

´Btu ´ ∆u ` Hpx,Duq “ F px,mpt, xqq in r0, T s ˆ T
d,

Btm ´ ∆m ´ divpmDpHpx,Duqq “ 0 in r0, T s ˆ T
d,

upT, xq “ Gpxq, mpt0, ¨q “ m0 in T
d

(14)

Following [20, 21], these systems are known to be well-posed. The aim of this section is to
establish estimates for puN ,mN q independent of N and to compare puN ,mN q with pu,mq.
Proposition 2.1. Assume that m0 has a positive density of class C2. Then the puN ,mN q are
bounded in C2,α ˆ C0,α independently of N .

Proof. As H is globally Lipschitz continuous, the existence and uniqueness of a solution to (13)
and to (14) is well-known: see [20].

We now check the regularity of mN . As DpH is bounded and m0 is smooth, standard
argument for parabolic equation in divergence form (see, e.g., Theorem 3.1 of chap. V in [17])
state that the mN are bounded in C0,α for some α P p0, 1q. Note that α and the bound depend
on }DpH}8 and }m0}C2 only.

We now plug this estimate into the parabolic equation for uN . For this we note that the
map pt, xq Ñ FN px,mN ptqq is uniformly Holder continuous. Indeed, in view of assumption (9)
and the uniform regularity of mN ,

ˇ

ˇFN px,mN ptqq ´ FN px1,mN pt1qq
ˇ

ˇ ď κR,α
`

|x ´ y|α ` }mN pt, ¨q ´ mN pt1, ¨q}8

˘

ď C
´

|x ´ y|α ` |t ´ t1|α{2
¯

where R :“ }mN}C0,α . Since G is C2`α and is independent of mN and since H is Lipschitz
continuous, standard estimates on Hamilton-Jacobi equations imply that the uN are bounded
in C2,α.

Proposition 2.2. Assume that m0 has a positive density of class C2. Then

sup
tPr0,T s

}uN pt, ¨q ´ upt, ¨q}H1pTdq ` }mN ´ m}L2 ď Ck
R,α
N ,

suptPrt0,T s }DuN pt, ¨q ´ Dupt, ¨q}8 ď C
´

k
R,α
N

¯
2

d`2

.

where α, R and C depend on on the data and m0, but not on N .

Proof. By standard computation (see [20]), we have
„
ˆ

Td

puN ´ uqpmN ´ mq
T

0

“ ´
ˆ T

0

ˆ

Td

m
`

Hpx,DuN q ´ Hpx,Duq ´ DpHpx,Duq ¨ DpuN ´ uq
˘

´
ˆ T

0

ˆ

Td

mN
`

Hpx,Duq ´ Hpx,DuN q ´ DpHpx,DuN q ¨ Dpu ´ uN q
˘

´
ˆ T

0

ˆ

Td

pFN px,mN ptqq ´ F px,mpt, xqqpmN pt, xq ´ mpt, xqq.

8



Note, on the one hand, that mN p0q “ mp0q “ m0 and uN pT q “ upT q “ G. So the left-hand side
vanishes. One the other hand, m is bounded below by a positive constant (strong maximum
principle) and the uN and u are uniformly Lipschitz continuous. So, by assumption (7), we have

C´1

ˆ T

0

ˆ

Td

|DuN ´ Du|2 ď ´
ˆ T

0

ˆ

Td

pFN px,mN ptqq ´ F px,mpt, xqqpmN pt, xq ´ mpt, xqq

As F “ F px,mq is increasing with BmF ě δ and assumption (8) holds,

ˆ T

0

ˆ

Td

pFN px,mN ptq ´ F px,mpT, xqqqpmN ´ mq

“
ˆ T

0

ˆ

Td

“

pFN px,mN ptqq ´ F px,mN pt, xqqq ` pF px,mN pt, xqq ´ F px,mpt, xqq
‰

pmN ´ mq

ě ´Ck
R,α
N }mN ´ m}1 ` δ

ˆ T

0

ˆ

Td

pmN pt, xq ´ mpt, xqq2.

