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Abstract

In this work we propose new algorithms for space time nonlinear reactive trans-
port. They conjugate the versatility of Optimized Schwarz Waveform Relaxation,
permitting adaptive time stepping, see [1, 12], and the fast convergence of Newton
algorithms, see [6]. We present three approaches which differ in the order of combina-
tion of Newton’s method and the Schwarz waveform relaxation algorithm. In the new
approaches, the arising linear systems are treated by an inexact Krylov-type method.
Numerical tests in 2D study the influence of the parameter of the Robin transmission
condition. They prove that both approaches provide a considerable acceleration of the
convergence speed. We provide also results in 3D for a two species nonlinear coupled
reactive transport system in the context of CO2 geological storage simulation.
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1 Introduction
Scientists commonly agree to the indeed existing impact of CO2 on the greenhouse ef-
fect. The transition from classical, (i.e. fossil-based), to renewable energy sources has
already begun, nevertheless, they still did not exceed 3.5 % on a global level see http:
//www.iea.org/publications/freepublications/publication/KeyWorld2014.pdf
. As a consequence, in the next decades, our energy will mainly be supplied by fossil
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fuels.
Carbon Capture and Storage (CCS) is seen as a promising way to ensure the transi-
tion from fossil based to renewable energy: on the one hand, it allows to keep existing
infrastructures in and use the gained know-how on fossil power plants. On the other
hand, it allows to provide necessary time to develop experience and build infrastruc-
ture in the relatively new field of renewable energies.
The CCS approach separates CO2 from other gases during the energy production
process and transforms it into a supercritical or liquid state. It is then eventually
transported for short distances by pipelines to the injection well, where it is injected
in the subsurface.
During and after injection of CO2 into saline aquifers, several physical and chemical
processes appear. The injected CO2 dissolves partially in water and changes the pH,
the water becomes acid and attacks the rock matrix. This changes the geophysical sys-
tem, e. g. important changes in the porosity and permeability and hence in the way of
how the aquifer moves. In order to ensure the reliability of the technical processes and
the consequent changes in the subsurface system, a preprocessing numerical simulation
has to be undertaken in order to predict it numerically.

Reactive transport models can be used for large field of applications, CO2 geological
storage simulation is only one of them. Those models can be represented by a system of
time-dependent transport equations modelled by partial differential equations which
are coupled by nonlinear functions that represent the source terms resulting from
chemical reactions. In this paper, we concentrate on a two species reactive transport
system which is a subsystem of the multispecies reactive transport system presented
in [16, 10].

The numerical simulation of such reactive transport models in the context of CO2
geological storage is a quite challenging task. This is mainly due to two different
issues. On the one hand, the aim of the simulation is to provide information on a
large area within a long time period in order to ensure the reliability of the storage
process. The regarded scales are tremendously large, i. e. the interesting time scale is
hundreds and even thousands of years and some hundreds of kilometres in space. On
the other hand, the characteristics of the problem itself which contains highly different
time scales and quite different levels of numerical complexity.

For the discretisation of the partial differential equations, finite volumes and close
methods have established themselves for different reasons. On the one hand, they are
easy to code, they work on very general meshes which are often based more on geolog-
ical than on mathematical criteria, and they provide naturally interesting properties
like flux conservation which is highly desirable in this context, see [8]. Nevertheless,
all different classes of methods lead to a large system of algebraic equations which
are nonlinear, due to chemical coupling terms. Efficient approaches to solve those
problems have been developed and tested in different applications. Robust and fast
methods are now available which combine nonlinear and linear solvers and which have
only frugal need of memory capacity (e. g. Jacobian-free Newton-Krylov methods, see
[15]). With the new generation of multicore-multiprocessor computers, new parallel
algorithms, based on domain decomposition in space, appeared, designed for linear
and nonlinear problems (see the books [22, 23, 20] and [18] in this context.

Nonetheless, besides the development in the previously mentioned fields, there are
several issues, which have not been solved. One important field is the heterogeneity in
space and time. As it has been mentioned, only a small part of the simulation domain
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is highly reactive while most of the domain is close to an equilibrium state. The
chemical reactivity reflects in strong nonlinear coupling terms which have an impact
on the nonlinear solver. Usually, there are two ways out of this problem. Either,
one accepts a high number of iterations in the nonlinear solver with the risk that no
convergence can be achieved. Or, one adapts the time step in order to ensure faster
convergence with higher probability. In practice, the second choice is done since this
is the a good compromise between higher costs and convergence probability. Cutting
the time step is quite easy when it is done globally. But, as the reason for cutting the
time step is localised, the time step should be cut only locally. Otherwise, the part of
the simulation domain, which is not dominated by strong nonlinearities is solved with
a much higher precision than needed.

In the context of CCS, it is also important to be able to use different mesh sizes
and different time steps in some parts of the computational domains. The Schwarz
waveform relaxation (SWR) methods are in their own conception able to deal with
different time steps in different subdomains. The domain is split in several subdomains
and the numerical approximation is done over a whole time window, iteratively on the
subdomains which are coupled by transmission conditions. The choice of the trans-
mission conditions is a crucial issue in order to achieve high-performing algorithms.
So called Robin or Fourier transmission conditions, or even second order operators
(Ventcel type) have proven to produce much faster algorithms than the “classical“
Schwarz boundary operator, for which Dirichlet data exchange the informations be-
tween neighbouring subdomains. A procedure for the optimization of the coefficients
has been set, theoretical and numerical results have been produced in the last decade,
for the linear advection-diffusion-reaction equation, see [13, 1] . An analysis of the
optimized transmission conditions to be used for the two species reactive transport
system considered here can be found in [11]. Note that these algorithms are efficient
for overlapping or nonoverlapping subdomains. They can very well handle the cou-
pling between two different models with different space and time steps, see [14] for an
ocean-atmosphere coupling.

