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J.-C. Monnier², J. Delva² 
Onera – The French Aerospace Lab  

F-59045, Lille, France 

and 
 

J.-M. Foucaut3 
LML  

F-59655, Villeneuve d’Ascq, France 

The reconstruction of the flow behind a backward facing step at a Reynolds number of 
60,000 using Linear Stochastic Estimation (LSE) and modified is investigated. In particular, 
the turbulent spatial integral length scales reconstructed for several sensor configurations 
are studied. The reconstruction of the Proper Orthogonal Decomposition (POD) modes is 
also performed in order to show the limitations of the LSE reconstruction for complex flows, 
for which taking into account only a few POD modes is not enough to represent the flow 
dynamics. The importance of the sensors location on the reconstruction is also emphasized 
and the opportunity to use a sensor location optimization algorithm investigated. 

Nomenclature 
h = step height 
dx = sensors grid spacing in the longitudinal direction 
dy = sensors grid spacing in the vertical direction 
Λ = turbulence spatial integral length scale 
λ = POD mode characteristic length 
R² = determination coefficient 
u = streamwise velocity 
v = vertical velocity 
e = exp(1) 

I. Introduction 
he problem of accurately estimating a flow state from a few sparse measurements is currently a major challenge 
in various domains (aerodynamics, chemical industry...). Such estimation could clearly be used in active flow 

control in a closed-loop for example, or used to provide, to an operator, important information that could not be 
directly measured in real time. Thus a lot of efforts are directed towards the development of methods to accurately 
estimate a flow state from few sparse measurements. 

One method, which received much attention in fluid dynamics, is the Stochastic Estimation (SE). This technique 
was first introduced, in the form of the Linear Stochastic Estimation (LSE), by Adrian [1] in 1977 and was used to 
approximate conditional averages for turbulent flow and thus identify coherent structures. Since then, SE has been 
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used to describe several turbulent flows such as shear layer, turbulent boundary layer, cavity flows, jets... And 
several extensions have been developed: Quadratic Stochastic Estimation (QSE), modified SE (SE combined with 
Proper Orthogonal Decomposition POD), Extended POD (EPOD), Spectral SE and Multi-Time-Delay SE (MTD-
SE). In the literature on SE, the possibility of using SE as a tool to estimate a flow state has been truly investigated 
only recently. Taylor and Glauser [2] are the first to really identify such an application of SE. Now, most of recent 
works (Durguesh et al. [3], Tu et al. [4], Clark et al. [5], Hosseini et al. [6]) focus on the use of MTD-LSE, which 
exhibited a better accuracy than single time LSE. Recently, Lasagna et al. [7] also investigated the development of a 
non linear extension of MTD-SE. 

However most of the literature on SE is mainly limited to applications on flows at low Reynolds number for 
which a few POD modes are able to capture a very large part of the turbulent kinetic energy (TKE). For instance, Tu 
et al. [4] applied SE to the near wake behind a flat plate model at a Reynolds number of 3,600 based on the plate 
thickness. In their case, almost 80% of the TKE is captured by the first two POD modes. Hudy et al. [8] used 
modified LSE to investigate the evolution of coherent structures in the flow downstream a backward facing step at a 
Reynolds number of 8,081. Nguyen et al. [9] tested several methods to estimate the flow downstream a backward 
facing step at a Reynolds number of 2,800 based on the step height. As concluded by Clark et al. [5], SE is expected 
to perform well in such conditions, but for more complicated flows, at high Reynolds number with a larger range of 
turbulent scales, the accuracy of the SE has yet to be better studied. 

The reconstruction of the backward facing step velocity field, for a Reynolds number of 60,000 based on the step 
height, from wall pressure measurements was studied by Arnault et al. in ref. [10]. The velocity field estimations 
obtained were of low accuracy and little improvements were found in using QSE and MTD-SE. The objective of the 
present work is then to better characterize SE limitations. In particular, we focus ourselves on the study of the 
conservation of the turbulence spatial integral length scales by LSE. The impact of the type of conditional events, as 
well as their positioning, is also investigated. 

This paper is organized as follows. Section II briefly summarizes the principles of POD and SE techniques. The 
experimental setup is described in section III. The study of the conservation of the integral length scales is presented 
in section IV and the impact of the sensor locations is discussed in section V. A quick roadmap for the use of SE is 
then proposed (section VI). At last, conclusions are given in section VII. 