We obtain therefore

C´1

ˆ T

0

ˆ

Td

|DuN´Du|2`δ

ˆ T

0

ˆ

Td

pmN pt, xq´mpt, xqq2 ď Ck
R,α
N }mN´m}1 ď Ck

R,α
N }mN´m}L2 .

Hence
}DuN ´ Du}L2 ` }mN ´ m}L2 ď Ck

R,α
N .

In particular

}FN p¨,mN ptqq ´ F p¨,mpt, ¨qq}L2

ď }FN p¨,mN ptqq ´ F p¨,mN pt, ¨qq}8 ` }F p¨,mN pt, ¨qq ´ F p¨,mpt, ¨qq}L2

ď Ck
R,α
N ` C}mN ´ m}L2 ď Ck

R,α
N .

Therefore the difference w :“ uN ´ u satisfies

´Btw ´ ∆w “ gpt, xq

with gpt, xq “ FN px,mN ptqq´F px,mpt, xqq´Hpx,DuN pt, xqq`Hpx,Dupt, xqq. By our previous
bounds, we have }g}L2 ď Ck

R,α
N , so that classical estimates on the heat equation imply that

sup
tPrt0 ,T s

}uN pt, ¨q ´ upt, ¨q}H1pTdq ď Ck
R,α
N .

As, by interpolation, for any smooth map φ : Td Ñ R,

}φ}8 ď C}φ}
2

d`2

L2 supt}Dφ}
d

d`2

8 , 1u

and since D2uN is bounded independently of N , we infer that

sup
tPrt0,T s

}DuN pt, ¨q ´ Dupt, ¨q}8 ď C
´

k
R,α
N

¯
2

d`2

.

A straightforward consequence of Proposition 2.2 is the following estimate on optimal tra-
jectories related with the MFG systems (13) and (14).
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Corollary 2.3. Let m0 P PpTdq, puN ,mN q and pu,mq be the solution to the MFG system
(13) and (14) respectively. Let t0 P r0, T q and Z be a random variable with law m0 which is
independent of a Brownian motion pBtq. If pX̃tq and pXtq are the solution to

"

dX̃t “ ´DpHpX̃t,Dupt, X̃tqqdt `
?
2dBt

X̃t0 “ Z

and
"

dXt “ ´DpHpXt,DuN pt,Xtqqdt `
?
2dBt

Xt0 “ Z

respectively, then

E

«

sup
tPrt0 ,T s

ˇ

ˇ

ˇ
X̃t ´ Xt

ˇ

ˇ

ˇ

ff

ď C
´

k
R,α
N

¯
2

d`2

,

where C, R and α are as in Proposition 2.2.

Proof. By Proposition 2.2, we have

sup
tPrt0,T s

}DuN pt, ¨q ´ Dupt, ¨q}8 ď C
´

k
R,α
N

¯ 2

d`2

.

The conclusion then follows by standard estimates on ordinary differential equations.

3 Convergence

In this section, we consider, for an integer N ě 2, a classical solution pvN,iqiPt1,...,Nu of the Nash
system:
$

’

’

’

’

&

’

’

’

’

%

´BtvN,ipt,xq ´
ÿ

j

∆xj
vN,ipt,xq ` H

`

xi,Dxi
vN,ipt,xq

˘

`
ÿ

j‰i

DpH
`

xj,Dxj
vN,jpt,xq

˘

¨ Dxj
vN,ipt,xq “ FN pxi,mN,i

x q in r0, T s ˆ pTdqN ,

vN,ipT,xq “ Gpxiq in pTdqN ,

(15)

where we set, for x “ px1, . . . , xN q P pTdqN , mN,i
x “ 1

N ´ 1

ÿ

j‰i

δxj
.