The Schwarz waveform relaxation algorithm for nonlinear problems has be analysed
in various frames, first for sublinear problems, see [9]. Optimized Schwarz waveform
relaxation algorihtm, with nonlinear transmission conditions were first introduced in
[14], for the semilinear wave equation. In [5], the semilinear advection-diffusion reac-
tion equation in two dimensions was considered, ∂tu − ν∆u + f(u) = 0, where f is
constrained only to be in C2(R), with f(0) = 0. Nonoverlapping Robin-Schwarz and
Ventcell-Schwarz were proposed and analyzed. The main difficulty in this case is that
each iterate in a subdomain is solution of a nonlinear problem, whose solution has to
be defined properly, and has its own time of existence Tnj , where j is the number of the
subdomain, and n the number of the iterate. The sequence (Tnj )n is decreasing, and it
has been shown that there is a lower bound T∗ for these times. Then the convergence
is achieved inside (0, T∗). From a numerical point of view, a nonlinear system has
to be solved in each subdomain at every step, which has been implemented with P1

finite elements in space, and a linearly implicit Euler scheme in time. It turns out
that the requirement of small time interval given by the existence analysis is not com-
pelling. Furthermore nonlinear transmission condition where the coefficients p and q
depend on the iterates through the formulas of [1] were successfully implemented. For
the nonlinear reactive transport system, with suitable assumptions on the coefficients,
a similar analysis holds, this is the Classical Approach we introduce precisely in §3.
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However, there is still space for acceleration.
Before optimised transmission conditions have been in the spotlight, either different
overlap sizes of the subdomains (see [2] for a detailled study of the influence of the
overlap size) and/or Krylov-type methods like BiCGStab ([24]) or GMRES ([21]) have
been applied in order to accelerate the convergence of Schwarz-type methods indepen-
dently of the chose transmission conditions. Brakkee and Wilders ([3]) have studied
the influence of interface conditions on the convergence of Krylov-Schwarz domain de-
composition methods and showed that an application of a Krylov-type method on the
interface problem has no overhead compared to a standard approach but accelerates
significantly the convergence speed of the algorithm for all considered transmission
condition types. In this work, we are interested in applying this well-established tech-
nique to nonlinear time-dependent problems in order to benefit from its accelerating
properties known in the linear context. Optimized Schwarz Waveform relaxation for
the advection-diffusion equation have been implemented as a preconditioner, for a
Krylov method for the interface problem presented in §4, in [1].
The present paper proposes a new space-time parallel algorithm for the Nonlinear Re-
active Transport. It relies on the interpretation of the Schwarz algorithm as a Jacobi
algorithm for the space-time interface problem. This interface problem can in turn
be solved by Newton-Krylov or Krylov-Newton space-time methods. We present two
of those methods. For sake of simplicity, the presentation is made in the case of two
subdomains.
The paper is organised as follows: In section 2 we set up the problem to solve. In
section 3 we describe the Schwarz waveform relaxation algorithm. In section 4 the re-
duction to the interface variables is presented. The two new approaches are described
in section 5 . Numerical issues as implementation details and the used framework as
well as numerical results in 2D and 3D are given in section 6. Finally in section 7, we
present a test-case developed in the industrial platform Arcane, involving space-time
adaptation of the classical approach.

2 Problem Description
We consider the model problem of a coupled two-species reactive transport system

∂t(φu) + div(−a∇u+ bu) −R(u, v) = fu on Ω× [0, T ],

∂t(φv) +R(u, v) = fv on Ω× [0, T ],
(2.1)

The spatial domain is Ω ⊂ Rd, d = 1, 2, 3 and the simulation period is [0, T ]. φ(x) > 0
is the porosity of the medium. The mobile species u is subject to a linear transport,
defined by the operator Lu := div(−a∇u + bu), including diffusion described by a
positive diffusion coefficient a > 0 and advection described by a Darcy field b ∈ Rd.
The fixed species v is coupled to the mobile species u by a nonlinear coupling term
R(u, v). Both species are subject to a force, defined by the right hand side terms fu,
fv. Initial conditions are given for the mobile and fixed species

u(x, 0) = u0(x), v(x, 0) = v0(x) on Ω, (2.2)

and a boundary condition for the mobile species u

Gu = g(x, t), on ∂Ω× (0, T ], (2.3)
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where the linear boundary operator G can be of different types, e. g. Dirichlet, Neu-
mann.

This problem arises as a subproblem of multispecies reactive transport systems
and appears to be the most challenging subsystem since mobile and fixed species are
coupled by nonlinear reaction terms resulting of kinetic reactions. In [16], S. Kräutle
shows that, after reducing a general multispecies reactive transport systems with ki-
netic and equilibrium reactions, the resulting nonlinearly coupled equations are of the
same type as system (2.1). He also established the well-posedness of the problem.

For the sake of readability of the forthcoming analysis, we will use the following
notation to concentrate the problem defined by equations (2.1, 2.2, 2.3):

∂t(φw) + Lw + F(w) = fw on Ω× [0, T ],

w(x, 0) = w0(x) on Ω,

Jw = g(x, t) on ∂Ω× (0, T ].

(2.4)

By setting w = (u, v), F(·) = (−R(·), R(·)), fw = (fu, fv) w0 = (u0, v0), J = GΠu and
Lw = (Lu, 0), one obtains problem (2.1, 2.2, 2.3) within formulation (2.4). Problem
(2.4) is much more general and can easily be extended to other class of problems.
Keep in mind that L is the linear elliptic operator, and F is the nonlinear operator.

3 The Schwarz Waveform Relaxation Algorithm
We decompose the domain Ω into two non-overlapping domains Ω1 and Ω2 and call
the common boundary Γ = Ω1∩Ω2 the interface. We introduce the following Schwarz
waveform relaxation algorithm to approximate the solution of (2.4): Suppose the
iterates wk−11 and wk−12 to be given, then one step of the algorithm consists in solving
for both subdomains i = 1, 2

∂t(φw
k
i ) + Lwki + F(wki ) = fw on Ωi × [0, T ],

wki (x, 0) = w0(x) on Ωi,
Jwki = g(x, t) on (∂Ωi \ Γ)× (0, T ],

Biwki = Biwk−13−i on Γ× [0, T ].

(3.1)

Note that for the sake of readability we do not introduce additional indices for the
right hand side source term fw of the transport equation and the initial and boundary
conditions w0 and g in Ωi. To finish the definition of the algorithm, we provide an
initial guess w0

i . This initial guess could be the result of a computation on a coarser
grid. The interface transmission operators Bi, i = 1, 2 are linear operators. Different
choices are conceivable, we limit our developments here to linear differential operators
of Robin type, i. e.