II. Mathematical background 

A. Proper Orthogonal Decomposition (POD) 
POD or Karhunen-Loeve decomposition is a flow decomposition technique proposed by Lumley [11] to identify 

coherent structures.  The idea is to consider that these structures have the largest projection on the velocity field 
(according to the mean square method). The POD basis is then the collection of spatial vectors Φ(x) that are the 
eigenmodes of the equation: 

�𝑅𝑅𝒖𝒖𝒖𝒖Φ𝑖𝑖(𝒙𝒙)d𝒙𝒙 = 𝜎𝜎𝑖𝑖 Φ𝑖𝑖(𝒙𝒙) (1) 

where Ruu is the two-point spatial correlation matrix for the time-dependent velocity vector field u(x,t) and σi is the 
eigenvalue associated with the POD mode i. 
Velocity vector field can then be decomposed on the POD basis: 

𝒖𝒖(𝒙𝒙, 𝑡𝑡) = � 𝑎𝑎𝑖𝑖(𝑡𝑡)
𝑁𝑁POD

𝑖𝑖=1

Φ𝑖𝑖(𝒙𝒙) (2) 

Where NPOD is the total number of POD modes and 𝑎𝑎𝑖𝑖(𝑡𝑡) the POD coefficients that can be expressed as: 

𝑎𝑎𝑖𝑖(𝑡𝑡) = �𝒖𝒖(𝒙𝒙, 𝑡𝑡),Φ𝑖𝑖(𝒙𝒙)� (3) 

where (. , .) represents the inner product. 
In the present work, the snapshot method [12] is used to compute the POD modes and coefficients. 

B. Stochastic Estimation (SE) 
SE principle is to consider that the estimation of a quantity, for instance a scalar velocity field 𝑢𝑢(𝒙𝒙, 𝑡𝑡), under an 

event E (called the conditional event) is similar to a conditional average: 
𝑢𝑢�(𝒙𝒙, 𝑡𝑡) = ⟨𝑢𝑢(𝒙𝒙, 𝑡𝑡)|𝐄𝐄⟩ (4) 
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If the quantity u is assumed to be continuous and zero mean, then its Taylor expansion around the value of E is: 

𝑢𝑢�(𝒙𝒙, 𝑡𝑡) = �𝐴𝐴𝒙𝒙(𝑦𝑦𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

𝐄𝐄(𝑦𝑦𝑖𝑖, 𝑡𝑡) + ��𝐵𝐵𝒙𝒙

𝑁𝑁

𝑗𝑗=1

�𝑦𝑦𝑖𝑖, 𝑦𝑦𝑗𝑗�𝐄𝐄(𝑦𝑦𝑖𝑖, 𝑡𝑡)𝐄𝐄(𝑦𝑦𝑗𝑗, 𝑡𝑡)
𝑁𝑁

𝑖𝑖=1

+ ⋯ (5) 

N is the number of yi points where E is known (for instance the number of sensors used). 
Keeping only the first order terms in the Taylor expansion leads to LSE. Keeping first and second order terms leads 
to QSE. In both cases, Ax and Bx coefficients are calculated through the minimization of the mean square error the 
SE and the true value on a training set of data: 

𝑒𝑒(𝒙𝒙) = 〈(𝑢𝑢�(𝒙𝒙, 𝑡𝑡) − 𝑢𝑢(𝒙𝒙, 𝑡𝑡))2〉 (6) 

Once the coefficients calculated on the training data set, it is possible to estimate the quantity u even outside the 
training data set without any knowledge of u. Thus the estimation of u outside of the training set is referred as the 
prediction of u, whereas the estimation of u in the training set is referred as the reconstruction of u. 
From the way LSE is introduced here, one can clearly see its relationship to the Ordinary Least Square regression 
[5]. For more details, one can refer to [5] or [13]. 

Modified LSE or LSE-POD consists in the estimation of the POD coefficients instead of the entire velocity field. 
The multi-time-delay technique consists in using several realizations of the conditional event E, not only in space, 
but also in time. The estimation of a scalar velocity field u(x,t) then becomes: 

𝑢𝑢�(𝒙𝒙, 𝑡𝑡) = ��𝐴𝐴𝒙𝒙�𝑦𝑦𝑖𝑖, 𝜏𝜏𝑗𝑗�
𝑁𝑁𝑑𝑑

𝑗𝑗=1

𝐄𝐄�𝑦𝑦𝑖𝑖, 𝑡𝑡 − 𝜏𝜏𝑗𝑗�
𝑁𝑁

𝑖𝑖=1

 (8) 

where Nd is the number of delays used. More details on MTD-SE can be found in [3]. 
 To compare the accuracy of several estimations, the determination coefficient R² is used and defined by:  

𝑅𝑅² = 1 −
∫ 〈∑ (𝑢𝑢�𝑖𝑖(𝒙𝒙, 𝑡𝑡) − 𝑢𝑢𝑖𝑖(𝒙𝒙, 𝑡𝑡))2𝑛𝑛𝑐𝑐

𝑖𝑖=1 〉d𝒙𝒙𝐷𝐷

∫ 〈∑ 𝑢𝑢𝑖𝑖(𝒙𝒙, 𝑡𝑡)2𝑛𝑛𝑐𝑐
𝑖𝑖=1 〉𝐷𝐷 d𝒙𝒙

 (10) 

where nc is the number of velocity components estimated and D the spatial domain. In the case where POD is used, 
we also define the determination coefficient of the POD mode i by: 