Our aim is to prove that the vN,i are close to u, where pu,mq is the solution of the MFG
system (14). For this we first compare vN,i and uN , where puN ,mN q is the solution of the
perturbed MFG system (13).

3.1 Estimates between v
N,i and u

N

Let us fix t0 P r0, T q, m0 P PpTdq with a C2 density. We consider the solution puN ,mN q of the
MFG system (13). Following Proposition 2.1, we know that uN is bounded in C2,α (for some
α P p0, 1q): we will use this uniform regularity all along the section.

Let pZiqiPt1,...,Nu be an i.i.d family ofN random variables of lawm0. We setZ “ pZiqiPt1,...,Nu.
Let also ppBi

tqtPr0,T sqiPt1,...,Nu be a family of N independent d-dimensional Brownian Motions
which is also independent of pZiqiPt1,...,Nu. We consider the systems of SDEs with variables
pX t “ pXi,tqiPt1,...,NuqtPr0,T s and pY t “ pYi,tqiPt1,...,NuqtPr0,T s:

"

dXi,t “ ´DpH
`

Xi,t,Dxi
uN pt,Xi,tq

˘

dt `
?
2dBi

t t P rt0, T s
Xi,t0 “ Zi,

(16)

10



and
"

dYi,t “ ´DpH
`

Yi,t,Dxi
vN,ipt,Y tq

˘

dt `
?
2dBi

t t P rt0, T s
Yi,t0 “ Zi.

(17)

Note that the pXi,tq are i.i.d. with law mN ptq. Moreover, because of the symmetry properties of
the pvN,iqiPt1,...,Nu, the processes pXi,t, Yi,tqtPrt0,T sqiPt1,...,Nu are exchangeable. Note finally that
the Xi and the Yi depends on N , but we do not write this dependence explicitly for the sake of
simplicity.

Theorem 3.1. Assume that N is so large that
#

KNN´ 1

d ď C̄´1 if d ě 3

KNN´ 1

2 logpNq ď C̄´1 if d “ 2
(18)

for some constant C̄ depending on m0 but independent of N . Then, for any i P t1, . . . , Nu,

E

«

sup
tPrt0,T s

|Xi,t ´ Yi,t|
ff

ď
#

CK
1

2

NN´ 1

2d if d ě 3

CK
1

2

NN´ 1

4 log
1

2 pNq if d “ 2

and

E
“

|uN pt0, Ziq ´ vN,ipt0,Zq|
‰

ď

$

’

’

&

’

’

%

C

ˆ

K
3

2

NN´ 1

2d ` KNN´ 1

d

˙

if d ě 3

C

ˆ

K
3

2

NN´ 1

4 log
1

2 pNq ` KNN´ 1

2 logpNq
˙

if d “ 2

where the constant C depends on m0 but not on N .

Proof. For simplicity, we work with t0 “ 0. Let us introduce a few notations: for x “
pxjqjPt1,...,Nu P T

Nd and z P T
d, let us denote by vN,ipt, z,xiq the value of vN,ipt, ¨q evalu-

ated at the point x̃ “ px̃jqjPt1,...,N obtained from x by replacing xi by z (i.e, x̃j “ xj if j ‰ i

and x̃i “ z). We also denote by E
Z the conditional expectation with respect to Z.

By Ito’s formula, we have

E
Z

“

uN pT,Xi,T q
‰

“ E
Z

„

uN p0, Ziq `
ˆ T

0

BtuN ` ∆uN ´ DuN ¨ DpHpXi,t,DuN pt,Xi,tqq dt



,

where uN and its derivatives are evaluated at pt,Xi,tq. As uN solves (13), we get therefore

uN p0,Zq “ E
Z

„
ˆ T

0

p´HpXi,t,DuN q
`DpHpXi,t,DuN q ¨ DuN ` FN pXi,t,m

N ptqqq dt ` GpXi,T q
‰

.

