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Dynamic Neural Field models (DNF) often use a kernel of connection with short range

excitation and long range inhibition. This organization has been suggested as a model

for brain structures or for artificial systems involved in winner-take-all processes such as

saliency localization, perceptual decision or target/action selection. A good example of

such a DNF is the superior colliculus (SC), a key structure for eye movements. Recent

results suggest that the superficial layers of the SC (SCs) exhibit relatively short range

inhibition with a longer time constant than excitation. The aim of the present study was

to further examine the properties of a DNF with such an inhibition pattern in the context of

target selection. First we tested the effects of stimulus size and shape on when and where

self-maintained clusters of firing neurons appeared, using three variants of the model. In

each model variant, small stimuli led to rapid formation of a spiking cluster, a range of

medium sizes led to the suppression of any activity on the network and hence to no target

selection, while larger sizes led to delayed selection of multiple loci. Second, we tested

themodel with two stimuli separated by a varying distance. Again single, none, or multiple

spiking clusters could occur, depending on distance and relative stimulus strength.

For short distances, activity attracted toward the strongest stimulus, reminiscent of

well-known behavioral data for saccadic eye movements, while for larger distances

repulsion away from the second stimulus occurred. All these properties predicted by

the model suggest that the SCs, or any other neural structure thought to implement a

short range MH, is an imperfect winner-take-all system. Although, those properties call

for systematic testing, the discussion gathers neurophysiological and behavioral data

suggesting that such properties are indeed present in target selection for saccadic eye

movements.

Keywords: Dynamic Neural Field, action selection, center-surround, spiking neuron model, global effect, deviation

away, saliency map
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INTRODUCTION

The ability to select important stimuli for further processing and
action planning is a key function of brains of visually dominant
animals. For instance, in primate visuo-motor systems only a
small part of the retinal input benefits from a high spatial
resolution; hence to select where to look is vital to extract relevant
information from the environment. Points of interest have to be
extracted from the overall visual input and, from those extracted
points, only one can be selected at a time to orient gaze or
attentional focus. Since Koch and Ullman (1985) it is thought
that potential points of interest are evaluated through early visual
processing and converge on a saliency map.

It has been suggested for a long time that a connectivity
pattern of short range excitation and long range inhibition
in topographically organized visual structures could achieve
saliency localization–see blob detection models for computer
vision (Bretzner and Lindeberg, 1998; Lowe, 1999; Kong et al.,
2013) but also models of V1/LGN (Kang et al., 2003; Schwabe
et al., 2006; Spratling, 2010; Zeng et al., 2011)–and target selection
(Arai et al., 1994; Kopecz, 1995; Kopecz and Schöner, 1995;
Trappenberg et al., 2001). This connectivity pattern is often
referred as a Mexican hat (MH) or center-surround inhibition,
and was already implemented in early Dynamic Neural Field
(DNF) models (e.g., Amari, 1977). Recently, the relevance of
such organization has also been underlined for action selection in
artificial cognition (Erlhagen and Bicho, 2006; Richter et al., 2012;
Sandamirskaya, 2014); hardware implementations have emerged
(Millner et al., 2010) and are suggested to be an important
milestone for developing complex cognition (Indiveri et al.,
2009).

Among neural structures often modeled using a DNF with
MH connectivity (which we will refer to as DNF-MH), a
prominent example is the superior colliculus (SC), a layered
structure at the roof of the brainstem implicated in the
control of gaze and attention orientation (Robinson, 1972;
Sparks, 1986, 2002; Guillaume and Pélisson, 2001; Munoz,
2002; Krauzlis et al., 2004). The superficial layers of the
SC (SCs) receive afferents directly from the retina and also
from visual cortex and show strong visual activations. The
intermediate-deep layers (SCi) display premotor activity for
gaze orienting and receive multisensory input from a range of
sources including connections from the SCs as well as “top
down” input from frontal cortex and basal ganglia. Both layers
are topographically organized (retinotopic organization) and in
register to one another. This neural structure is hence seen as
a sensory-motor interface able to associate a motor command
to visual information through connections between superficial
and intermediate-deep layers (Isa, 2002), as well as through
other input. While both layers have been assumed to have MH
connectivity, most modeling has focused on the SCi (and hence
on target/action selection rather than saliency). Results of SCi
studies (electrophysiology: McIlwain, 1982; Munoz and Istvan,
1998; and anatomy: Behan andKime, 1996;Meredith and Ramoa,
1998) were in favor of MH connectivity and also suggested
that inhibition from a given site can concern very distant areas
of the map. Hence, without more precise measures, it was

assumed that the inhibitory influence was very large. Numerous
models implementing long range inhibition (Arai et al., 1993;
Kopecz, 1995; Kopecz and Schöner, 1995; Trappenberg et al.,
2001; Wilimzig et al., 2006; Meeter et al., 2010; Bompas and
Sumner, 2011; Marino et al., 2012) showed that it was successful
for winner-take-all selection of a saccade target among several
options.

However, the idea of long range inhibition in the SC has
been challenged (Lee and Hall, 2006; Isa and Hall, 2009). Very
recently, a clearer picture has been obtained. Phongphanphanee
et al. (2014) using multi-electrode arrays on slice preparations
of rodent SC evaluated the local connectivity in SCs and SCi.
This study found MH connectivity only in SCs and that, in this
case, the range of inhibition is relatively short (see below for
details). In SCi, the excitation zone was at least as large as the
area of inhibitory influence. The second main difference between
the SCs and the SCi revealed by the study concerned the time
course of their excitatory and inhibitory responses to a sustained
stimulation: where the SCi was behaving as an accumulator,
the SCs showed transient responses. Globally these results led
the authors to conclude that the winner-take-all phenomenon
is observed in the SCs and that it enables saliency detection.
Phongphanphanee et al. (2014) wrote “The sensory layer (SCs)
is optimized to localize the single most salient stimulus” (p.
2342). The SCi, in turn, would cascade activity from the SCs
and integrate it with its other inputs to perform target selection.
Importantly, the saliency selected and localized by the SCs can
be translated into the winner of the SCi target selection when
other target candidates are negligible. As stated above, numerous
models of the SC were implementing long range inhibition to
perform selection. The results of Phongphanphanee et al. (2014)
call for an exploration of properties of map integrating MH with
short range inhibition and temporal dynamics based on the SCs.