𝑅𝑅POD Single,   𝑖𝑖
2 = 1 −

〈(𝑎𝑎�𝑖𝑖(𝑡𝑡) − 𝑎𝑎𝑖𝑖(𝑡𝑡))2〉
〈𝑎𝑎𝑖𝑖(𝑡𝑡)2〉

 (11) 

III. Experimental setup 
The experiment was conducted in the 0.3 m × 0.3 m × 2.64 m boundary layer wind tunnel of the Onera Lille 

center. This wind tunnel is of Eiffel type with a variable frequency driven motor capable of producing free-stream 
velocities of 10 to 40 m/s, for a turbulent intensity lower than 2%. The backward facing step height is h = 30 mm. 
The Reynolds number based on h is approximately 60,000 and the Mach number about 0.09. The measured 
boundary layer thickness at 0.3 h upstream of the step is approximately 0.38 h. 

Particle Image Velocimetry (PIV) and pressure transducers (Kulite XCQ-80-5PSID) measured the separated 
flow field downstream of the backward facing step and the unsteady pressure at the wall, respectively. The PIV 
experiment used a twin 120 mJ Nd:YAG lasers and two CCD cameras (in order to cover the full separated flow 
from the step to the reattachment point). All PIV recordings have been processed by an in-house software. The 
evaluation of these images was performed with a cross-correlation scheme using standard FFT with multi-pass, 
interrogation window shift and a final window size of 32 × 32 pixels with 50% overlap, corresponding to a 
resolution of about 1.2 mm in both directions.  

Three sets of 3400 uncorrelated PIV images have been acquired along with simultaneously sampled pressure 
signals. PIV images are sampled at 5 Hz (spanning about 20 vortex shedding periods) and the pressure signals are 
sampled at 20 kHz. The acquired data are split into a training set consisting of the first two sets of acquisition and 
the last one is used as a validation set. Thus, the training set contains 6794 PIV fields (due to synchronization 
considerations, in order to be able to use multi-time-delay methods, the first three PIV fields of each acquisition set 
are disregarded), and the corresponding pressure measurements from the 17 Kulites. The validation set contains 
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3197 PIV fields and the corresponding pressure measurements. In the following, all the results are obtained on the 
validation set. 

In addition to the previous campaign, high speed PIV has also been conducted. A twin pulsed 20 mJ Nd-YLF 
lasers was used and PIV snapshots were recorded by two CMOS cameras. The resolution of the PIV snapshots, after 
post-processing, is approximately 2.3 mm. The PIV acquisition frequency was set at 2 kHz. Four sets of 6144 PIV 
images have been acquired. A vortex shedding period covers about 20 snapshots. As previously, data are split 
between a training set and a validation set. The training set contains 18432 snapshots and the validation set 6144. 

IV. Turbulence Spatial Integral Length Scales 
The goal of this first part is to study the conservation of the turbulence spatial integral length scales by the LSE. 

More particularly, the impact of the conditional events used on the conserved turbulence spatial length scales is 
investigated. 

A. Backward facing step turbulence spatial integral length scales 
The turbulence spatial integral length scales of one velocity component are calculated from the spatial 

autocorrelation function according to equation [14]: 

Λ = � 𝑅𝑅𝑖𝑖𝑖𝑖(𝑟𝑟)𝑑𝑑𝑑𝑑
∞

0
 (12) 

where the double-i subscript indicates the autocorrelation function of the component i defined by: 

𝑅𝑅𝑖𝑖𝑖𝑖(𝑟𝑟) =
〈𝑢𝑢𝑖𝑖(𝑥𝑥𝑖𝑖, 𝑡𝑡)𝑢𝑢𝑖𝑖(𝑥𝑥𝑖𝑖 + 𝑟𝑟, 𝑡𝑡)〉

�〈𝑢𝑢𝑖𝑖2(𝑥𝑥𝑖𝑖)〉〈𝑢𝑢𝑖𝑖2(𝑥𝑥𝑖𝑖 + 𝑟𝑟)〉
 (13) 

and r is the distance between two points in the flow. If the direction of r is parallel to ui the autocorrelation function 
is called longitudinal, if not, it is called transverse. Following O’Neill et al. [14], the integration domain of eq. (12) 
was chosen to range from 0 to the point where the autocorrelation goes under 1/e. 

Maps of the longitudinal and transverse integral length scales for u are displayed in Fig. 1 and for v in Fig. 2. The 
discontinuities that can be observed around x/h = 3.5 comes from overlapping flaws between the two PIV fields that 
form the image. The largest integral length scales (about one half the step height) are mainly located above the 
recirculation and downstream of the reattachment point (located at x/h = 5.6). They result from the vortex shedding 
downstream of the step and not from the freestream flow since the values upstream of the step are close to zero. This 
indicates that large coherent structures are formed downstream of the step and located in this area.  