Bi = ∂ni
+ p,

with ni the unit outward normal of Ωi on Γ and p ∈ R, p > 0 a constant. The conver-
gence of the algorithm for the linear problem was proved in [10]. As for the nonlinear
problem, the convergence can be proved using the tools in [5]. Other transmission con-
ditions have been considered in those two works, using second order Ventcell operators
for instance, but not in the nonlinear context yet. The parameter p can be defined
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for two subdomains such as to minimize the convergence factor of the linearized prob-
lem.A full theory was set in [11] in the case of semilinear term R(u, v) = k(v−Ψ(u)) see
(6.1), linearized into R(u, v) = k(v − cu) . In this work, we use the same p across the
subdomains, but they also can be chosen different in different subdomains, improving
the convergence of the algorithm, see [7].

4 The Classical Approach: A Fixed Point Algorithm
for the Interface Problem
It is possible to reduce algorithm (3.1) to the so-called interface variables. Define the
operator

Mi : (λ, f) 7→ wi solution of


∂t(φwi) + Lwi + F(wi) = fw on Ωi × [0, T ],

wi(x, 0) = w0(x) on Ωi,

Jwi = g(x, t) on (∂Ωi \ Γ)× (0, T ],

Biwi = λ on Γ× [0, T ],

where f = (fw, w0, g) represents all source terms excepting the ones on the interface
that are represented separately by λ. Define the interface variable at iteration k by

λki := (∂ni
+ p)wki .

Owing to the transmission conditions of algorithm (3.1) on the interface and the
relation

n1 = −n2,
we obtain for i 6= j,

λk+1
i = (∂ni

+ p)wk+1
i = (∂ni

+ p)wkj = −(∂nj
+ p)wkj + 2pwkj = −λkj + 2pMj(λ

k
j , f).

Algorithm (3.1) can therefore be rewritten as

λk1 = −λk−12 + 2pM2(λk−12 , f),

λk2 = −λk−11 + 2pM1(λk−11 , f).
(4.1)

The Schwarz algorithm (3.1) is therefore a fixed point algorithm for the interface
problem (

λ1
λ2

)
=

(
−λ2 + 2pM2(λ2, f)
−λ1 + 2pM1(λ1, f)

)
. (4.2)

In a linear context, suppose the operator F(.) to be linear, the operator Mi is
linear in both arguments and the algorithm (3.1) is the Jacobi method applied to the
linear system(

Id Id−2pM2(·, 0)
Id−2pM1(·, 0) Id

)
·
(
λ1
λ2

)
=

(
2pM2(0, f)
2pM1(0, f)

)
, (4.3)

where Id denotes the identity operator. Krylov subspace acceleration can be done
by solving the linear interface problem by a Krylov type method like GMRES or CG
instead of using a splitting method like Jacobi or Gauß-Seidel (cf. [23]).

Note finally, that the interface variables are time-space variables, i. e. they represent
the transmission values on the entire interface for both subdomains globally in time.

6



5 The New Approach
In the nonlinear context, i. e.F(.) is nonlinear, the algorithm described on the interface
variables by (4.1) is equivalent to the application of a “bloc-wise“ fixed point iteration
method for the nonlinear system (4.3). Note that the operatorsMi are nonlinear. We
use an iterative method (Newton’s method for instance) in order to realise them.

5.1 Schwarz-Newton-Krylov or Nested Iteration Approach
The first approach consists in treating system (4.2) by a Newton-Krylov approach.
We seek the zeros of the nonlinear function

Ψ(λ) :=

(
−λ2 + 2pM2(λ2, f)
−λ1 + 2pM1(λ1, f)

)
−
(
λ1
λ2

)
.

One step n→ n+ 1 of Newton’s method consists in solving the linear system

Ψ′(λn) · (λn+1 − λn) = −Ψ(λn).

The derivative of Ψ is given by

Ψ′(·) =

(
− Id − Id +2p∂λM2(·, f)

− Id +2p∂λM1(·, f) − Id

)
.

Owing to the definition of a linearised operator

Mlin
i : (A, h, f) 7→ wi

solution of


∂tφwi + Lwi +Awi = fw on Ωi × [0, T ],

wi(x, 0) = w0(x) on Ωi,

Jwi = g(x, t) on (∂Ωi \ Γ)× (0, T ],

Biwk+1
i = h on Γ× [0, T ],

(5.1)

one can state the derivative

Ψ′(·) =

(
− Id − Id +2pMlin

2 (F ′(M2(λn2 , f)), ·, 0)
− Id +2pMlin

1 (F ′(M1(λn1 , f)), ·, 0) − Id

)
.

The entire procedure of the approach is then described by the following algorithm:

Input: λ0 (initial guess), ε (precision), nmax (maximum iterations)
Return: λ (solution)
n = 0
repeat

// Set up RHS
if n = 0 then

No previous iterate is available, use the previous time step as initial guess for
the actual time step during evaluation of operatorsMi

else
Use the previous iterate globally in time as initial guess during the evaluation
of operatorsMi

end if
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−Ψ(λn) =

(
λn1 + λn2 − 2pM2(λn2 , f)
λn1 + λn2 − 2pM1(λn1 , f)

)

// Solve the linear system Ψ′δλn = −Ψ(λn) with a Krylov-type method
for every Krylov-iteration k do

realise a Matrix-vector multiplication by

Ψ′δkλn =

(
−δkλn

1
− δkλn

2
+ 2pMlin

2 (F ′(M2(λ2, f)), δkλn
2
, 0)

−δkλn
1
− δkλn

2
+ 2pMlin

1 (F ′(M1(λ1, f)), δkλn
1
, 0)

)
end for

// Update variables
λn+1 = λn + δλn

n = n+ 1
until n = nmax or ‖δλn‖ < ε or ‖b‖ < ε
λ = λn

The approach requires in every iteration of the outer loop (indices in n) to set up a
right hand side-vector that demands to solve two nonlinear problems in the subdo-
mains. Therefore, a nested iterative procedure is necessary (Newton for instance), for
this reason, we call this approach ”Nested Iteration Approach“ (NIA) due to the split
iterative approaches of the nonlinear interface problem and the nonlinear subproblems.
The name ”Schwarz-Newton-Krylov“ can be used in order to explain the order of ap-
plication of the different tools: The global problem is first attacked by a Schwarz-type
domain-decomposition method. The resulting nonlinear interface problem is attacked
by a Newton-type method where, at every iteration, the resulting linear system is
solved by a Krylov-type method. Unfortunately, the name ”Newton-Krylov-Schwarz“
has already been widely used for another type of methods and therefore ”Schwarz-
Newton-Krylov“ may be confusing. On these methods for stationary problems, see
[15].