We now compute the variation of vN,ipt,Xi,t,Y
i
tq. Since the B.M. driving Xi,t and those

driving the pYj,tqj‰i are independent, we have, using the equation satisfied by vN,i,

dvN,ipt,Xi,t,Y
i
tq “ pBtvN,i `

ÿ

j

∆xj
vN,i ´

ÿ

j‰i

Dxj
vN,i ¨ DpHpyj,t,Dxi

vN,ipt,Y tqqqdt

´Dxi
vN,i ¨ DpHpXi,t,DuN pt,Xi,tqqdt `

?
2

ÿ

j

Dxj
vN,i ¨ dBj

t

“ pHpXi,t,Dxi
vN,iq ´ Dxi

vN,i ¨ DpHpXi,t,DuN pt,Xi,tqqqdt
´FN pXi,t,m

N,i
Y t

qdt `
?
2

ÿ

j

Dxj
vN,i ¨ dBj

t

11



where vN,i and its derivatives are evaluated at pt,Xi,t,Y
i
tq. Hence

vN,ip0,Zq “ E
Z

„
ˆ T

0

p´HpXi,t,Dxi
vN,iq ` Dxi

vN,i ¨ DpHpXi,t,DuN pt,Xi,tqq

`FN pXi,t,m
N,i
Y t

qq dt ` GpXi,T q
ı

.

So

uN p0, Ziq ´ vN,ip0,Zq

“ E
Z

„
ˆ T

0

“

HpXi,t,Dxi
vN,iq ´ HpXi,t,Dxi

uN q ´ DpHpXi,t,DuN q ¨ pDxi
vN,i ´ DuN q

`pFN pXi,t,m
N ptqq ´ FN pXi,t,m

N,i
Y t

qq
‰

dt
ı

(19)
Recall that DuN is bounded by some constant R independently of N . Let us set, for z ě 0,

Ψpzq “
"

z2 if z P r0, 1s
2z ´ 1 if z ě 1

(20)

From Lemma 3.3, there exists C0 ą 0 (which depends on R) such that

Hpx, qq ´ Hpx, pq ´ DpHpx, pq ¨ pq ´ pq ě C´1

0
Ψp|q ´ p|q @p, q with |p| ď R.

Therefore
uN p0, Ziq ´ vN,ip0,Zq

ě E
Z

„
ˆ T

0

C´1

0
Ψ

`

|Dxi
vN,ipt,Xi,t,Y

i
tq ´ Dxi

uN pt,Xi,tq|
˘

`pFN pXi,t,m
N ptqq ´ FN pXi,t,m

N,i
Y t

qq
‰

dt
ı

(21)

Computing in the same way the variation of the terms ´uNpt, Yi,tq ` vN,ipt,Y tq, we find

´uN p0, Ziq ` vN,ip0,Zq

“ E
Z

„
ˆ T

0

“

HpYi,t,DuN q ´ HpYi,t,Dxi
vN,iq ´ DpHpYi,t,Dxi

vN,iq ¨ pDuN ´ Dxi
vN,iq

`pFN pYi,t,m
N,i
Y t

q ´ FN pYi,t,m
N ptqq

‰

dt
ı

where DuN and Dxi
vN,i are computed at pt, Yi,tq and pt,Y tq respectively.

In order to estimate the first term in the right-hand side, we use Lemma 3.3 to infer the
existence of a constant c0 ą 0 (which depends on the uniform bound R on }DuN}8) such that

Hpx, qq ´ Hpx, pq ´ DpHpx, pq ¨ pq ´ pq ě c0 mint|p ´ q|2, c0u @p, q with |q| ď R.

Therefore
Er´uN p0, Ziq ` vN,ip0,Zqs

ě E

„
ˆ T

0

c0mint|DuN pt, Yi,tq ´ Dxi
vN,ipt,Y tq|2, c0u

`pFN pYi,t,m
N,i
Y t

q ´ FN pYi,t,m
N ptqq

‰

dt
ı

.