The aims of the present study were: (1) to test the capacity of
such a DNF-MH with short range inhibition to perform reliable
target selection and (2) to highlight its noticeable properties and
its potential limitations in such a context. Importantly, those
properties could represent testable predictions to address if the
SCs—or any brain structure—performances are indeed driven by
a short range MH.We implemented this type of DNF-MH in two
dimensions with spiking neurons. We fed it with various types
of input stimulation to assess the emergence of localized and
stable clusters of firing neurons (a “spiking cluster”) that would
represent saliency and/or target selection. We first explore the
effect of stimulus size on the performance of the model. Second,
we tested the model while two stimuli were presented at the
same time and we measured their interaction while varying their
weights and the distance between them.

To anticipate some of the key results, varying the size
of a single stimulation led to bimodal activation and to
center-surround interactions that could result in the complete
suppression of any activity on the network. When two
stimulations were used, phenomena of attraction, complete
suppression, and repulsion were observed for different distances.
Applied to target selection, those properties may represent
detrimental phenomena: prior loci of interest extracted from
feature maps could suppress themselves, or produce clusters
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of activity that are not localized on the stimuli of interest.
Interestingly, we can link these properties with previous
neurophysiological and behavioral studies. These links are
extensively explored in discussion.

As a final note, although our rational is largely based on
results obtained in the SC, especially the superficial layers, our
results describe a set of phenomena possible for any DNF-MH
implementation and usage.

MATERIALS AND METHODS

Overview of the Model
The model is a simple network of neurons organized as one 2D
layer of 100 × 100 cells (Figure 1A) and connected according
to a 2D Mexican hat kernel (Figure 1B). Our model is close to
those of Arai et al. (1993), Marino et al. (2012), Trappenberg
et al. (2001) and Wilimzig et al. (2006). Nevertheless, the critical
differences are that we implemented a MH with a short range
of inhibition and that we used spiking neurons (Figure 1C)
allowing to set up different synaptic decay times for inhibition
and excitation (see Section Parameter Choice). Finally, we did not
implement the logarithmic compression of space that is observed
in the SC to remain general.

The model is implemented in Python 2.7 (http://www.python.
org/) using the library BRIAN, a spiking neuron network
simulator (Goodman and Brette, 2008, 2009). The code source
for all the following simulations can be found at: https://github.
com/Nodragem/SuppData-MHLimitations-Selection.

The spiking neuron model (Lapicque, 1907; Brunel and van
Rossum, 2007) used here is a simplification of conductance-
based integrate-and-fire (Hodgkin and Huxley, 1952; Shadlen
and Newsome, 1998). Activity of each neuron of this network can
be described with the following equations:
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Equation (a) describes the time course of the membrane potential
V for all neuron n (Figure 1C, column 3). It goes toward its
equilibrium V0 with a time constant τm when at rest while it goes
toward Ve or Vi when ge or gi are different from zero. When V

FIGURE 1 | Overview of the model. (A) The model is a dynamic neural field (DNF) of 100× 100 cells. The red to yellow circle represents the cluster of spiking

neurons after stimulation of the neurons on the green line fed by the input neuron (green circle). This cluster forms a circle centered on neuron A. Neurons A

(blue-white dot) and B (red-white dot) are marked in reference to (B,C). (B) Illustration of the Mexican hat kernel. The graph shows the connection weight of neuron A

with its neighborhood. The X- and Y-axis represent the distance from neuron A in number of cells; The Z-axis represents the weight of connection, a positive number is

excitatory while a negative number is inhibitory (arbitrary unit). (C) illustration of Equation (1). Each spike of neuron A (panel 1, red bars) opens excitatory channels on

the membrane of neuron B that close by themselves according to time constant τe (panel 2, orange curve). These opened excitatory channels raise the membrane

potential of neuron B (panel 3, green curve). When a threshold (−50mV here) is reached, a spike is triggered in the neuron B (panel 4, red bar).
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reaches a threshold Vt for a neuron n, a spike is emitted and V is
reset to Vr for that neuron n. After it emits a spike, a neuron will
be unaffected by any input during a refractory period of 1.5ms.
This refractory period limits the maximum firing rate to 600Hz
which is consistent with SC cell recordings for instance (Sparks
et al., 1976; Anderson et al., 1998).

Equations (b) and (c) describe the time course of the opening
of excitatory and inhibitory gates — ge and gi — on neuron n’s
membrane (Figure 1C, column 2). By default, ge (respectively gi)
goes to zero with a time constant of τe (respectively τi) — the

synapse decay time. For each time t
f
n′ — corresponding to a spike

f of a neuron n′ in the network — ge (respectively gi) gets an
immediate increase which corresponds to the weight connecting
n to n’ defined by we (respectively wi). Finally, one or more
experimenter-controlled spiking neurons can be connected to the
model through ge (see Figure 1A). Their firing rate over time
is controlled by a curve Fs; in that sense, they resemble electric
stimulations used in neurophysiology and do not follow a Poison
process. The connections to the network are defined within the
unit interval with a matrix ws and are modulated with αs.

The matrices of connections we and wi are normalized
between−1 up to 1: αe and αi are used to scale them to a relevant
dimension for the network, its unit being millivolt. The matrices
wi and we are computed from a difference of Gaussians equation:

f (x, y|θx, θy,K, β) = (1+ β)exp

(

−
(x− µx)

2

2σ 2
x

−
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2

2σ 2
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The resulting subtraction gives a Mexican hat curve (see
Figures 1B, 2); the first term on the right hand side of Equation
(2) is used as we and the second term as wi. The variables σx/σy
and Kσx/Kσy define the standard deviation of the Gaussians.
Thus, K is used to set up the inhibition:excitation extent ratio. β is
a parameter controlling the depth of the inhibition.

Parameter Choice
All the parameters of the model are summarized in the Table 1.
Parameters for which values are not given in the table have values
varying in the different simulations and these values are to be
found in the description of each specific simulation. The neuron
parameters were taken from recent spiking neuron models of
the SC (Lo et al., 2009; Morén et al., 2010, 2013) and adapted
to obtain clusters that maintain a stable activity on the map
for the range of stimulations we used. Concerning synaptic
decay times, τi is superior to τe which is coherent with the
observation of Phongphanphanee et al. (2014) during a sustained
stimulation of the SC (see their Figure 7): indeed, Figure 5E of
the present report shows that our model was able to reproduce
a transient response of the membrane potential to a sustained
input. However, to our knowledge the time constants τi and τe of
actual SC neurons have never been specifically measured, which
explains large differences in parameters values between the work
of the two previous teams. By default, no noise will be introduced
in the model. If a noise source is used, it will be stated in the text.

FIGURE 2 | The three Mexican hats tested in Simulation 1. They

correspond to the connection of a neuron n with its neighborhood (i.e.,

αe.we + αi.wi). They are only plotted on the X-axis and for one direction.