 
Fig. 1: Longitudinal (top) and transverse (bottom) 

turbulence spatial integral length scale for the 
streamwise velocity u 

 
Fig. 2 : Transverse (top) and longitudinal (bottom) 

turbulence spatial integral length scale for the 
vertical velocity v 

B. LSE using wall pressure measurements 
Following the work of Hudy [8], who investigated the coherent structures in a backward facing step flow, at 

Reh_= 8081, using LSE and wall pressure measurements from microphones, the first situation tested uses 17 wall 
pressure measurements as conditional events for the LSE. As already explained, in our case, the Reynolds number is 
higher (~60,000), thus the flow is expected to present more energy at high frequencies and smaller turbulence spatial 
integral length scales than the one studied by Hudy. 
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As stated in the introduction, the estimation accuracy was found to be poor and the use of QSE, LSE-POD, QSE-
POD or multi-time delays SE did not lead to any drastic improvement, with determination coefficient R²  ranging 
from 7.9% to 9.3% in the best case using multi-time-delays LSE (with Tikhonov regularization, see [10] for more 
details). Fig. 3 and Fig. 4 show the longitudinal and transverse turbulence spatial length scale for u and v predicted 
by LSE (validation set) (black triangles indicate pressure sensors locations). Generally speaking, the integral length 
scales of the estimated fields are larger than the original ones everywhere in the flow. Patterns present in the original 
maps in Fig. 1 and Fig. 2 cannot be identified in the maps obtained from the estimated fields. The turbulence spatial 
integral length scales are not conserved by this LSE. 

 
Fig. 3: Longitudinal (top) and transverse (bottom) 

turbulence spatial integral length scale for the 
streamwise velocity u estimated by LSE (17 wall 

pressure sensors) 

 
Fig. 4: Transverse (top) and longitudinal (bottom) 

turbulence spatial integral length scale for the 
vertical velocity v estimated by LSE (17 wall 

pressure sensors) 

 
Fig. 5: LSE prediction to original turbulence spatial 
integral length scale for u ratio (top: longitudinal, 

bottom: transverse) 

 
Fig. 6 : LSE prediction to original turbulence spatial 

integral length scale for v ratio (top: transverse, 
bottom: longitudinal) 

 In order to better compare the integral length scales obtained from the predicted fields with the original one, 
their ratio is displayed in Fig. 5 and Fig. 6 and expressed in decibel (dB). In most regions (recirculation area, 
downstream of the reattachment point and above the recirculation downstream x/h = 3), the length scales have been 
increased by a factor of 2 (3 dB) to 6 (7.8 dB). In the four maps, the area of lowest increase of the integral length 
scales, is located above the recirculation, for x/h ≥ 4, and corresponds to the region of highest integral length scale in 
the original data. This area is the one where the integral length scales are the best conserved and actually 
corresponds to the region where the LSE performs the best (see Arnault et al. [10]). In this configuration, using wall 
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pressure measurements, the LSE is only able to estimate the largest integral length scales and the smallest ones are 
filtered. The QSE was also investigated. It leads to a marginally better estimation of the length scales. However, it is 
not able to decrease the order of magnitude of the shortest length scales estimated. Therefore, in the following, we 
focus on the study of the LSE case.  

C. LSE using velocity field sensors 
Since the use of wall pressure sensors leads to a poor conservation of the turbulence spatial integral length 

scales, it was decided to investigate the characteristics of the LSE using velocity sensors in the flow. To do so, eight 
grids of streamwise velocity sensors (extracted from the PIV measurements) are employed. Table 1 summarizes the 
characteristics of each grid. The initial point (the most upstream and close to the wall) location is given as well as 
the spacings in the streamwise and vertical directions (see Fig. 7 and 8 for sensors locations). Table 2 compares the 
determination coefficient of each configuration. It can be seen that determination coefficients up to 62% can be 
reached with the finest grid. With the coarsest grids, which contains 21 sensors (only 4 more sensors than there were 
pressure sensors in the previous case), a determination coefficient of 21% is reached, which is more than two times 
the one obtained with wall pressure measurements. 