5.2 Newton-Schwarz-Krylov or Common Iteration Approach
The second approach is not based on the nonlinear interface problem but attacks
the global problem (2.4) up from the beginning. We apply Newton’s method on this
system and solve in every iteration n→ n+ 1 the linear system

(∂tφ+ L+ F ′(wn))(wn+1 − wn) = −(∂tw
n + Lwn + F(wn)− fw) on Ω× [0, T ],

wn+1(x, 0) = w0(x) on Ω,

J (wn+1 − wn) = −Jwn + g(x, t)) on ∂Ω× (0, T ],

which can be reformulated to

(∂tφ+ L+ F ′(wn))wn+1 = F ′(wn)wn −F(wn) + fw on Ω× [0, T ],

wn+1(x, 0) = w0(x) on Ω,

J (wn+1) = g(x, t) on ∂Ω× (0, T ],

owing to the linearity of the operators L and J .

We apply then the domain decomposition method on this linear system as we have
done in section 3 and reduce the problem to the interface variables. Note that no
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further iteration index has to be introduced for the domain decomposition algorithm
since no numerical method has yet been assigned to the resulting linear interface
problem. The resulting linear problem for every iteration is then given by(

Id Id−2pMlin
2 (F ′(wn2 ), ·, 0)

Id−2pMlin
1 (F ′(wn1 ), ·, 0) Id

)
·
(
λn+1
1

λn+1
2

)
=

=

(
2pMlin

2 (F ′(wn2 ), 0, (F ′(wn2 )wn2 −F(wn2 ) + fw, w0, g))
2pMlin

1 (F ′(wn1 ), 0, (F ′(wn1 )wn1 −F(wn1 ) + fw, w0, g))

)
.

Logically, the values for (un1 , u
n
2 ) that are needed to evaluate the RHS and the matrix-

vector multiplication at every iteration have to be provided by a nonlinear solu-
tion with operators Mi(λ

n
i , f). By giving an initial guess also for the first iterate

(w−11 , w−12 ), this procedure can be replaced by calculating the values only by the lin-
earised operators

wni =Mlin
i (F ′(wn−1i ), λni , (F ′(wn−1i )wn−1i −F(wn−1i ) + fw, w0, g)),

because, suppose the solution has converged, the linearised operator gives the same
solution as the nonlinear operator.

The entire procedure of the approach is then described by the following algo-
rithm:
Input: λ0, (w−11 , w−12 ) (initial guess), ε (precision), nmax (maximum iterations)
Return: λ (solution)
n = 0
repeat

// Update subdomain solutions
wn1 =Mlin

1 (F ′(wn−11 ), 0, (F ′(wn−11 )wn−11 −F(wn−11 ) + fw, w0, g)
wn2 =Mlin

2 (F ′(wn−12 ), 0, (F ′(wn−12 )wn−12 −F(wn−12 ) + fw, w0, g)

// Set up RHS

b =

(
2pMlin

2 (F ′(wn2 ), 0, (F ′(wn2 )wn2 −F(wn2 ) + fw, w0, g))
2pMlin

1 (F ′(wn1 ), 0, (F ′(wn1 )wn1 −F(wn1 ) + fw, w0, g))

)

// Solve the linear system Aλn+1 = b with a Krylov-type method
for every Krylov-iteration k do

realise a Matrix-vector multiplication by

Aλn+1,k =

(
λn+1,k
1 + λn+1,k

2 − 2pMlin
2 (F ′(wn2 ), λn+1,k

2 , 0)

λn+1,k
1 + λn+1,k

2 − 2pMlin
1 (F ′(wn1 ), λn+1,k

1 , 0)

)
end for

// Update variables
δλn = λn+1 − λn
n = n+ 1

until n = nmax or ‖δλn‖ < ε
λ = λn

The approach requires in every iteration of the outer loop (indices in n) to set up a
right hand side-vector that demands to solve two linear problems in the subdomains.
Moreover, in the matrix-vector multiplication inside the Krylov-method, only linear
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problems in the subdomains are evaluated. No nested nonlinear iterative method is
needed. For this reason and in contrast to the first approach, we call this approach
”Common Iteration Approach“ (CIA) due to the common iterative approach of the
nonlinear character of the monodomain problem. The name ”Newton-Schwarz-Krylov“
can be used in order to explain the order of application of the different numerical tools:
The global problem is first attacked by a Newton-type method. At every iteration,
the resulting linear problem is decomposed by a Schwarz-type algorithm where the
problem is reduced to the interface variables. The resulting linear system is then
solved by a Krylov-type method. As in the first case, we recommend not to use this
name as the name ”Newton-Krylov-Schwarz“ has already been used for another type
of methods.

6 Numerical Approach
Krylov-subspace accelerators for the linear case have become very popular because
they are easy to implement and have no significant overhead compared to a standard
approach for the Schwarz domain decomposition algorithm. In the nonlinear case,
they are as easy to implement as in the linear case: Once the nonlinear solver for a
problem in a subdomain is available, the effort for adding the linearised solver and the
implementation of the matrix-vector multiplication and the right hand side vector is
negligible. Moreover, in many environments, sophisticated and ready-to-use Krylov-
type methods like GMRES or BiCGStab are available.

6.1 Implementation
In our prototype code for the two species nonlinear coupled reactive transport system
(2.4), the equations are discretised by an implicit Euler scheme in time and a hybrid
finite volume scheme (cf. [8]) in space including an upwind advection discretisation and
a two-point diffusion discretisation on simple rectangular meshes. Nonlinear problems
in the subdomain solver are treated with a global implicit approach by means of New-
ton’s method. The arising linear system is solved by an exact LU-decomposition and
convergence of Newton’s method is controlled by the residual and the step size with
a precision of ε = 10−8.

