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Laboratoire de Mécanique et Technologie, ENS Cachan/CNRS-UMR 8535/Univ. Paris-Saclay,
61 Avenue du Président Wilson, 94235 Cachan cedex, France

(Dated: June 15, 2016)

Based on the assumption that the time evolution of a sample observed by computed tomography
requires much less parameters than the definition of the microstructure itself, it is proposed to
reconstruct these changes based on the initial state (using computed tomography) and very few
radiographs acquired at fixed intervals of time. This paper presents a proof of concept that for
a fatigue cracked sample, its kinematics can be tracked from no more than two radiographs in
situations where a complete 3D view would require several hundreds of radiographs. This two order
of magnitude gain opens the way to a “computed” 4D tomography, which complements the recent
progress achieved in fast or ultra-fast computed tomography, which is based on beam brightness,
detector sensitivity, and signal acquisition technologies.

PACS numbers: 81.70.Tx; 87.57.Q-; 06.30.Bp

Away from medical and biological applications [1], 3D
imaging has revolutionized materials science [2–4]. From
imaging aiming at visualization to a more quantitative
assessment of material morphology, from synchrotron fa-
cilities to lab scale equipments, from several hour scans
to ultra-fast acquisitions lasting no more than a frac-
tion of a second, X-ray Computed Tomography (XCT)
is becoming an easily accessible, friendly and perform-
ing technique. For applications such as metrology and
nondestructive testing, it is also becoming much more
common in industry.
In the recent years, one striking trend is the recourse to

4D imaging to track in time the microstructure of a sam-
ple [4–6]. The fantastic achievements (e.g., tomography
of metal solidification [5] or even of live flying insects [7])
have been made possible only through the development
of fast data acquisition techniques.
It is natural to draw a parallel with the large data flow

to be handled in movies. Storing every single time frame
on its own is highly redundant. The (t + 1)-frame is
usually very close to the (t)-frame and hence storing the
complete (t)-frame and the “sparse” difference between
times (t + 1) and (t) requires much less data than both
images independently as evidenced in movie compression
standards [8]. Based on a similar observation, Ref. [9]
recently proposed denoising strategies with subset-based
restoration techniques in 3D plus time in order to com-
pensate for the missing information due to fewer projec-
tions. The efficiency of movie compression lies in the
“sparsity” of the difference (especially when motion is
accounted for) that has to be described in a suited lan-
guage. Pushing the analogy into the field of tomography
suggests that after the full 3D state of a sample in its ini-
tial state has been acquired, it is possible to reconstruct
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only the differences between two consecutive 3D images
from much fewer projections. The present study aims at
exploring this route, whereby an enhanced 4D rate would
be obtained algorithmically through a specific reconstruc-
tion rather than from the acquisition equipment. Only a
single time step is considered in the present paper while
further indications for 4D are given in the Supplemental
Material [27]. In practice, both software and hardware
strategies should be combined rather than opposed to
reach extreme time resolutions.

Tomography consists of computing the 3D image f(x),
such that for a large set of directions θ, the projec-
tion (i.e., integral of the X-ray absorption coefficient)
matches the acquired projection p(r, θ) (i.e., cologa-
rithm of the beam intensity received at pixel r on the
detector, normalized by the beam intensity at the same
detector position without sample)

Πθf(x) = p(r, θ) (1)

where Πθ is the projection operator.
Mathematically, the reconstruction problem corre-

sponds to a Radon transform relating the 3D image f(x)
to p(r, θ) that is to be inverted. Solving for f(x) from
p(r, θ) is a well-mastered problem for which different al-
gorithms are known with their respective merits [10]. In
discrete form, the sampling in angle θ should be cho-
sen such that the maximum displacement of a voxel in
f(x) between two consecutive angular positions should
be smaller than a detector pixel size, thus leading to a
number of angles proportional to the diameter of the sam-
ple (measured in detector pixels). Hence, a tomographic
image whose cross-section is Nx × Nx pixels with e.g.,
Nx = 1, 000 requires usually about Nθ ≈ 1, 600 projec-
tions. Algebraic reconstruction techniques can help re-
ducing Nθ although it cannot be less than Nx without
further assumptions on the image texture.

As a side remark, let us note that prescribing fur-
ther constraints on the to-be-reconstructed image such
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as discreteness of gray levels [11] down to binary im-
ages [12, 13], sparse non-zero pixels [14] or sparse bound-
ary between constant value domains [15] may constitute
a very efficient way of reducing the number of needed pro-
jections, compensating for a lack of projection data with
specific a priori assumptions. In contrast, the present
study aims to address arbitrary images.