Combining this inequality with (21), we obtain

0 ě E

„
ˆ T

0

C´1

0
Ψ

`

|Dxi
vN,ipt,Xi,t,Y

i
tq ´ Dxi

uN pt,Xi,tq|
˘



`E

„
ˆ T

0

c0 mint|DuN pt, Yi,tq ´ Dxi
vN,ipt,Y tq|2, c0u



`E

„
ˆ T

0

FN pXi,t,m
N ptqq ´ FN pXi,t,m

N,i
Y t

q ´ FN pYi,t,m
N ptqq ` FN pYi,t,m

N,i
Y t

qqdt


12



Let us set mN
Xt

“ 1

N

ř

j δXj,t
and mN

Y t
“ 1

N

ř

j δYj,t
. We note that d1pmN,i

Y t
,mN

Y t
q ď CN´1.

Moreover, as the pXi,tq are i.i.d. with law mN ptq, a result by Dereich, Scheutzow and Schottstedt
[6] implies that, for d ě 3,

E
“

d1

`

mN
Xt

,mN ptq
˘‰

ď CN´ 1

d .

For d “ 2, the estimate becomes (see Ajtai, Komlos and Tusnády [1]),

E
“

d1

`

mN
Xt

,mN ptq
˘‰

ď CN´ 1

2 logpNq.
As FN is KN´Lipschitz continuous (recall (10)) we obtain (for d ě 3)

CKNN´ 1

d ě E

„
ˆ T

0

C´1

0
Ψ

`

|Dxi
vN,ipt,Xi,t,Y

i
tq ´ Dxi

uN pt,Xi,tq|
˘



E

„
ˆ T

0

c0 mint|DuN pt, Yi,tq ´ Dxi
vN,ipt,Y tq|2, c0u



`E

„
ˆ T

0

FN pXi,t,m
N
Xt

q ´ FN pXi,t,m
N
Y t

q ´ FN pYi,t,m
N
Xt

q ` FN pYi,t,m
N
Y t

qqdt


We now sum these expressions over i. Since
ÿ

i

FN pXi,t,m
N
Xt

q ´ FN pXi,t,m
N
Y t

q ´ FN pYi,t,m
N
Xt

q ` FN pYi,t,m
N
Y t

q

“
ˆ

Td

pFN px,mN
Xt

q ´ FN px,mN
Y t

qqdpmN
Xt

´ mN
Y t

qpxq ě 0,

we obtain:

CKNN1´ 1

d ě
ÿ

i

E

„
ˆ T

0

C´1

0
Ψ

`

|Dxi
vN,ipt,Xi,t,Y

i
tq ´ Dxi

uN pt,Xi,tq|
˘



`
ÿ

i

E

„
ˆ T

0

c0 mint|DuN pt, Yi,tq ´ Dxi
vN,ipt,Y tq|2, c0u



.

By symmetry of the pvN,iq, the random variables

Dxi
vN,ipt,Xi,t,Y

i
tq ´ Dxi

uN pt,Xi,tq
have the same law for any i. In the same way, the random variables

DuN pt, Yi,tq ´ Dxi
vN,ipt,Y tq

have the same law for any i. We have therefore, for any i P t1, . . . , Nu and d ě 3,

CKNN´ 1

d ě E

„
ˆ T

0

C´1

0
Ψ

`

|Dxi
vN,ipt,Xi,t,Y

i
tq ´ Dxi

uN pt,Xi,tq|
˘



`E

„
ˆ T

0

c0 mint|DuN pt, Yi,tq ´ Dxi
vN,ipt,Y tq|2, c0u



.