The Classical Approach has been implemented as presented in (4.1). We have
implemented both methods, the Nested Iteration Approach and the Common Iteration
Approach. Both methods make use of a Krylov-type method, GMRES for instance. In
order both approaches to be competitive, we apply a precision strategy in the mood of
inexact Newton methods, i. e. in the first iterations of the Newton method, we will not
oversolve the linear system and can limit therefore the number of costly subdomain
evaluations within a matrix-vector multiplication. The more we advance in the outer
Newton iteration, the more precise the linear system has to be solved. The appearing
linear system at iteration n is solved up to a precision of

max

{
min

{
1

1 + n
, ‖Ψ(λn)‖

}
, 10−8

}
,

for the Nested Iteration Approach and

max
{

10−1 ·min
{

10−n, ‖δλn‖
}
, 10−8

}
,
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for the Common Iteration Approach.

Note that the Common Iteration Approach needs to store the discretised values
of a solution in both subdomains. This can be viewed as a huge drawback in high
performance codes. The Nested Iteration Approach a priori does not suffer from this
drawback. Anyway, it may be highly desirable to store the solution and use it as
initial guess for the evaluation of the right hand side. In practice, using the solution of
the previous iterate as initial guess reduces significantly the number of nested Newton
iterations in the nonlinear subdomain solver.

Finally, concerning the stopping criterion of the outer Newton iteration, the Nested
Iteration Approach can be classically controlled by both the residual and the step size
norm. The Common Iteration Approach can though no longer be controlled by the
residual norm since we have eliminated that term up from the beginning. Recalculating
the residual term afterwards is possible but the cost for this may not be negligible.

6.2 The classical approach
We study now the numerical behaviour of the Schwarz waveform relaxation algorithm
3.1. In the first part, we concentrate on issues concerning the influence of the nonlin-
earity on the performance of the classical approach. In the second part, we compare
the classical approach with the two new approaches presented in section 6.3. For the
numerical results in this section we fix the time period t ∈ [0, 1] and the global domain
Ω = [0, 1]× [0, 1] ∈ R2. Discrete steps are ∆t = ∆x = ∆y = 2 ·10−2. The physical pa-
rameters are porosity φ = 1, diffusion a = 1, advection is (bx, by) = (1 ·10−2, 5 ·10−2).
Defining the function

f(x, y, t) = (sin(πx) cos(πy) cos(πt)+cos(πx) sin(πy) cos(πt)+cos(πx) cos(πy) sin(πt)+1)/2,

we can set the initial values to u0 = f(x, y, 0), v0 = f(x, y, 0)/c for (x, y) ∈ Ω and
we impose Dirichlet boundary conditions with values set to ub(x, y, t) = f(x, y, t) for
(x, y) ∈ ∂Ω. The function f provides a heterogeneity in space and time so that we can
ensure that the exact solution that we reconstruct numerically does not degenerate to
a stationary problem.
We decompose Ω into non-overlapping subdomains Ω1 = [0, 0.5] × [0, 1] and Ω2 =
[0.5, 1] × [0, 1]. We impose a random initial guess on the interface Γ1 in order to
ensure the presence of a wide range of possible frequencies in the error.

Therefore we study, as in the linear case, the convergence behaviour of the Schwarz
waveform relaxation algorithm with Robin transmission conditions using different pa-
rameters p for the transmission condition. We proceed ten iterations of the algorithm
and focus on the resulting error on the interface values which indicate us the numerical
performance of the transmission condition with respect to the parameter p. We study
different nonlinear coupling function. First, we consider an adsorption process that is
modelled by a BET isotherm law:

Ψ(u) =
QsKLu

(1 +KLu−KSu)(1−KSu)
. (6.1)

BET theory is a rule for the physical adsorption of gas molecules on a solid surface
and serves as the basis for an important analysis technique for the measurement of
the specific surface area of a material (cf. Brunauer et al. [4]). This law is insofar
mathematically interesting as it is neither convex nor concave (cf. figure 6.1).
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Figure 6.1: BET Isotherm with QS = 2, KS = 0.7, KL = 100

The coupling term is given by R(u, v) = 100(v − Ψ(u)) with QS = 2, KS = 0.7,
KL = 100.
We study another nonlinear function that is given by an exponential equilibrium model

R(u, v) = exp(10(2v − 3u))− 1,

which models the reaction rate of a kinetic reaction of the form 2v ⇐⇒ 3u where the
forward reaction 2v −→ 3u is much faster than the backward reaction 2v ←− 3u. In
this case, we have no asymptotic analysis at hand, and we use the optimised parameter
of the single equation of advection-diffusion and the therefore obtained transmission
condition behaves well. In figure 6.2 we plot the error at iteration 10 varying the
parameter p of the Robin transmission condition.The square locates the optimised
parameter of the linear system established in [11].
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Figure 6.2: Variation of the error of the 10th iterates versus the param-
eter p of the Robin transmission condition. Nonlinear function. Left,
BET isotherm law, Right, exponential equilibrium model.

In both cases, we observe that the theoretically optimised parameter is close to
the best performance for the nonlinear coupled advection-diffusion-reaction system.
Tests with other nonlinear functions confirmed this behaviour. The best results are
obtained when we have the exact parameter from the linear analysis, that is when the
nonlinearity is not too strong.
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In the linear case, domain decomposition methods are often used with many sub-
domains in order to distribute data and computational efforts to several processors. In
the nonlinear context, domain decomposition methods can be used in order to localise
time step constraints resulting from heterogeneity. In the context of CO2 geological
storage modelling, highly reactive moving fronts appear in the geochemical system.
Those regions of strong chemical disequilibrium induce highly localised constraints on
the time step using a global implicit approach. If the time step is chosen large, the
number of Newton iterations for one time step increases drastically and if the time
step is chosen too large, the standard Newton approach fails to converge.
The Schwarz waveform relaxation approach provides the possibility to use different
discretisations and numerical approaches in the subdomains. We exploit the possi-
bility to choose different time grids in the subdomains. By this way, we can select
a “reactive domain” with small time steps in order to keep the number of Newton
iterations for the time steps small. In a “non reactive domain” we can chose much
larger time steps and the number of Newton iterations stays acceptable. By this way
we can limit the time step restrictions to the area where they appear instead of letting
them influence the global time step of the whole simulation domain.