Number of sensors Initial point (x/h, y/h) Streamwise spacing (dx/h) Vertical spacing (dy/h) 

462 (0.19 , 0.15) 0.19 0.19 
240 (0.19 , 0.19) 0.266 0.266 
126 (0.19 , 0.15) 0.38 0.38 
56 (0.19 , 0.15) 0.57 0.57 

33 (Top) (0.19 , 0.53) 0.76 0.76 
33 (Bottom) (0.19 , 0.15) 0.76 0.76 

21 (Top) (0.19 , 0.53) 1.14 0.76 
21 (Bottom) (0.19 , 0.15) 1.14 0.76 

Table 1: Sensor grid characteristics 

Number of sensors Validation set R² 
Shortest Λu,x Shortest Λu,y Shortest Λv,x Shortest Λv,y 

Λu,x/h Λu,x/dx Λu,y/h Λu,y/dy Λv,x/h Λv,x/dx Λv,y/h Λv,y/dy 

462 62% 0.16 0.88 0.17 0.88 0.15 0.79 0.17 0.88 

240 56% 0.2 0.75 0.19 0.73 0.18 0.69 0.2  0.75 

126 47% 0.27 0.71 0.23 0.61 0.23 0.61 0.22 0.57 

56 35% 0.31 0.55 0.28 0.5 0.27 0.47 0.3  0.53 

33 (Top) 27% 0.36 0.47 0.33 0.44 0.28 0.37 0.35 0.46 

33 (Bottom) 28% 0.35 0.46 0.35 0.46 0.3 0.4 0.35 0.46 

21 (Top) 20% 0.4 0.35 0.35 0.46 0.3 0.26 0.37 0.48 

21 (Bottom) 21% 0.37 0.32 0.33 0.44 0.32  0.28 0.37 0.48 

Table 2 : Determination coefficient and turbulence spatial integral length scales, for the validation set, of 
several LSE using different sensor grids 

For brevity, only figures of the longitudinal integral length scale of u are displayed for each grid. Fig. 7 and Fig. 
8 show the maps of this integral length scale for the eight different grids of sensors used for the LSE. From these 
figures, it can be observed that the coarsening of the sensors grid leads to a deterioration of the integral length scales 
conservation. Especially, the shortest integral length scale increases with the sensors spacing. Even with the finest 
grid, the integral length scales are not perfectly conserved and are increased in the entire domain. Therefore they are 
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also increased in the area of original largest integral length scales. These observations are also valid for the three 
other integral length scales Λu,y, Λv,x, Λv,y (not shown here for brevity) 

The approximate orders of magnitude of the shortest integral length scales estimated (found downstream of the 
step) are summarized in Table 2, for each grid. To determine these values, data at the sensor locations are 
disregarded, since the estimation at this point is perfect. The data are normalized by the step height h or by the 
sensors grid spacing, dx or dy, in the direction of the integral length scale calculation. As previously observed, 
coarsening the grid leads to an increment of the shortest integral length scale predicted. An interesting fact appears 
when looking at the ratio between the predicted integral length scale and the sensor grid spacing. This ratio ranges 
from 0.28 to 0.88 and increases when the sensor grid is refined. Thus, the shortest integral length scale predicted by 
the LSE is not proportional to the distance between the sensors. Large integral length scales can be recovered by 
LSE with sensor spacing larger than the scales. But the smallest integral length scales seems to require sensor 
spacing of the order of magnitude of the turbulent scales. 

 
Fig. 7 : Longitudinal turbulence spatial integral 

length scale for u predicted by LSE for grids of 462, 
240, 126 and 56 sensors (from top to bottom) 

 
Fig. 8 : Longitudinal turbulence spatial integral 

length scale for u predicted by LSE for two grids of 33 
sensors and two grids of 21 sensors (from top to 

bottom) 

D. Study through POD analysis 
To complete the previous study, the estimation of the POD modes of the flow field through LSE is investigated. 

In the following the modified LSE (or LSE-POD), as defined in section II, is used. The POD is computed using the 
fluctuating velocity fields from the training set (only the streamwise and vertical velocity components are available). 
Fig. 9 shows the energy spectrum of the decomposition for the first one hundred modes, containing approximately 
70% of the TKE. This spectrum shows that an important part of the TKE is contained in high order modes. To 
obtain 90% of the TKE, more than 650 POD modes are required which explains why it is difficult to accurately 
estimate the velocity field through LSE in the present case. 

The determination coefficient R²POD Single of the first one thousand POD modes is plotted in Fig. 10 for the grids 
of 462, 240, 126 and 56 sensors. R²POD Single for the first one hundred POD modes is also plotted in Fig. 11 for the 
grids containing 33 and 21 sensors. In the present case, the general trend is that the higher the POD mode is, the 
lower the determination coefficient is. In addition, for one POD mode, the coarser the sensor grid is, the lower the 
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determination coefficient is. Therefore, it is more difficult to estimate a high order POD mode with LSE than a low 
order one. Furthermore high order POD modes require more sensors to be correctly estimated. As such, only the grid 
with 462, 240 and 126 sensors are able to estimate some POD modes with a determination coefficient higher than 
80%. 
 