(22)

In view of the SDEs satisfied by the pXi,tq and by the pYi,tq, we have

|Xi,t ´ Yi,t| ď
ˆ t

0

| ´ DpHpXi,s,DuN ps,Xi,sqq ` DpHpYi,s,Dxi
vN,ips,Y sqq| ds

ď
ˆ t

0

| ´ DpHpXi,s,DuN ps,Xi,sqq ` DpHpYi,s,DuN ps, Yi,sqq| ds

`
ˆ t

0

| ´ DpHpYi,s,DuN ps, Yi,sqq ` DpHpYi,s,Dxi
vN,ips,Y sqq ds

ď C

ˆ t

0

|Xi,s ´ Yi,s| ds ` C

ˆ T

0

mint|DuN ps, Yi,sq ´ Dxi
vN,ips,Y sq|, }DpH}8u ds

13



where we have used the bound and Lipschitz regularity of DpH as well as the uniform Lipschitz
bound of DuN in the space variable x. So, by Gronwall’s inequality and (22), we obtain, for any
i P t1, . . . , Nu and d ě 3,

E

«

sup
tPr0,T s

|Xi,t ´ Yi,t|
ff

ď CK
1

2

NN´ 1

2d . (23)

When d “ 2, the right-hand side has to be replaced by CK
1

2

NN´ 1

4 log
1

2 pNq.
In order to estimate uN p0, Ziq´vN,ip0,Zq, we come back to (19). By the Lipschitz continuity

of H and FN we have:

E
“

|uN p0, Ziq ´ vN,ip0,Zq|
‰

ď E

„
ˆ T

0

C|Dxi
vN,ipt,Xi,t,Y

i
tq ´ Dxi

uN pt,Xi,tq| ` KNd1pmN ptq,mN,i
Y t

qdt


.
(24)

Let us first estimate the first term in the right-hand side of (24) (for d ě 3): we use inequality
(22) and the fact that Ψ is convex and increasing:

T´1
E

„
ˆ T

0

|Dxi
vN,ipt,Xi,t,Y

i
tq ´ Dxi

uN pt,Xi,tq|dt


ď Ψ´1

ˆ

T´1
E

„
ˆ T

0

Ψ
`

|Dxi
vN,ipt,Xi,t,Y

i
tq ´ Dxi

uN pt,Xi,tq|
˘

dt

˙

ď Ψ´1

´

CKNN´ 1

d

¯

So, if we suppose as in assumption (18) that KNN´ 1

d ď C´1, we obtain

E

„
ˆ T

0

|Dxi
vN,ipt,Xi,t,Y

i
tq ´ Dxi

uN pt,Xi,tq|dt


ď CK
1

2

NN´ 1

2d .

To estimate the second term in the right-hand side of (24), we note that

d1pmN ptq,mN,i
Y t

q ď d1pmN ptq,mN,i
Xt

q ` d1pmN,i
Xt

,m
N,i
Y t

q
ď d1pmN ptq,mN,i

Xt
q ` 1

N

ÿ

j‰i

|Xj,t ´ Yj,t|.

So, using, on the one hand, the fact that the pXi,tq are i.i.d. with law mN ptq and the result by
Dereich, Scheutzow and Schottstedt [6] and, on the other hand, inequality (23), we have

E

”

d1pmN ptq,mN,i
Y t

q
ı

ď C

ˆ

N´ 1

d ` K
1

2

NN´ 1

2d

˙

.

This proves that, if d ě 3,

E
“

|uN p0, Ziq ´ vN,ip0,Zq|
‰

ď C

ˆ

K
3

2

NN´ 1

2d ` KNN´ 1

d

˙

.

When d “ 2, the right-hand side becomes C

ˆ

K
3

2

NN´ 1

4 log
1

2 pNq ` KNN´ 1

2 logpNq
˙

.
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Remark 3.2. A variant of Theorem 3.1 can be obtained by replacing uN by u in the definition
of the Xi and in the whole proof, thus avoiding the approximation argument of Propositions 2.1
and 2.2. As the assumption BmF ě δ is only used in Proposition 2.2, this condition can then be
removed. The price to pay is a deterioration of the convergence rate because the left-hand side
of (22) has to involve a term of the form supt }F p¨,mptqq ´ FN p¨,mptqq}8.