We exemplify this feature with the following test case: the time period is [0, 1] and
the global domain is Ω = [0, 1]×[0, 1] ∈ R2. Discrete steps are ∆x = ∆y = 2·10−2. The
diffusion parameter is ν = 5·10−2, advection is (bx, by) = (1.5, 1.0). The reaction term
is realised by use of the BET isotherm. The initial values are set to (u0, v0) = (0, 0)
which is an equilibrium state. We model the entry of a reactive front by imposing a
Dirichlet boundary condition on x = 0 with values g(x = 0, y, t) = sin(yπ). All other
boundaries are set to be of no diffusion type, i. e. we impose no concentration gradient
on the boundary.
By the incoming reactive front, the chemical system is subject to a strong disequilib-
rium perturbation. In order the number of Newton iterations not to be too excessive
(less than ten), one has to chose a time step of 10−1, i. e. ten time steps. The global
monodomain approach has a linear system of 5200 discrete unknowns to solve in every
time step and every Newton iteration. The first time step needs 9 Newton iterations
to reach convergence, the following time steps (2nd to 10th) need each 7 Newton
iterations to reach convergence where we suppose the solution of the previous time
step as initial guess of the Newton iteration. We measure the effort of the global
approach by the effort of the inversion for one matrix multiplied by the number of
matrix inversions since this is the most costly operation. The global effort is hence
(1 · 9 + 9 · 7) · (5200)3 = 1.01 · 1013.
In a domain decomposition approach, we can chose the reactive subdomain to be
Ω1 = [0, 0.4 + ∆x] × [0, 1] (2242 discrete unknowns) and the non reactive subdo-
main to be Ω2 = [0.4, 1] × [0, 1] (3160 unknowns discrete). Both subdomains have
an overlap of one layer of cells. For the reactive subdomain we chose the same time
step as in the global monodomain approach, i. e. ten time steps, while for the non
reactive subdomain, we can use only one time step without the number of Newton
iterations to become important. We impose the initial state as initial guess for the
interface values in the Schwarz waveform relaxation iteration and impose the solution
of the previous Schwarz waveform relaxation iteration in the Newton iterations. In
the first iterate we proceed as in the global approach, i. e. we impose the solution of
the previous time step as initial guess for the Newton iterates. In total, we need three
Schwarz waveform relaxation iterations in order to reach convergence. In the first
iteration, we need for the reactive subdomain 9 iterations in the first time step and
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7 iterations for each following time step. In the non reactive subdomain we need 4
iterations. In the second Schwarz iteration, we need 2 iterations for the first 7 time
steps and 3 iterations for the last 3 time steps in the reactive subdomain and 3 iter-
ations in the non reactive subdomain. In the third iteration we need 2 iterations for
all time steps in the reactive and non reactive subdomains. The total effort is hence
(1 · 9 + 9 · 7 + 17 · 2 + 3 · 3) · (22423) + (4 + 3 + 2) · (3160)3 = 1.58 · 1012. The effort
for the domain decomposition solution is hence by a factor of 10 smaller than the
effort for a global monodomain solution. Note that this estimation is quite optimistic,
since using more performing linear solvers for the linear problems during the Newton
iterations may reduce the gain of a domain decomposition approach compared to the
global approach.

In figures 6.3 and 6.4 we plot the concentration of u and v at t = 0.5 and t = 1.0
at the third iteration of the domain decomposition algorithm.
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Figure 6.3: Concentration u and v at t = 0.5 using the BET isotherm
with an incoming reactive front. Solution of the third domain decompo-
sition iteration.
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Figure 6.4: Concentration u and v at t = 1.0 using the BET isotherm
with an incoming reactive front. Solution of the third domain decompo-
sition iteration.

6.3 The new approach
We use a similar testing approach as before and set k = 100, QS = 2, KS = 0.7 and
KL = 100. Initial values are set to (u0, v0) = ( 1

2 ,
1
3 ). By defining the function

g(x, y, t) = (sin(πx) cos(πy) cos(2πt)+cos(πx) sin(πy) cos(2πt)+cos(πx) cos(πy) sin(2πt)+1)/2,

we impose Dirichlet boundary conditions with values set to ub(x, y, t) = g(x, y, t) for
(x, y) ∈ ∂Ω.

In a first time, we are interested in the sensibility of the three approaches with
respect to the parameter p of the Robin transmission condition. We discretise the
numerical domain with ∆x = ∆y = 1/40 and ∆t = 1/10 and impose a random initial
guess on the interface for the first iteration. As both subdomains have the same size,
the number of overall matrix inversions in the linear and nonlinear subdomain solvers
for three approaches is a meaningful criterion to measure the numerical performance.
We proceed the three approaches for different parameters p of the Robin transmission
condition and plot in figure 6.5 the number of matrix inversions. One observers first
that the performance of the classical approach, i. e. a fixed point method on the nonlin-
ear interface problem depends highly on the parameter p that one chooses for the Robin
transmission condition. The best parameter is p∗ ≈ 40. The two new approaches, NIA
and CIA also show the best performance at p∗ but are much less sensitive to the choice
of the parameter. Especially if, in realistic test cases where one has no idea of the best
parameter, one underestimates the unknown parameter p∗, the new approaches do not
suffer from the exponential loss of performance. Second, one observes that the CIA
is always more performing than the classical and the NIA approach. The NIA is, in
a wide range of parameters, more performing than the classical approach but the last
one stays more performing in an important range of parameters around the optimal
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Figure 6.5: Number of matrix inversions versus parameter p of the Robin
transmission conditions for the classical approach (fixed point on the
nonlinear interface problem), Nested Iteration Approach and Common
Iteration Approach

parameter p∗. It is well-known for linear problems that the influence of the Robin
parameter is less when the Jacobi algorithm corresponding to the classical Schwarz is
replaced by a Krylov algorithm. The nonlinear algorithm exhibits the same bahaviour.