 
Fig. 9: Energy spectrum of the first hundred POD 

modes 

 
Fig. 10 : Determination coefficient as function of the 

POD mode predicted (estimation of validation set 
data) 

 
Fig. 11 : Determination coefficient as function of the 

POD mode predicted 

 
Fig. 12 : Streamwise component of the velocity POD 

modes 1, 7 and 400 (from top to bottom). Black 
arrows illustrate the characteristic length of the 

mode 

To study the link between the sensor grid used and the predicted length scales, a characteristic length λ is 
associated to each POD mode. This length λ is the length for which 95% of the TKE of the POD mode is conserved 
after having been spatially filtered by an ideal low-pass filter of cut-off frequency 1/λ in the spatial Fourier domain. 
Mathematically, the characteristic length λ of each POD mode i is defined by: 
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arg max
λ∈𝐑𝐑+

�
�∬𝐻𝐻(ζ, ξ)Φ𝚤𝚤�(ζ, ξ) 𝑑𝑑ζ𝑑𝑑ξ�2

�∬Φ𝚤𝚤�(ζ, ξ)𝑑𝑑ζ𝑑𝑑ξ�2
≥ 0.95� (14) 

where Φ𝚤𝚤�(ζ, ξ) is the spatial Fourier transform of the POD mode i and H(ζ,ξ) is the ideal low-pass filter transfer 
function defined by: 

𝐻𝐻(ζ, ξ) = �1 if 𝐷𝐷(ζ, ξ) < 1 λ⁄
0 if 𝐷𝐷(ζ, ξ) ≥  1 λ⁄  (15) 

with D(ζ,ξ) the distance norm in the Fourier domain. 
This length can be interpreted as being the shortest length of the spatial structures contained in the POD mode. 

Structures of smaller length count for less than 5% of the POD mode TKE. It is not a turbulent integral length scale. 
In the present case, this length generally decreases when the POD mode rank increases. Fig. 12 shows the 
streamwise velocity of the POD mode 1, 7 and 400, for which the characteristic lengths are respectively 1.1 h, 0.56 h 
and 0.13 h. For the 1st POD mode and the 7th, the characteristic length corresponds well to the approximate height of 
the structures, but is clearly smaller than their length. For the POD mode 400, the turbulent structures are more 
isotropic and have, globally, the same height and length which matches λ. Therefore, λ seems to correctly 
approximate the shortest length contained in the POD mode. 

If, for example, we arbitrarily choose a threshold of 80% on the determination coefficient of one POD mode, 
above which it is considered to be satisfactorily predicted, then the grid 462 is able to correctly predict the POD 
modes up to the mode 21, the grid 240 up to 14 and the grid 126 up to 6 (the other grids do not satisfy this 
condition). Modes 21, 14 and 6 are associated with the characteristic lengths 0.49 h (2.6 d), 0.55 h (2 d) and 0.73 h 
(1.9 d) (where d = dx = dy) respectively. For each grid, one has to expect not being able to predict, with high 
accuracy structures shorter than these characteristic lengths. The same effect, as with the turbulence spatial length 
scales, is seen here where the characteristic length, of the last POD mode predicted with a R² higher than 80%, is not 
proportional to the grid spacing. When the grid is already quite dense, refining it leads to fewer improvements than 
the refinement of a coarse grid. 

 
Number of sensors Cut-off rank (10% threshold on R²) Associated characteristic length λ 

462 300 0.14h 0.74d 
240 225 0.17h 0.64d 
126 125 0.24h 0.63d 
56 50 0.32h 0.56d 

33 (Top) 30 0.44h 0.58d 
33 (Bottom) 35 0.37h 0.49d 

21 (Top) 14 0.55h 0.48dx 
21 (Bottom) 21 0.49h 0.43dx 

Table 3 : Cut-off rank of the predicted POD modes and characteristic length associated for the several grids 
of sensors used. 

Similarly, it is possible to choose a threshold on POD modes R², under which the POD mode can no longer be 
considered correctly predicted. We choose here a 10% threshold defining, for the 8 grids, a cut-off rank for the POD 
modes which are summarized in Table 3. The coarsest grids are unable to predict POD modes with characteristic 
length smaller than half the step height. And the finest grid is only able to predict POD modes with characteristic 
length higher than a tenth of the step height. It can be observed, when the characteristic length of the cut-off POD 
mode is expressed in sensors spacing d, that the characteristic length decreases when the grid is coarsening. 

From Fig. 10 and Fig. 11, it is seen that the determination coefficient rapidly decreases with the POD mode rank. 
For the grid 462 to 126, the accuracy of the prediction of a POD mode quickly deteriorates for POD mode of rank 
higher than 30. For the other grids, the deterioration starts even before the rank 10. The SE, in this situation, seems 
to be able to predict correctly only the first POD modes that contain the largest scales of the flow. This fact is also 
seen for the estimation using the wall pressure measurements with LSE-POD (see Fig. 17). But LSE-POD performs 
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badly for any POD modes, with a R² lower than 25%. The cut-off rank is about 10 and the 10th POD mode has a 
characteristic length of about 0.6h. 
 