Concerning the lateral connection parameters, we used values
for K and β that were chosen based on previous physiological
or modeling studies. K, corresponding to the ratio inhibition-
extent/excitation-extent, was set to 1.2 to limit lateral inhibitory
influence to a relatively small range consistent with recent
results (see Isa and Hall, 2009 for a review). This ratio is
similar to the value suggested by the SCs in-vitro study of
Phongphanphanee et al. (2014). Indeed, they reported an EPSC
half-width area of 130µm2 and IPSC half-width area of 145µm2

(see their Figure 4D and their text page 5; note also that Lee
and Hall’s (2006) in vitro study on rat SCi reported ratios
of 500µm/300µm = 1.6 or 500µm/400µm = 1.25). The
parameter β, corresponding to the strength of inhibition, was
set at 6.0 in order to set the maximum inhibition weight at
roughly the half of the excitation maximum weight to fit with the
results of Arai et al. (1994) (see the black curve of our Figure 2—
the minimum weight of the reference MH is at −100mV for a
maximum of 200mV). Note that we test variations in theseK and
β values below.

Lastly, our parameters are chosen for the neural field to be
bistable between the all-off state and a spiking cluster state. When
a bump in the membrane potential reaches the threshold, the
model generates systematically a stable and well-defined group
of spiking neurons around the point which passed the threshold.
We name this group a “spiking cluster” to distinguish it from
bumps in the membrane potential. This spiking cluster is similar
to a bump of activity in a population rate model, and being stable,
it survives after we stop stimulating the neural field.

Simulation Set 1: Size Variation of a Single
Stimulus
In a first set of simulations we want to characterize the response
of the selection map to stimuli of different sizes.
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TABLE 1 | Model parameters and variables.

General parameters Symbol Value and unit

Simulation time None 200ms

Map size None 100× 100 neurons

Simulation clock precision None 0.01ms

Recording clock precision None 1ms

Neuron parameters Symbol Value and unit

Membrane time constant τm 10ms

Excitation time constant τe 3ms

Inhibition time constant τi 10ms

Potential threshold Vt −50mV

Reset potential Vr −80mV

Resting potential V0 −70mV

Nernst potential of excitation ions Ve 0mV

Nernst potential of inhibition ions Vi −80mV

Neuron variables Symbol Unit

Membrane potential V mV

Number of opened excitatory channels ge No unit

Number of opened inhibitory channels gi No unit

Mexican hat parameters Symbol Unit

Depth of inhibition β No unit

Inhibition/excitation extent ratio K No unit

Standard deviation on Y-axis σy Cells

Standard deviation on X-axis σx Cells

Center position on X-axis µx Cells

Center position on Y-axis µy Cells

Matrix of positive connections we No unit

Weight factor for positive connection αe 200mV

Matrix of negative connections wi No unit

Weight factor for negative connection αi 200mV

External stimulus parameters Symbol Unit

Spikes train Fs No unit

Matrix of connections with the model ws No unit

Weight factor αs mV

A range of stimulus lines of varying size (see below) was tested
with the model. We ran three different sub-simulations (S1–
S3): one testing the reference MH (see Materials and Methods)
and two testing variations of it in order to make sure that
the results are robust to moderate changes in the connectivity
profile. The first sub-simulation (S1) implemented the reference
MH (K = 1.2 and β = 6.0; see Model parameters). The
second sub-simulation (S2) was conducted to test a larger extent
of inhibition. K was fixed to 2.0, which covers the upper end
suggested by data of Phongphanphanee et al. (2014). In order
to only address the extent of inhibition, β was set to 1.43
with an optimization algorithm to keep the minimum of MH

function (depth of the inhibition) similar to S1. The third sub-
simulation (S3) was conducted with K = 1.2 and β = 8.0
to observe the effect of a stronger inhibition while keeping its
extent constant. For the whole set of simulations in this part, σx
and σy were fixed to 5 neurons, this was chosen to get relatively
small MH lateral connections compared to the dimension of the
model map. Given that the determinant factor is the relative
size of the stimuli compared to the MH’s size, having small
connections allowed us to increase the range of tested stimulus
sizes.

The map was stimulated with line-shaped stimuli of 20
sizes (2 neurons up to 42 neurons in steps of 2 neurons
along the Y-axis). These line-shaped stimuli were defined by
Is = αs × ws × Fs as explained in the Equation (1b). The
maximum size of 42 neurons represents less than 50% of the
Y-axis size of the model map in order to limit border effects
(map size = 100 × 100 neurons, see Table 1). The firing rate
pattern over time of the external input, Fs, was a Gaussian
centered on 25ms with a standard deviation of 80ms and a
maximum frequency of 400Hz. The strength of the stimulus was
αs = 4000mV. Finally, the duration of each simulation was
200ms.

The results will be split in four parts. The first part focuses on
the spatial pattern obtained on the map, the second part on the
temporal dynamic. The third part investigates if our result would
be different if using a sustained input (Fs = 400Hz) instead of
the Gaussian firing rate pattern aforementioned. Finally, the last
part extends our results to bidimensional shape—replacing the
line-shaped stimuli by squares and circles.

Simulation Set 2: Interaction of Two Stimuli
Our first set of simulations addresses the effect of stimulus size
in a simple DNF-MH used as a target selection map. However,
such a map is prone to receive many candidate points of
interest from satellite structures feeding it. Our second set of
simulations tests the behavior of our DNF-MH model when
stimulated at two points with varying the distance and relative
strength. In a comparison of our model with the SCs, this
simulation is analogous to the in-vitro experiments conducted by
Phongphanphanee et al. (2014) and by Vokoun et al. (2014) in
which these two teams stimulated two points in the SCs varying
the distance and the strength of stimulations injected in each
point.

Two stimulation points, A and B, of size 2× 2, are considered.
Stimulation A is kept at a fixed location (x = 31; y = 51),
while stimulation B is tested for distances from 2 to 40 cells
with a step of 2. Stimulation A and B both have the same firing
rate pattern as used in simulation 1. While the stimulation B
is always connected with a weight of 4000mV to the model,
stimulation A is tested for 3 different weights: 1333mV, 2000mV
and 4000mV.We used the referenceMH configuration (K = 1.2;
β = 6.0) but in a larger implementation (σx = σy = 8.5 cells,
compared to 5 cells in Simulation 1, to increase the MH size
and hence virtually increase the granularity of our probing). The
result we report here is the position of the spiking cluster nearest
to stimulation B on the map. Its localization is defined by the
center of gravity of its spike count over all the simulation. To
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control that border effects was not at the origin of the following
observations, a control condition was run that tested the spiking
cluster position for the different location of the stimulation B
alone. The spiking cluster positions were well aligned with the
stimulation B and suggest there is not border effect at those
locations.