It turned out that the two new methods, NIA and CIA, have a cost overhead
that becomes non negligible if space discretisations are chosen too coarse. For this
reason, we study the asymptotic behaviour of the three approaches using always the
optimal parameter of the classical approach. We refine the problem in space using
always ∆x = ∆y. Note that we keep the time step constant at ∆t = 0.1. Refining the
discretisation also in time would lead to a problem that is quasi linear at every time
step since we use a global implicit approach. The negligible nonlinearity would result
in a minimal number of nested Newton iterations and the overhead cost would become
more important. We measure again the overall number of matrix inversions in the three
approaches. One observes that the overhead cost of the two new approaches compared
to the classical approach becomes negligible up from a discretisation with about 150
grid points per dimension for the NIA and about 20 grid points per dimension for the
SIA. For problems finer than the respective thresholds, the new approaches are always
more performing compared to the classical approach with the best parameter for the
transmission condition. Moreover, the finer the discretisation, the larger the problem,
the more important the accelerating property of the two new approaches. Note that
both new approaches have the same slope of O(N1/7) in the asymptotic behaviour
which is considerably less than the slope of the classical approach which behaves like
O(N1/2.75). The vertical translation of the curves for the two new approaches indicates
their overhead cost. Again here, a theoretical anlysis will be interesting.

In order to exemplify the accelerating property of the two new approaches, we
perform a simulation with Nx = Ny = 200 points in each dimension keeping the num-
ber of time steps constant and compare the convergence behaviour of the stopping
criteria of the three methods. In figure 6.7 we plot the convergence criterion versus
the number of matrix inversions. One observes the quadratic convergence of the new
approaches since they are Newton-based, the quadratic convergence is observed late
in the history since the initial guess (randomly chosen) is far from the exact solution.
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Figure 6.7: Convergence history with 200 points per space dimension for
the Classical approach, Nested Iteration Approach and Common Itera-
tion Approach

The classical approach shows only a superlinear convergence, also in this case, the
superlinear character appears late in the convergence history.

Finally, we want to apply the two new approaches to a benchmark test case in
the context of CO2 geological storage. The 3D test case is based on the benchmark
for the SHPCO2 project (Simulation haute performance pour le stockage géologique
du CO2) which is described in [17]. The global domain is set to Ω = [0, 4750] ×
[0, 3000] × [−1100, −1000] and is decomposed into the two nonoverlapping subdo-
mains Ω1 = [1000, 2500] × [0, 3000] × [−1050, −1000] and Ω2 = Ω \ Ω1. We call Ω1

the reactive subdomain since in this subdomain an injection of the mobile species u
is modelled by a source term. The initial state is zero for the mobile and immobile
species. We consider again the BET isotherm law as nonlinear coupling term. The
injected mobile species is partially absorbed by the reaction and partially transported
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by mainly advection.
Simulation time is [0, 100]. As the waveform relaxation approach allows to use differ-
ent discretisations in the subdomains, we chose to use ten time steps in the reactive
subdomain Ω1 and only five time steps in the subdomain Ω2. This choice is insofar
justified since the rapid injection in the reactive subdomain restricts the time step size
by imposing a maximum number of Newton iterates of ten. As in the subdomain Ω2,
the mobile species appears only by transport processes on a slower time scale than the
injection, one can chose a larger time step in order to respect the maximum number
of Newton iterations.
Concerning the parameter of the Robin transmission condition, we use the same as
before. The initial guess on the interface is zero for both subdomain interfaces.
In figure 6.8 we plot the convergence histogram, i. e. the stopping criterion in a loga-
rithmic scale versus the CPU time (normalised to the CPU time of the classical ap-
proach). Note that both subdomains have a different size of unknowns and therefore
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Figure 6.8: Convergence history with 200 points per space dimension
for the Classical Approach, Nested Iteration Approach and Common
Iteration Approach

the number of matrix inversions, as used in the previous examples, is no longer a valid
tool to measure the effort. One observes clearly that the classical approach converges
only linearly while the two new approaches show a quadratic convergence. Moreover,
the two new approaches need only about 20 percent of the CPU time of the classical
approach. Note that the stopping criterion of the Common Iteration Approach seems
to crash down in the last iteration as one observes in figure 6.8. This behaviour is due
to the fact that the GMRES solver provided in the last iteration the same solution
as in the last but one iteration due to the precision strategy. As a consequence, the
norm of the variation of the iterates is zero and this indicates that the algorithm has
converged. To indicate this behaviour in the plot, we set the convergence criterion of
the last iterate to the overall precision 10−8.

In the first test case using the BET isotherm we observed that the Common It-
eration Approach is always more performing than the Nested Iteration Approach.
However, in the SHPCO2 test case the opposite holds. Note that there is no a priori
more performing method, all depends on the problem to treat. We performed several
tests with different problems and we can state several points:
First, both new approaches, the Nested Iteration Approach and the Common Iteration
Approach show always much less sensibility to the parameter of the Robin transmis-
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sion condition than the classical approach.
Second, both new approaches show always a more favourable slope in the case of
asymptotic mesh refinement in space on the one hand and on the other hand they
show always the same slope up to a vertical translation which indicates the different
overhead cost.
Third, the question which of both new approaches is more performing on a problem
is a challenge between the complexity to solve the problem with a domain decomposi-
tion approach and the difficulty to solve it with a nonlinear approach. Problems which
are easy to solve with a domain decomposition approach since they are for example
quite advective in normal interface direction and less diffusive have concentrated their
main challenge in the nonlinearity. This is the case of the SHPCO2 test where the
main difficulty lies in the massive injection of mobile species in the reactive domain
which induces an elevated number of Newton iterations. The Nested Iteration ap-
proach showed to be more performing on this cases where the nonlinearity is the main
challenge. On the other hand, for test cases which are difficult to solve with a domain
decomposition approach, for example highly diffusive cases like the synthetic case in
the previous part, the Common Iteration Approach seems to be more performing.
Altogether, we can summarise that both new approaches are more performing than
the classical approach whenever the overhead cost due to coarse discretisations be-
come negligible. Moreover, which one of the new approaches is more performing lies
on the challenging character of the problem and can hardly be predicted in advance.
Nevertheless, passing from one approach to another is very simple since they only
inverse two loops.

7 First numerical tests in industrial environment Ar-
cane
The work presented in this article is part of an international project called SHPCO2
(high performance simulation of CO2 geological storage), initiated by the French Na-
tional Research Agency (ANR). One part of the project is to study different domain
decomposition approaches for multi-species reactive transport problems in the con-
text of high performance computing for CO2 geological storage simulation. Arcane
is the underlying industrial simulation platform for HPC applications which is under
co-development of the two national French institutes IFP Energies nouvelles and CEA
Energies alternatives, see [10] for specificities.