 
Fig. 13: Streamwise component of the velocity POD modes 1 and 6. The black squares correspond to the grid 

33 “top” sensors and the white circles to the grid 33 “bottom” 

Looking more closely to Fig. 11, one can observe some discrepancies of the prediction accuracy of the first 10 
POD modes for the two grids made of 33 sensors and the two grids made of 21 sensors. According to the location of 
the grid, POD modes are predicted with different level of R². Grids with sensors located at half of the step height (33 
and 21 “top”), up to the top boundary of the estimated domain, perform better on the first two POD modes than grids 
with sensors located near the wall (33 and 21 “bottom”). On the contrary, the grids 33 and 21 “bottom” seem to 
better predict POD modes of rank higher than 4. The reasons for this behavior are investigated in the following part. 

V. Sensor locations impact 
Differences in the estimation accuracy of the POD modes between two grids, with the same number of sensors 

and the same spacing, confirm that the sensor grid spacing is not the only parameter impacting on the length scales 
estimated by LSE. In addition, the non-proportionality of the smallest turbulence spatial length scale estimated with 
the grid spacing also indicates that refining a uniform grid of sensors may not be the best way to capture smaller and 
smaller length scale structures of the flow through SE. 

In 2004, Cohen et al. [15] proposed a heuristic method to place the sensors in order to estimate POD coefficient 
using LSE. Their method uses a POD of the possible sensors and they advocated locating the sensors at the maxima 
and minima of the sensors POD modes. In our case, when using velocity measurements from the PIV data as 
sensors, they should be located at the maxima and minima of the velocity POD modes. 

The first and sixth modes are displayed in Fig. 13 where the sensors of grids 33 “top” and “bottom” are also 
plotted. This figure shows that sensors of the grid 33 “top” are located close to the maxima of the first POD mode 
for the streamwise velocity (it is also true for the vertical velocity). On the contrary, the grid 33 “bottom” has 
sensors above and under the maxima of the first mode and they are clearly farther to the maxima than the ones of the 
grid 33 “top”. It is then coherent to observe in Fig. 11 than the first POD mode is better predicted by the grid 33 
“top” than by the grid 33 “bottom”. The opposite situation happens for the POD mode 6, which is better predicted 
when using the grid 33 “bottom”. If the two grids have around the same number of sensors close to extrema of the 
POD mode 6 for the vertical velocity (not shown here for brevity), the grid 33 “bottom” has sensors closer to the 
extrema of the POD mode 6 streamwise velocity, than the grid 33 “top”. Extrema of the POD modes seems to be 
indeed a better location for the sensors. And then, to correctly estimate a POD mode, it appears to be important to 
dispose of sensors near the extrema of the mode. 

As Fig. 12 and Fig. 13 show, the higher the rank of a POD mode is, the more it possesses extrema. Therefore, 
one can expect that the number of sensors necessary to estimate a POD mode, with a certain level of R², increases 
with the POD mode rank. Table 4 compares the determination coefficient obtained for POD mode 1, 2, 5 and 10, 
when using LSE with one sensor located at the extrema of the POD mode. It clearly appears, as expected, that the 
determination coefficient decreases with the POD mode rank and that more sensors are necessary to estimate higher 
POD modes at the same level of R². This confirms the difficulty that arises when trying to estimate small scale 
structures from a limited number of measurements through SE. In addition, the situation is even more unfavorable 
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when the sensors, for example unsteady pressure transducers, can only be placed at the wall and thus not close to the 
extrema of the POD modes to estimate. 

POD mode R² using only one sensor Number of sensors to reach 50% of R² 
1 37% 2 
2 30% 2 
5 20% 4 
10 17% 7 

Table 4: Determination coefficient of the reconstruction of several POD modes when using only one 
streamwise velocity sensors located at the extremum of the POD mode and number of streamwise velocity 

sensors required to reach 50% of R² 

 
Fig. 14: Sensor locations obtained by the 

optimization algorithm for mode 1, 5 and 10 
separately (from top to bottom). The streamwise 

velocity of the modes is displayed. 

 
Fig. 15: Sensor locations obtained by the optimization 
algorithm for mode 1, 5 and 10 separately (from top 

to bottom). The vertical velocity of the modes is 
displayed. 

If Cohen et al. proposed to use a cost function to choose sensors in order to estimate an ensemble of several POD 
modes, it was decided to investigate the use of a sensor location optimization algorithm introduced by Muradore et 
al. [16]. The algorithm is a data driven one, based on partial least square regression. The main idea behind the 
algorithm is that, if data from several sensors are available, one can choose among them such as to pick the one with 
the highest correlation with the data to estimate (that has not yet been explained by the previously chosen sensors). 
Details on the algorithm can be found in reference [16]. In our case the possible sensors to choose are the 
streamwise velocity data for the entire PIV domain and the data to estimate is one or several POD modes. This 
algorithm can also be used to determine the number of sensors necessary to reach a certain value of R²POD Single. The 
numbers of sensors necessary to reach 50% of R²POD Single for several POD modes are reported in Table 4. The results 
confirm that more and more sensors are necessary to obtain a good estimation as its rank increases. 