The results for the simulation set 2 will be split in two parts.
The first part presents the results without including noise in
the model. The second part tests if the results obtained for the
condition 4000–4000mV are robust to the addition of noise in
the model and if they extend to a slight inequality in A and B
intensity (3500–4000mV). Precisely, the noise was added to the
membrane potential and was following a normal distribution of
standard deviation 4mV.

RESULTS

Simulation Set 1: Spatial Patterns
Figure 3 shows membrane potential and firing rate for all
neurons of the neural field for a subset of stimulus sizes for the
3 MH variants (S1, S2, S3, depicted in Figure 2). These values
of membrane potential and firing rate were averaged over all the
simulation time (200ms). The represented line sizes illustrate the
different observed activity patterns. Panel D shows the number
of spiking clusters (see parameter section for definition) as a

function of the stimulus size for the three MH variants, as further
explained below.

For the first MH (S1, K = 1.2 and β = 6.0, Figure 3A and
black line in Figure 3D), a unique circular spiking cluster located
on the center of the stimulus line was observed from the smallest
size up to the size of 18. Despite the transient nature of the
stimulation, the spike cluster persists during the whole duration
of the simulation. On the contrary, from size 20 to the largest
tested size (size 42), no spiking clusters appeared on the firing

rate map: a complete activity suppression was observed. It can be

noticed that on the membrane potential map, the activity appears
equally spread for size 20 while the activity is stronger on the

extremities for size 42. This sub-threshold activity distribution
suggests that the extremities could win the competition if the
threshold was decreased.

In the second sub-simulation (S2, K = 2.0 and β = 1.43,
Figure 3B and red line in Figure 3D), we observed similar results

but the spiking cluster for small line sizes was larger and the
complete activity suppression starts at a larger stimulus size.
These two observations are to be related to the slightly larger

excitation influence in S2 with respect to S1 (Figure 3). The
main difference with S1 appears at size 42: the activity on the
extremities was strong enough to give rise to two spiking clusters.

Those two spiking clusters have a weaker average firing rate than
the one observed for previous sizes; below we show this is due

FIGURE 3 | Overview of the spiking clusters spatial distribution during S1, S2, and S3 (respectively A–C). The results are shown for the most informative

stimulus sizes, which are different according to the set of simulations and are indicated on each column of the graphs. (A–C) On each picture, the top part shows

average membrane potential during the simulation; the lower part shows average firing rate during the simulation. (D) summarizes the result: the number of spike

clusters is computed as the sum of spikes on the map divided by the sum of spikes occurring for the first stimulus size (i.e. size = 2 is used as a reference).
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to a larger latency before the first spike rather than a lower firing
rate once initiated (see next section).

In the third sub-simulation (S3, K = 1.2 and β = 8.0,
Figure 3C and green line in Figure 3D), similar results as in S2
and S1 are found but with a smaller radius of the spiking cluster
for small line sizes and a suppression that starts at a smaller
stimulus size (size 16). Here, two spiking clusters were observed,
as in S2, for stimulus size 30–36. However, S3 differs from S2 as a
complete suppression was again observed for larger sizes than 36.
When present, the two spiking clusters were on average weaker
than the unique spiking cluster observed for smaller sizes, and
again this is due to delay rather than firing rate once the spiking
cluster occurs (see below).

Thus, complete activity suppression occurred for at least one
range of sizes for each set of simulations. The stimulus size for
which it appears is positively correlated with the size of the
positive area of the MH used for these simulations.

Lastly, note that the stimuli tested were spatially homogenous:
each point of the stimulus gave the same input to the map.
This type of stimulation may favor complete suppression, and
if noise were present in the network, it is conceivable that it
could randomly favor the selection of a spiking cluster and hence
eliminate the phenomenon of complete suppression. To test this
hypothesis we added normally distributed noise in themembrane
potential of all the units of the 2D network, using K = 1.2

and β = 6.0 (S1). The standard deviation of the noise was of
4mV, which corresponds to a fifth of the distance between the
resting potential and the threshold. The results were similar to
those presented above. Hence, even with noise in the network,
the phenomenon of complete suppression could be observed.

Simulation Set 1: Temporal Dynamics
In simulations S2 and S3 larger stimuli could lead to two spiking
clusters, which show a lower firing rate average than for the
unique cluster appearing for smaller sizes. Figures 4A–C shows
the evolution of the membrane potential for neurons just next to
the stimulus line (see caption for more details) for the same sizes
addressed in Figures 3A–C. It can be observed that the threshold
to the first spike is reached much later for sizes giving rise to
two spiking clusters (size 42 in SA2 and size 30 in SA3) when
compared to sizes leading to one spiking cluster. In addition
we have estimated the firing rate of the spiking clusters for the
last 50ms of each simulation: their firing rate does not change
between stimulus size (550–600Hz for S2, 350–400Hz for S3,).
Hence the change in firing rate average observed in S2 and S3 was
the result of the change in latency for the membrane potential to
reach the threshold.

We can observe in all the simulations (Figures 4A–C, all
curves) an early rise of membrane potential. This early rise is
at the origin of all single spiking clusters observed in Figure 3.

FIGURE 4 | Overview of the membrane potential dynamics during SA1–SA3. (A–C) Effect of the stimulation on the neighborhood according to time. We report

the membrane potential of the most excited neuron among the neurons situated along a line parallel to the stimuli and at 2 cells from it (x = 52). When a neuron on this

line reaches its threshold (at −50mV, see the dashed horizontal line), it means that a spiking cluster is created. (A–C) correspond to the 3 different MHs introduced in

Figure 2; their parameters K and β (from Equation 2) are indicated. For each MH, we report the results for the sizes presented in Figure 3. The vertical lines at the

bottom represent the input spike train. (D) Initial speed (averaged between 0 and 6ms) of the membrane potential (inmV/s) according to stimulus size for SA1–SA3.

The circles plotted on the curves denote that, for these stimulus sizes, the membrane potential reached the threshold before 30ms and led to one spiking cluster on

the neural field. (E) Speed of the membrane potential (in mV/s) between 30 and 90ms – if the threshold was not reached during the first rise – plotted according to

stimulus size. The circles plotted on the curves denote that, for these sizes, the membrane potential reached the threshold sometime after 30ms and there are two

spiking clusters on the map.
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Figure 4D shows the speed of this early rise (for the interval
between 0 and 6ms) for all stimulus sizes. This speed increases
until an optimal size (10, 12, and 8 cells for S1, S2, and S3
respectively) and then decreases to a plateau. The obtained curve
is analog to what is found with the firing rate of neurons in
surround suppression literature (Sceniak et al., 1999; Schwabe
et al., 2006). Empty circles on the curves indicate that the
threshold is reached before 30ms (i.e., a single spiking cluster
is observed). Hence we can see that close to the stimulus size
corresponding to the beginning of the plateau, the initial wave of
excitation starts to fail to reach spiking threshold. Interestingly,
in those conditions (size 20 and 42 of Figure 4A for instance), we
can observe that the early rise is transient. This transient nature
will be explained below with Figure 5 showing the dynamics of
excitatory and inhibitory influences. Interestingly, this transient
rise in the membrane potential echoes the transience observed
by Phongphanphanee et al. (2014) in the SCs as previously
mentioned (see their Figure 7A, left).