In the proof we used the

Lemma 3.3. Assume that D2
ppH ą 0 and let Ψ be defined by (20). Then, for any R ą 0, there

exists C0, c0 ą 0 such that

Hpx, qq ´ Hpx, pq ´ DpHpx, pq ¨ pq ´ pq ě C´1

0
Ψp|q ´ p|q @p, q with |p| ď R.

and

Hpx, qq ´ Hpx, pq ´ DpHpx, pq ¨ pq ´ pq ě c0 mint|p ´ q|2, c0u @p, q with |q| ď R.

Proof. As D2
ppH ą 0 , there exists θ ą 0, depending on R, such that D2

ppH ě θ in T
d ˆ B2Rp0q.

Let x P T
d, p, q P R

d with |p| ď R. If |q ´ p| ď R, then by the lower bound D2
ppH ě θ we have

Hpx, qq ´ Hpx, pq ´ DpHpx, pq ¨ pq ´ pq ě θ

2
|p ´ q|2.

Now assume that |q ´ p| ą R. Let q̂ be the projection of q onto the ball BRppq. Then (omitting
the x dependence which plays no role)

Hpqq ´ Hppq ´ DpHppq ¨ pq ´ pq
“ Hpqq ´ Hpq̂q ´ DpHpq̂q ¨ pq ´ q̂q ` Hpq̂q ´ Hppq ´ DpHppq ¨ pq̂ ´ pq

`pDpHpq̂q ´ DpHppqq ¨ pq ´ q̂q
ě θ

2
|p ´ q̂|2 ` R´1p|q ´ p| ´ RqpDpHpq̂q ´ DpHppqq ¨ pq̂ ´ pq

since q ´ q̂ and q̂ ´ p are collinear and |q̂ ´ p| “ R. Using once more the lower bound on D2
ppH

in BRppq, we get

Hpqq ´ Hppq ´ DpHppq ¨ pq ´ pq ě θ

2
R2 ` p|q ´ p| ´ RqRθ.

This gives the first result. The second one is obtained in the same way: the inequality holds if
|q ´ p| ď R. Otherwise, let p̂ be the projection of p onto BRpqq. Then

Hpqq ´ Hppq ´ DpHppq ¨ pq ´ pq
“ Hpqq ´ Hpp̂q ´ DpHpp̂q ¨ pq ´ p̂q ` Hpp̂q ´ Hppq ´ DpHppq ¨ pp̂ ´ pq

`pDpHpp̂q ´ DpHppqq ¨ pq ´ p̂q
ě θ

2
|p ´ p̂|2 “ θ

2
R2.
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3.2 Putting the estimates together

Here we fix a initial condition pt0,m0q P r0, T s ˆPpTdq, where m0 has a positive density of class
C2. Let vN,i be the solution of the Nash system (15). We reduce vN,i to the variables pt, xiq by
setting:

wN,ipt0, xi,m0q :“
ˆ

Td

. . .

ˆ

Td

vN,ipt0,xq
ź

j‰i

m0pdxjq where x “ px1, . . . , xN q.

Let u be the solution to the MFG system (14). Combining, Proposition 2.2 and Theorem 3.1
we have:

Theorem 3.4. If condition (18) holds, then

›

›wN,ipt0, ¨,m0q ´ upt0, ¨q
›

›

L1pm0q
ď

$

’

’

&

’

’

%

C

ˆ

K
3

2

NN´ 1

2d ` KNN´ 1

d ` k
R,α
N

˙

if d ě 3

C

ˆ

K
3

2

NN´ 1

4 log
1

2 pNq ` KNN´ 1

2 logpNq ` k
R,α
N

˙

if d “ 2
,

(25)
where R and α do not depend on N (but depend on m0). In particular, wN,ipt0, ¨q converges to

upt0, ¨q in L1pTdq as soon as KN “ opN 1

3d q if d ě 3 and KN “ opN 1

6 { log 1

3 pNqq if d “ 2.