A first approach of Schwarz Waveform Relaxation methods has been implemented
into the Arcane development platform to show the ability to treat these kind of com-
plex problems in a HPC environment. In the context of a domain specific language
for parallel finite volumes (cf. [19]), the classical fixed-point iteration type approach
as described in equation (4.2) has been implemented. Spatial grids on the interface
are conformal but time-stepping can be different in the sub-domains. This allows
for individual approaches of combined time-stepping and nonlinearity control in the
different sub-domains. Currently, two sub-domains are treated, one which contains
most of the non-linear problems due to chemical reactions. The other subdomain is
essentially characterised by the absence of strong nonlinearities.

We have tested the approach with the SHPCO2 test case. This synthetic test
case contains all major physical and chemical effects which are characteristic for CO2
geological storage modelling. The full definition of the test case can be found in
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[17, 10]. We summarise here the main points of the test case. The two-dimensional
geometry contains a pressure-driven meander-shaped flow through areas with high
and low porosity (see figure 7.1). At the injector wells a considerably higher pressure
is imposed than on the productor well. For the first approach, we have implemented
only a two-phase flow including solid and liquid phase. As a consequence, we have
modelled the initially gaseous CO2 as a solid phase which is dissolved afterwards.

The chemical system is presented as usually by distinction between primary species

c =



c1
c2
c3
c4
c5
c6
c7
c8


=



H2O
Tracer
CO2(aq)
Cl−

H+

Na+

Ca++

SiO2(aq)


, q =

(
q1
q2

)
=

(
Calcite
Quartz

)
,

and secondary species

x =

(
x1
x2

)
=

(
HCO−3
OH−

)
, z =

(
z1
)

=
(
CO2(solid)

)
.

The first group being an independent set of species while the second group forms
species whose concentration can be determined by solving the associated equilibrium
problem. The equilibrium reactions are represented in a Morel tableau indicating the
stoechiometric indices of the associated equilibrium reactions:

c1 c2 c3 c4 c5 c6 c7 c8 q1 q2
x1 1 1 −1
x2 1 −1
z1 1

.

Besides the equilibrium reactions, we include four reactions whose reaction speeds are
modelled by different kinetic laws:

Dissolution of Calcite: Calcite + H+ −→Ca++ + HCO−3
Precipitation of Calcite: Calcite + H+ ←−Ca++ + HCO−3
Dissolution of Quartz: Quartz −→ SiO2(aq)
Precipitation of Quartz: Quartz ←− SiO2(aq)

We simulate the test case on a 2D mesh with 76 cells in x-direction and 48 cells
in y-direction. The initial subdomains are chosen such as the reactive domain covers
the initial CO2-plume and is slightly blown-up. The non-reactive domain contains
the part where the system is in chemical equilibrium. Both domains do overlap in
the initial state (see figure 7.1). For the interface transmission conditions, we impose
Robin conditions with a localised one-dimensional approximation of 0th order of the
optimal parameter. The Schwarz waveform relaxation algorithm is applied to a time-
window and iteration is proceeded between the sub-domains until the change of the
concentration at the end of a time window is smaller than 10−4. We perform a
simulation of the first 95.13 years with three equally sized time windows and ten
time steps per time window (i. e.∆t = 3.17 years). In order to show the localisation
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of numerical difficulties related to kinetic reactions appearing mainly in the reactive
subdomain, we chose no adaptive time strategy and concentrate on the number of
nonlinear steps needed to solve the subdomains. In figure 7.2, we plot the pH-value at
the end of the simulation. The initially solid CO2 has partially dissolved into the liquid
phase where it becomes acid resulting in low pH-values. The associated regions are
chemically highly reactive, both from a kinetic and an equilibrium point of view. As
a consequence, non-linearities originating from chemistry are concentrated in regions
with low pH-value. Note that we have chosen the initial reactive sub-domain such
that at the end of the simulation, the reactive domain covers the whole region with
low pH-value.

The Schwarz waveform relaxation algorithm needs 2 iterations per time window to
converge. The overall number of global nonlinear steps are 421 in the reactive and 306
in the non reactive subdomains. The linear systems the during the nonlinear iteration
are more difficult to solve in the reactive domain than in the non reactive domain. The
iterative solver of GMRES type preconditioned with Hypre’s Euclid preconditioner
needed overall 10234 iterations in the reactive and and only 3806 iterations in the non
reactive subdomain. This means, that in the reactive subdomain, the linear solver
needed 24.3 iterations in average and in the non reactive domain it needed only 12.4
iterations.
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Figure 7.1: Choice of subdomains in the SHPCO2 2D test case. Orange:
position of the initially present CO2. Green: Areas with low porosity.
Shaded grey: reactive subdomain. Violet solid line: Interface of the reac-
tive subdomain. Hatched annulus: overlapping region between reactive
and non reactive subdomain.
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Figure 7.2: pH of the SHPCO2 test case at t = 95.13 years (end of the
first time-window for the domain decomposition simulation). The low
pH-value can be seen as an indicator of highly chemically reactive zones.

8 Conclusion
Basing on a nonlinear coupled reactive transport system we have developed two new
approaches for solving the interface problem in the nonlinear case. The Nested Itera-
tion Approach applies a Newton-Krylov method on the nonlinear interface problem of
the Schwarz algorithm. The Common Iteration Approach applies a Newton method
on the global problem and solves than in every iteration the appearing linear interface
problem of the Schwarz algorithm with a Krylov method. We have implemented and
tested both methods. Comparative results with the classical approach that consists in
the application of a fixed point method on the nonlinear interface problem have been
provided.
The numerical tests showed that, besides an overhead cost for coarse space discreti-
sations, both methods have an accelerating property and show much less sensibility
with respect to the choice of the parameter of the Robin condition. The quadratic
convergence behaviour of the new approaches outperform the superlinear convergence
behaviour of the classical approach. An implementation of the Schwarz waveform
relaxation algorithm in a complex industrial case has shown the usefulness of the
method. An extension to the new approaches, together with a study of how to reduce
the overhead cost will certainly be fruitful.
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