The two spiking clusters for larger stimuli occurred through a
late second rise in membrane potential after 50ms (e.g., size 42
and 30 for S2 and S3). By observing the curve for size 20 in S1
Figure 4A, we can see that a late rise in the membrane potential
occurs also for intermediate sizes, but insufficiently to produce
late spiking clusters (see also size 24 for S2 and sizes 16 and 38
for SA3), this corresponds to the complete activity suppression

shown on Figure 3. To examine this further, Figure 4E plots the
mean speed of the membrane potential averaged between 30 and
90ms to illustrate how the second rise varies over stimulus size.
The time window used catches the variation for S3 especially well
showing that the second rise of the membrane potential, like the
first, also has an optimal stimulus size after which the rise speed
decreases again and it fails to reach threshold (compare with the
Figure 3D).

Simulation Set 1: Effect of Input Dynamic
To get a better view of the dynamics of inhibition and excitation,
we compared these dynamics for a sustained input at 400Hz to
those for the transient input with a Gaussian profile as previously
used. Figure 5 shows the membrane potential of the neuron
showing the largest hyperpolarization near the stimulus in these
two cases (Figures 5A–C for transient input and Figures 5D–F

for sustained input) obtained with parameters of S3 (K = 1.2,
β= 8.0). It highlights that the dynamic of the initial transient rise
in membrane potential comes from a delayed wave of inhibition
(Figures 5B,C,E,F). Indeed, the weight of excitation is twice
larger than the weight of inhibition, giving an initial advantage
to the excitation which the inhibition later catches up due to
its larger decay time constant. Note that this wave of inhibition
comes from remote units (see Figure 2) and, so, does not appear
for small size (Figures 5A,D).

FIGURE 5 | Excitatory and Inhibitory Channels opening and membrane potential according to time for transient stimulation (upper graphs) and

sustained stimulation (lower graphs). Data from S3 (K = 1.2, β = 8.0) are shown here; similar curves can be obtained from the other conditions. The transient

input (A–C) is the one used in the previous simulations and corresponds to a Gaussian (see Fs in Inputs and Methodology). The sustained input (D–F) set Fs =

400Hz, e.g., the firing rate of the input stimulation is at 400Hz and constant over the time. The vertical lines at the bottom represent the input spike train. The tracked

neurons all come from the row at 2 cells from the stimulated neurons (x = 52). At each timepoint, the following measures are extracted from the neuron that has the

maximum membrane potential among the tracked neurons. The curve “V” is the evolution of the membrane potential over the time. “ge” or “gi” describe the evolution

of, respectively, the number of excitatory or inhibitory opened channels on the neuron’s membrane. However, for the sake of comparison, the number of opened

channels ge and gi are multiplied by a scaling factor. Indeed, for any value of V: |Ve-V| > |Vi-V| where Vi and Ve are, respectively, the inhibition and the excitation

equilibrium. Thus, an excitatory gate that opens always has more effect on V than an inhibitory gate. The scaling factors represent this difference by being
∣
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With the sustained input, we still observe a second rise in
the membrane potential; the inhibition curve still decreases after
having overtaken the excitation. As our recording takes place
toward the extremities of the stimulus—near the potential winner
loci—this decrease of inhibition thus comes from the decrease
of activity of the middle of the stimulus (see Figure 3B size 42,
and Figure 4C size 30, 38) silently losing the competition at
sub-threshold level.

For a stimulus size of 36, no spike cluster is observed in
this sustained input condition in opposition with the transient
stimulus condition (Figures 5C,F). As mentioned above, the
second membrane potential rise is weaker when using the
sustained stimulation. Counter-intuitively, this suggests that to
decrease or to stop the stimulation input—with the transient
stimulation—helped the membrane potential to reach the
threshold. Two pieces of explanation are that (1) as the neurons
are excitatory coupled, the most excited regions of the stimuli
self-sustain their firing longer than the others when our input
stops, (2) the most inhibited regions lose their only source of
excitation when our input stops. Then to stop or decrease the
input signal can accentuate disequilibrium in the competition
and facilitate a target selection outcome.

Simulation Set 1: Generalization to 2D
Stimulus Shapes
Our DNF-MH model of target selection map shows a
phenomenon of total activity suppression related to stimulus size
for 1D stimulus. Here, we generalize our observations to 2D

stimuli by testing the behavior of themodel when stimulated with
a circle and a rectangle of varying size.We used the referenceMH
(S1, K = 1.2 and β = 6.0).

Figure 6 shows results obtained for these tests conducted with
2D shapes. Columns 1 and 3 show average firing rate over the
simulation period and columns 2 and 4 contain the spikes train
of neurons on the diagonal of the map. Similar phenomena of
activity suppression to those for the 1D stimulus are observed:
spiking clusters did not emerge for size 18 for the square and
for sizes 20–26 for the circle. Additionally, for further increases
of size, several clusters appear: from sizes 20 (square) and 28
(circle) four spiking clusters emerged (Note that activity for the
circle segregates into 4 regions because the pixelation of our
map, theoretically no point on a disk would be advantaged on a
continuous competition field). Especially, in the case of the circle,
these clusters tend to move as if they are repulsed from the center
(lower panel of the column 4). This repulsion becomes weaker
with size until a new spiking cluster emerges at the center in
addition of the four on its corners (not shown).

The spike trains (columns 2 and 4) also allow observing a
latency increase for clusters appearance when increasing the size.
For smaller sizes, below 18 (square), and 20 (circle), the unique
cluster appears with almost no delay with respect to the onset of
the stimulation. Conversely, when spikes appear for larger sizes,
whether they finally disappear (size of 18 for the square or of 20–
26 for the circle) or are part of stable spiking clusters (larger sizes),
there is a short latency period of approximately 10ms before their
appearance. This latency increase is similar to the one observed

FIGURE 6 | Generalization of the effect of size to 2D stimulus shapes. Column 1 and 3 show the average spike frequency (firing rate) in the neural map in Hz.