Next we discuss the convergence of the optimal solutions and the propagation of chaos. Let
pZiq be an i.i.d family of N random variables of law m0. We set Z “ pZ1, . . . , ZN q. Let also
ppBi

tqtPr0,T sqiPt1,...,Nu be a family of N independent Brownian motions which is also independent
of pZiq. We consider the optimal trajectories pY t “ pY1,t, . . . , YN,tqqtPrt0 ,T s for the N´player
game:

"

dYi,t “ ´DpHpYi,t,Dxi
vN,ipt,Y tqqdt `

?
2dBi

t , t P rt0, T s
Yi,t0 “ Zi

and the optimal solution pX̃ t “ pX̃1,t, . . . , X̃N,tqqtPrt0 ,T s to the limit MFG system:

#

dX̃i,t “ ´DpH
´

X̃i,t,Du
`

t, X̃i,t

˘

¯

dt `
?
2dBi

t , t P rt0, T s
X̃i,t0 “ Zi.

The next result provides an estimate of the distance between the solutions:

Theorem 3.5. Under the assumption of Theorem 3.4, we have

E

„

sup
tPrt0,T s

ˇ

ˇ

ˇ
Yi,t ´ X̃i,t

ˇ

ˇ

ˇ



ď

$

’

’

&

’

’

%

C

„

K
1

2

NN´ 1

2d `
´

k
R,α
N

¯
2

d`2



if d ě 3

C

„

K
1

2

NN´ 1

4 log
1

2 pNq `
´

k
R,α
N

¯
1

2



if d “ 2

(26)

where the constant C ą 0 is independent of N and N . In particular, Yi converges to X̃i if
KN “ opN 1

d q if d ě 3 and KN “ opN 1

2 { logpNqq if d “ 2.

The proof is an immediate application of Corollary 2.3 and Theorem 3.1. We finally apply
the above estimates to our main example:
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Corollary 3.6. Assume that FN “ F ǫN where

F ǫpx,mq “ F p¨, ξǫ ‹ mp¨qq ‹ ξǫpxq

and where ξǫ is as in the example in Proposition 1.1. If one chooses ǫN “ N´β, with β P
p0, p3dpd ` 1qq´1q, then there exists γ P p0, 1q such that

›

›wN,ipt0, ¨,m0q ´ upt0, ¨q
›

›

L1pm0q
ď CN´γ

and

E

„

sup
tPrt0,T s

ˇ

ˇ

ˇ
Yi,t ´ X̃i,t

ˇ

ˇ

ˇ



ď CN´γ.

Proof. From Proposition 1.1, we can choose

k
R,α
N ď Cp1 ` RqǫαN “ CN´αβ, KN ď Cǫ´d´1

N “ CNβpN`1q.

Inserting these inequality into (25) gives (for d ě 3),

›

›wN,ipt0, ¨,m0q ´ upt0, ¨q
›

›

L1pm0q
ď C

´

N3βpd`1q{2´ 1

2d ` Nβpd`1q´ 1

d ` Nαβ
¯

,

where the right-hand side is of order N´γ for some γ P p0, 1q thanks to our choice of β. In the
same way, by (26),

E

„

sup
tPrt0,T s

ˇ

ˇ

ˇ
Yi,t ´ X̃i,t

ˇ

ˇ

ˇ



ď C
”

Nβpd`1q{2´ 1

2d ` N
´αβ 2

d`2

ı

,

which also yield to an algebraic rate of convergence. Computation for the case d “ 2 is similar.
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[12] Huang, M., Caines, P.E., Malhamé, R.P. (2007). Large-Population Cost-Coupled
LQG Problems With Nonuniform Agents: Individual-Mass Behavior and Decentral-
ized ǫ-Nash Equilibria. IEEE Transactions on Automatic Control, 52(9), p. 1560-
1571.
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