To verify if the sensor locations given by the algorithm follow Cohen’s conclusion, the optimal locations for the 
reconstruction of each POD mode are computed. Fig. 14 and Fig. 15 show the locations of the first ten sensors 
chosen by the algorithm for the POD modes 1, 5 and 10 separately. These locations match quite well the extrema 
areas of each POD mode, thus confirming that they are the areas of highest correlation between the streamwise 
velocity data and the POD mode. The chosen locations clearly depend on the POD mode, which was aimed by the 
optimization; therefore it becomes quite complicated to choose, manually from the extrema of several POD modes, 
one set of sensors, to reconstruct these POD modes altogether. In this situation the use of the optimization algorithm 
is particularly helpful and interesting. 

The algorithm is used, this time, to found a set of 20 sensors optimized to reconstruct the sum of the 20 first 
POD modes simultaneously. Fig. 16 compares the determination coefficients of the first 30 POD modes using the 
grids of 33 and 21 sensors, as well as the set of 20 sensors obtained by the optimization algorithm. The LSE using 
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the optimized locations leads to a better reconstruction and prediction of the 20 first POD modes compare to the 
grids of 21 sensors, and can even compete with the grids of 33 sensors. For POD modes of higher rank, grids of 33 
sensors seem to perform better, and the grids of 21 sensors and the set of 20 sensors perform comparably. With the 
optimized set of sensors, the cut-off rank, beyond which POD modes are predicted with less than 10% of R², is about 
30. It is an improvement compared to the grids of 21 sensors (14 and 21 modes for “top” and “bottom” 
respectively). Moreover, the first two POD modes are predicted with R² higher than 80%. Therefore, the location of 
the sensors clearly plays an important role on the length scales that are predicted by the LSE. 

At last, the determination coefficient R² of the prediction of the entire flow field by LSE with the set of 20 sensors 
(from the algorithm) accuracy is about 35%, which is higher than the values obtained with 21 and 33 sensor grids, 
and of the same order of magnitude as with the grid of 56 sensors (see Table 2). This shows the effectiveness of the 
sensors optimization algorithm, which is able to select a limited number of locations that lead to a better LSE 
reconstruction and prediction than uniform sensor grids with more sensors. 

 
Fig. 16: Determination coefficient as function of the POD mode 

VI. Stochastic Estimation flow chart 

 

Fig. 17: Flow chart for the use of SE 

From the previous results, it is possible to draw a flow chart to estimate turbulent flows thanks to SE (see Fig. 
23. The first step would be to compute the POD of the flow, from experimental data or simulated data. Once the 
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POD obtained and given a criterion (TKE level, characteristic length scales or frequencies), the number of POD 
modes to estimate is obtained. Then a level of accuracy has to be chosen in terms of R². At last, using this target 
value of R², the sensor location optimization algorithm (or its extension) is used in order to estimate the minimum 
number of sensors (or conditional events if synchronized and delayed data are considered), and their locations (and 
potentially delays), required to match the chosen conditions. 

VII. Conclusions  
In this paper, the difficulty to estimate the small turbulent spatial integral length scales by Linear Stochastic 

Estimation (LSE) using only wall pressure measurements has been demonstrated. Fields of turbulent spatial integral 
length scales show that LSE overestimates these scales even in the areas where they are the largest. The comparative 
study of several in flow streamwise velocity sensor grids shows that it is possible to estimate smaller length scales 
by refining the sensor grids. However, if it is possible to reconstruct and predict turbulent integral length scales of 
half the spacing of coarse grids, for fine grids the smallest length scales recovered are of the order of magnitude of 
the grid spacing. In a sense, the LSE filters the spatial integral length scales shorter than half the sensors spacing. 

The investigation of the Proper-Orthogonal-Decomposition (POD) modes estimation shows that only the first 
POD modes are correctly estimated and they correspond to the largest scales of the flow in the present case. 
Refining the grids allows a better estimation of higher order POD modes, but even with very fine grids, only a few 
POD modes are reconstructed and predicted with a high fidelity. This investigation also highlights the strong 
importance of the sensors location. It shows that a POD mode is better estimated if the sensors are located close to 
its extrema. Therefore the possibility to predict with high accuracy a velocity POD mode, from sensors located at the 
wall only, is limited. 

The use of the sensor location optimization algorithm proposed by Muradore et al. [16] has been investigated. 
The locations obtained by the algorithm are close to the extrema of the POD mode, which is consistent with Cohen 
et al. [15] conclusion. In addition, the algorithm represents a convenient tool to determine sensors location in order 
to predict several POD modes simultaneously. It also shows the possibility to estimate smaller length scales, and 
higher POD modes, with the same amount of sensors with a different placement. Therefore the sensors location 
plays an important role on the estimation of POD modes and thus on the integral length scales estimated by the LSE. 
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