The column 2 and 4 show the spikes train of neurons according to time. The red vertical lines at the bottom represent the input spike train. The recorded neurons are

those forming the diagonal of the neural field from the position (25, 25) to the position (75, 75).
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when a 1D stimulus resulted in two clusters (see above) but of
lower value: the latency increase for the 1D stimulus was around
70ms. Finally, the first burst of spikes and the following gap (just
at the beginning of the stimulation; middle and lower panels in
the columns 2 and 4) can be respectively related to the initial rise
of membrane potential and to the wave of inhibition seen with 1D
stimuli. These differences can be explained by the greater number
of neurons interacting, which speeds and strengthens excitatory
and inhibitory influence. Hence, apart from this difference in the
latency, results for 2D shapes are similar to those obtained for the
1D stimulus (line).

Simulation Set 2: Spatial Interactions
Figure 7B shows a summary of the results for these simulations.
The spiking clusters produced by the model indicate which locus
has been selected as a target. Its deviation from stimulation

B is shown as a function of distance between the two loci of
stimulation. Negative values correspond to a deviation toward
the locus of A. The three curves correspond to the three different
intensity of stimulation tested for the point A (1333, 2000,
4000mV; B is always stimulated with 4000mV). Filled symbols
indicate that only one spiking cluster was present on the network
and open symbols that two clusters survived.

In the case of equal strength for both stimulations (green
curve), for the first distances up to 14 cells, we observed one single
resulting cluster (fusion phenomenon) that was in between the
two stimulation loci (see panel A1 Attraction). That observation
can be related to the activation merging found by Vokoun et al.
(2014) in the SCs (see their Figure 3). Then for two following
distances (16 and 18 cells), a complete suppression of activity on
the map was observed (see panel A2 Suppression). Finally, from a
distance of 20 cells up to the largest tested distance (40 cells), two

FIGURE 7 | Interaction between two stimulation induced bumps according to their distances. The magenta dot in (A,C) represent the position of stimulation

B, while the green dot represents the stimulation A. The white dot in (A) is the center of gravity of the spiking cluster the nearest from stimulation B. Subplot (B)

describes the deviation of that center of gravity (white dot) from the stimulation B (magenta dot) on the x-axis. Filled dots denote there is only one spiking cluster on

the map, while the unfilled dots denote there are two spiking clusters on the map. The simulation was run for different distance between the stimulation A and B

(x-axis), and for different strength of the stimulation A (curves red, blue, and green). Note that subplot (A) shows an average of the firing rate over the simulation while

subplot (C) shows an average of the membrane potential over the simulation.
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clusters are produced and the closer to the site of B is repulsed
in the opposite direction with respect to A (positive values on
y axis of the panel B). The panel A3 allows us to see that the
same repulsion was observed for the cluster close to the A site.
This repulsion phenomenon decreased as the distance between
the two stimulating sites increased.

When stimulation B was stronger than stimulation A (blue
and red curves), in almost every case only one cluster was
produced: a winner-take-all mechanism occurred and selected
a locus near stimulation B. Nevertheless, a deviation toward
stimulation A is still observed up to the distance 16 cells: the
spiking cluster appears in between the two stimulations. Note
here that the selected locus is closer to the strongest stimulation
and that it gets closer when the latter gets stronger. That bias
toward the strongest stimulus is also observed in Vokoun et al.
(2014). For larger separation distances, the winning cluster
remained localized near site B. This result goes in line with the
results of Phongphanphanee et al. (2014): when the stimulations
are close enough, an activation is present at A and B sites while
when the stimulations are more distant, no activity is recorded
close to the stimulation A (the weakest) and a normal cluster is
observed close to the stimulation B (the strongest). Nevertheless,
the winner-take-all mechanism is not perfect: the selected locus
is near to B but not aligned with it. Indeed a deviation away from
stimulation A occurred, similar to what we observed with equal
strength simulations.

Panels C1 and C2 show this winner-take-all phenomenon.
However, for the last tested distance with A = 2000mV (40

cells), the activity at A escaped from the inhibition influence
of the stimulation B and two clusters emerged (panel C3). This
may be seen as a fail to select one target from the two input:
the stimulation A overcomes the surround inhibition—which
decreases with the distance in that range of distances—and
stimulation B gives rise to its own spiking cluster. That does not
occur for the condition 4000–1333mV, where the stimulation A
is too weak to overcome the inhibition even at such a distance.

Simulation Set 2: Tight Competition and
Addition of Noise
Our previous results for two stimulation inputs of exactly same
strength show that for a given range of distances a complete
suppression of activity is observed. This corresponds to a failure
for the DNF-MHmodel to select only one target. One can suggest
that this failure of the winner-take-all is due to (1) the absence of
noise in our model or (2) the unnatural exact equality of the two
stimulations in competition.

We tested here if the previous results, notably the suppression,
can be obtained with the addition of noise and for close
competition (3500mV vs. 4000mV).

The Figure 8 shows the results of one simulation with these
conditions. The results are strongly similar to those obtained in
the simulation without noise. The addition of noise, even if it
helps to get only one winner (compare distance 20 and 22 in
Figures 7B, 8), does not prevent the occurrence of two-winners
and no-winner situations in the 4000mV–4000mV condition.
Interestingly, the condition 4000–3500mV (dark blue curve)

FIGURE 8 | Interaction between two stimulations according to their distances, with noise, and with an additional condition (4000–3500mV) testing for

tight competition. Same description as for Figure 7B.
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shows that we can also obtain activity suppression (Figure 8)
when the two stimulations are not exactly of the same strength.
This occurs for distance 16 and 18 cells, similarly to the equal
strengths condition. However, in this case, the two-winners
situation is not observed directly after the suppression phase.
For some distances, the curve is similar to the one obtained in
the condition 4000–2000mV. Nevertheless, finally stimulation A
succeeds to give rise to a spiking cluster because the inhibition
from stimulation B gets smaller after a certain distance (refer to
the shape of a MH curve, Figure 2). Here, stimulation A being
stronger than in the 4000–2000mV condition, it overcomes the
inhibition of B (i.e., it results in two clusters) at a smaller distance.

DISCUSSION

The aim of the present study was to get further insight into
the properties—and their consequences for saliency or target
selection—of Dynamic Neural Fields based on a Mexican hat
kernel (DNH-MHs) in the specific case of short inhibitory
influence. Indeed, this type of lateral connection has been
recently demonstrated for a classical biological example of
DNF-MHs, the superior colliculus (SC; see Introduction). We
designed a simple one layer model implementing the most
recent data concerning lateral interaction in this neural structure
(Phongphanphanee et al., 2014) and we tested its properties.
We observed that certain stimulus sizes could lead through
center-surround interactions to a complete suppression of the
network activity, while larger sizes led to multi loci selection.
This complete suppression, which led to no target selection, also
occurred when two stimulations were presented simultaneously
within a certain range of distances. For smaller distances, the
model selected a position in-between, closer to the strongest
stimulus (attraction/fusion), while for larger distances the model
selected two loci that were deviated away from the stimuli
positions (repulsion).We discuss these results of suppression and
spatial deviation (i.e., attraction/fusion and repulsion) obtained
here in view of neurophysiological, modeling and behavioral
previous findings.

Suppression Phenomena: Neurophysiology
Results
It may seem counterintuitive to observe complete suppression
on a saliency map for large stimuli of interest. This result can
nevertheless be related to previous neurophysiological, modeling
and behavioral findings in the visuo-oculomotor system and may
help to disentangle unanswered questions.

Suppression phenomena in which larger stimuli produce
lower activity than smaller ones are well described in sensory
systems and especially in the visual system (Allman et al.,
1985; Sèries et al., 2003). Most of the time a decrease in
the response is observed (either a decrease in the frequency
of the response or/and in the number of spike emitted; see
Hubel and Wiesel, 1968), rather than a complete suppression
as observed here. Nevertheless, phenomena of total suppression
have also already been reported in physiological recordings.
Goldberg and Wurtz (1972) showed a complete suppression
of SCs response when increasing the size of a visual stimulus

(see their Figure 4). Additionally, more recently, in a study
on SCs receptive field, Wang et al. (2010) reported that the
activity of SCs neurons was completely suppressed for large
stimuli centered on the tested neurons (see their Figure 5).
Our study brings some clues concerning mechanisms underlying
these suppressive phenomena. Indeed, their neural substrates
remain debated (Sachdev et al., 2012). The origin of the
suppression is proposed to be due to (1) a decrease of feedforward
activation (2) interactions involving local lateral connections or,
finally, (3) feedback connections from higher areas. The present
study confirms, on a theoretical ground, that center surround
interactions in a single layer based on the most up to date
physiological evidence from SC is sufficient to provide total
suppression of the response for a certain range of stimulus sizes.

For any given surround suppression phenomenon, other
observations in the present work provide predictions to test
the hypothesis that it might be driven by short inhibitory
lateral connections. First, increasing the size of a line stimulus
should lead, after the suppression phase; to the reappearance
of activation clusters on sites corresponding to extremities (see
Figure 3). Second, this reappearance should be observed with
a significant latency increase if a delayed wave of inhibition is
present (see Figure 4). Third, when two stimulations are tested,
maximal activity suppression should also be observed for a
specific distance (see Figure 7).

Suppression Phenomena: Modeling
Results
Similar models with MH connections have already been
suggested to reproduce surround suppression (Sceniak et al.,
1999; Schwabe et al., 2006; Spratling, 2010). Only Sceniak
et al. (1999) also showed total suppression (see their Figure
2F). Nevertheless, none of them were constructed with spiking
neurons. Further, than the effect of the spatial organization of
inhibition and excitation, our work gives an insight in how
the dynamic of the inhibition and excitation can shape the
suppression. In the present model, it is a delayed wave of
inhibition—i.e., after an initial rise of membrane potential—
which drives the surround suppression. A change of the
inhibition time constant would modify the suppression effect.
This dynamics of the membrane potential during the surround
suppression phenomenon could be investigated in experimental
intracellular recordings and, if matching those observed in the
present study, be used to infer the inhibition time constant of the
local circuitry.

Finally, our results suggest an optimal size of visual stimuli
which minimizes the latency to trigger a spiking cluster
(Figure 4D) in our target selection model. This is in line with
the modeling work of Marino et al. (2012)—see their Figure 6F—
who were working with a population rate model and an arbitrary
threshold to trigger saccades. They also observed a U-shape
relationship, but didn’t observe a total suppression.

Suppression Phenomena: Behavioral
Results
If the suppression phenomenon observed in our model exists
in the oculomotor system, this predicts that large stimuli
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will lead to fewer saccades with short latency than would
small stimuli. Ploner et al. (2004) observed this type of
effect in a behavioral study: saccades with short latency were
less numerous for large targets (10◦), whereas saccades with
short latency were more frequent for small target sizes (1◦).
More precisely concerning this latency question, the U-shape
curve for the relationship between the membrane potential
evolution speed and the size of the stimulus (Figure 4D,
see also Figure 6F of Marino et al., 2012) is in line
with the relationship shown by Boch et al. (1984) between
express saccades latency and the size of the target (see their
Figure 5).

The observed suppression would similarly predict that
larger distracting stimuli could paradoxically interfere less with
saccades to a nearby target than might smaller distractors.
Such a pattern was observed by Tandonnet et al. (2012). Their
work focused on the Global Effect, which is the tendency for
saccades to land in between to nearby visual stimuli (Findlay,
1982). Using a target-distractor couple, they found a U-shaped
curve for such deviation while increasing the distractor size:
first the distractor is too small to have a strong influence,
then its increase in size makes its influence grows, but from
a given size its influence begin to decrease. This loss of
weight for larger stimuli could be explained by a decreased
response in a saliency map such as the SCs or the LIP. Finally,
the results of Van der Stigchel et al. (2012) consisting in a
smaller extent of the global effect for large stimuli may also be
explainable by a suppression of large stimuli. Note that while
Tandonnet et al. (2012) observed the average shift of the landing
positions, Van der Stigchel et al. (2012) observed the split from
unimodal to bimodal distribution. All these results suggest that
different degrees of suppression are observable at the behavioral
level. It remains to be investigated whether total suppression
phenomena can also be detected—for single stimulus, and for two
stimuli.

Spatial Deviation: The Fusion Effect
Our DNF-MH demonstrates deviation of the spiking
clusters from the initial input locations. Such deviation
can be detrimental, for instance, when the DNF-MH is
used as a target selection map which has to select among
different points of interest sent by satellite structures.
Indeed, with such deviation, the selected target would
not correspond to any prior points of interest. We
discuss here whether these deviations have already been
observed at the neurophysiological, modeling or behavioral
level.

When the model is stimulated at two nearby locations a
single spiking cluster emerges in-between them. The cluster is
closer to the stronger stimulation location—in proportion to
its relative strength—and it is of the same width as spiking
clusters induced by a single stimulation. This phenomenon of
attraction (and fusion) was described for the first time by Amari
(1977) in a DNF-MH based on a firing rate neuron model.
In the context of the spatial working memory, Compte et al.
(2000) proposed a model consisting in a one dimensional DNF
with a MH connectivity pattern. Interestingly this group recently

demonstrated that this model could lead to phenomena of
attraction and fusion (Almeida et al., 2015). The findings of the
present study extend these previous observations to a 2D spiking
neuron networks.

On the behavioral side, the tendency for saccades to land
in between two simultaneous and nearby visual stimuli is
known as the Global Effect or saccade averaging (Findlay,
1982). Concerning the neurophysiological approach, Glimcher
and Sparks (1993) showed that this fusion phenomenon could
occur in the SCi when an intermediate saccade is made between
two visual stimuli presented simultaneously. Edelman and Keller
(1998) added that this could be the case for saccades of latency
in the average range while two distinct bumps of activity
would stand on the SCi for shortest latency saccades. However,
whether a fusion of activity in the SCs or the SCi can explain
the Global Effect is still matter of debate. Arai et al. (1994)
implemented a saccadic system model using a DNF-MH to
simulate the SC layers. Their model took into account the SC
spatial compression and, in their test using fusion to explain
the Global Effect, one can notice hypermetria (overshoot) of
the output saccade (see their Figure 10). Katnani and Gandhi
(2011) brought further insight for that result: when the DNF-
MH phenomenon of fusion is applied in SC space (Note that
the SCs and SCi are assumed to have to an equivalent mapping;
cf. Schiller and Stryker, 1972), this would lead systematically
to overshooting averaging saccades in external or retinotopic
space. On the other hand, they demonstrated that a vector
averaging of two steady bumps of the SC space would lead
neither to a hypo- nor a hypermetria. They, however, note
that if the phenomenon of attraction could lead to a wider
bump of activity (wider on the axis formed by the two input
stimulations, leading to an elliptic shape), the hypermetria would
be corrected.

Recently, Vokoun et al. (2014) have reported in their work
applying photodiode stimulations that on a coronal slice of
the superficial layers of the rat SC- “simultaneous stimulation
of two nearby sites resulted in a single, merged peak centered
between the two sites.” They suggest that such a phenomenon
could explain the Global Effect. Importantly, they observed
that an activity bump induced by the simultaneous stimulation
of two loci is wider than an activity bump induced by
a single stimulation. That results interestingly echoes to a
previous behavioral study observing that larger visual stimuli
can lead to a wider distribution of saccade landing positions
(Tandonnet and Vitu, 2013). Under the considerations of
Katnani and Gandhi (2011) this spread of activation could
correct the hypermetria issue discussed above, but it is
important to note that a single layer bistable DNF-MH model
such as ours could not replicate such a spread of activity–
because the size of the spiking cluster is set by the width of
the MH.

Spatial Deviation: The Repulsion Effect
When two clusters of activity were induced by two stimuli,
they tended to deviate away from each other (see Figure 7).
Here also both the early work of Amari (1977) and the
recent study of Almeida et al. (2015) already observed this
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phenomenon in 1D models. Again our results allow to extend
these findings to a 2D situation. To evoke this repulsion
phenomenon, Amari (1977) explains that bumps of activity
tend to climb up inhibition slopes. Then, the repulsion
is reserved to MHs which have a range short enough to
allow a stimulation to “climb” the outer inhibition slope of
another.

Concerning the behavioral level, Wang et al. (2012) as well
as Wang and Theeuwes (2014) suggest that if this phenomenon
is present in the SC, it could explain the trends of saccade
trajectories to deviate away from a distractor. Wang and
Theeuwes (2014) also report a shift of the landing positions
away from the previous fixation stimulus when varying its
timing which might be explained by repulsion. However,
to the best of our knowledge, repulsion in the bimodal
distribution of landing positions to two simultaneously presented
stimuli or in the internal representation of stimuli position
has never been observed. This may be due to the difficulty
to track back a phenomenon occurring in the SCs from
behavioral data. For instance, the strongest repulsion effect
we observed occurred when there are two spiking clusters
emerging on the map. Nevertheless, if there is vector averaging
downstream, at the behavioral level only a Global Effect might be
observed.

Finally, at the neurophysiological level, Vokoun et al. (2014)
studied activations in coronal slices of the superficial layers
of the rat SC after concomitant stimulation of two sites.
They did not observe any repulsion (nor any suppression)
effect despite the exploration of numerous distances between
the two stimulated sites. Hence, even though evidences have
been found recently for a local Mexican hat kernel in the
SCs (Phongphanphanee et al., 2014), the lack of concordance
between the present study results and Vokoun et al. (2014)’s
results questions if the SCs can be modeled with a simple
DNF-MH (see also the end of the previous Section Spatial
Deviation: the Fusion Effect). However, a possible alternative
to explain this lack of concordance is that the coronal slicing
used by Vokoun et al. (2014) may have damaged part of
the lateral inhibition system altering the MH kernel, its size
and its properties. Hence, further neurophysiological works are
required to shed more lights on (1) the link between fusion of
activity in the SC layers and Global Effect, and (2) on what
extent those natural phenomena can be modeled with a simple
DNF-MH.

CONCLUSION

We constructed a DNF-MH integrating short range MH
connections based on recent results obtained in the superficial
layers of the SC, and we tested how it performs in very simple
target selection tasks: (1) the localization of a single stimulus of
different sizes; (2) the selection and localization of the strongest
of a pair of stimulations.

Our work demonstrates that even a short range inhibition
(i.e., only slightly larger than the excitation; ratio of 1.2)
can enable a selection dynamic. However, it also highlights
noticeable phenomena emerging from the model during those

tasks: suppression, multi-spot selection, attraction/fusion, and
repulsion. If the DNF-MH is used as a target selection map as
it is thought to be the case for the SCs, such attraction and
repulsion would impair the spatial precision of the selection
while the suppression would delay or hinder selection. In short,
those properties suggest that the SCs is an imperfect winner-
take-all selection system. At the same time, those properties
constitute a collection of testable predictions to verify this point
and the pertinence of using a DNF with short range MH to
model the SCs. In parallel, future modeling work may investigate
whether the phenomena we observed survive more advanced
implementations of the SC dynamics. Notably, (1) when one
implements the transient visual burst dynamics in SCs; (2) when
one implements the SCi layer and the motor executions. Finally,
results obtained in the present study have been obtained with
activity in the range of what can be observed in the SC (up to
600Hz). Further work remains to be done to explore what would
be observed in DNF with lower maximum frequency.

Interestingly, attraction and repulsion phenomena have
recently been reported when using DNF-MHs in spatial working
memory tasks, and they have been successfully related to actual
behavioral imprecisions (Almeida et al., 2015). Those results
support the point that DNF-MHs are imperfect winner-take-all
systems and relevant models of biological networks at the same
time.
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