Many different scenarios may be considered for describ-
ing the time evolution of a studied sample, a generic cat-
egory of which is motion, including deformation. One
classical tool used to quantitatively study such an evolu-
tion is Digital Volume Correlation (or DVC [17, 18]), an
extension to 3D images of Digital Image Correlation [16].
This technique consists of registering two 3D images ac-
quired (or reconstructed) at different times, t0 and t1,
by accounting for a displacement field u(x; t1, t0). As-
suming the image texture has only been subjected to
a geometrical transformation, the following DVC func-
tional operating on an arbitrary displacement field v(x)
is introduced

TDV C [v] =

∫
(f(x, t0)− f(x+ v(x), t1))

2
dx (2)

Global DVC [19] further constrains the displacement field
to be a linear combination of a chosen set of fields φi(x)
for i = 1, ..., Nv

v(x) =
∑
i

viφi(x) (3)

A general example of kinematic bases well suited to me-
chanical modeling is those used in the framework of the
finite element method. A mesh supporting finite element
shape functions can be used, thereby ensuring displace-
ment continuity (higher regularity can be chosen accord-
ing to the shape function order). Finally, the displace-
ment field is obtained from the minimization of the above
functional [16]

uDV C(x; t1, t0) = Argminv (TDV C [v]) (4)

with respect to vector v gathering all unknown ampli-
tudes vi. Let us stress that the number of parameters Nv

needed to describe the kinematics is always much lower
than the number of voxels in the 3D images, opening the
way to reducing the number of projections.

Because the reference state is typically the rest state,
time is available for carrying out a complete 3D image
at time t0 using as many projections as needed to ob-
tain f(x, t0). For later times, only a few projections are
assumed to be available, which would not be sufficient
to reconstruct the corresponding 3D volume. For any
displacement field v(x), the full 3D image f(x, t0) is ad-
vected to a deformed state that should be compared with
known projections. Registration is now evaluated from

the projection based residuals only

TP−DV C [v] =

∫
(Πθf(x− v(x), t0)− p(r, θ, t1))

2
dx

(5)
and the Eulerian displacement field is the minimizer of
this functional

uP−DV C = Argminv (TP−DV C [v]) (6)

Because an accurate computation of the projected de-
formed volume is needed, this approach is not easily ex-
tendable to “local tomography”.

Such an approach (referred to as P-DVC in the fol-
lowing) was originally proposed in Ref. [21] and tested
on a simple geometry where the strain magnitude was
very small, so that a rigid body motion revealed to be
a fair approximation. It was observed that although the
basic principles of the methodology were sound, the un-
certainty of the measured displacement field was larger
along the boundaries of the solid because the mesh had
to strictly enclose the actual sample, and because, at the
boundaries, phase contrast effects are present although
neglected in the reconstruction. Moreover, it was also
noticed that fine meshes led to numerical instabilities due
to ill-conditioning. Thus, it is legitimate to ask whether
the method would resist to a much more difficult test in-
volving a complex kinematics and requiring a fine mesh.

To make the problem well-posed, the effective number
of degrees of freedom has to be reduced, yet it is im-
portant to be able to deal with a fine mesh to precisely
account for the sample geometry and kinematics. One
way to satisfy these two opposite requirements is to con-
sider soft Tikhonov regularization [20]. This implies a
penalty to be added to the functional TDV C as the dis-
placement field departs from an expected property. Clas-
sically, terms like the amplitude of the displacement ∥u∥
or of the norm of its gradient are used, although they
introduce unphysical bias. It is preferred to introduce a
penalty to deviations from the solution to a homogeneous
elastic problem [22–24]. Introducing the (infinitesimal)
strain tensor ε = (1/2)(∇u+ (∇u)t), Hooke’s tensor C
that relates stress σ and strain, σ = C : ε, the balance
equation in the absence of body forces, ∇ ·σ = 0, shows
that the elastic displacement field obeys the second order
homogeneous differential equation ∇ ·C : ∇v = 0. The
choice is made to introduce a penalty on the quadratic
norm of the left member of this equation, referred to as
the equilibrium gap, which reads

TReg[v] =

∫
∥∇ ·C : ∇v∥2 dx (7)

Adding the two contributions TP−DV C and TReg nat-
urally selects a length scale. To make it more explicit,
and hence easy to tune, a specific displacement orien-
tation w0 and wavevector k0 are chosen. Based on the
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trial displacement field v0(x) = w0 exp(ik0 ·x) the total
functional is written as

TTot[v] =
TP−DV C [v]

TP−DV C [v0]
+ (|k0|ξ)4

TReg[v]

TReg[v0]
(8)

The meaning of regularization length ξ stems from the
above expression, namely, at long wavelengths, TP−DV C

is dominant and hence image registration determines the
displacement, whereas at short wavelengths, the regu-
larization length produces a smooth and differentiable
displacement field. If a large ξ is not faithful to reality
then the residuals will display a large value, motivating
for lowering ξ down to values such that the residuals are
comparable with the residual level observed for the refer-
ence image where the displacement is null. A much more
extensive discussion on regularization is provided in the
Supplemental Material [27].
Let us stress that the above regularization does not

require the specimen to strictly obey linear elasticity.
Rather, it may be seen as a filter that dampens abrupt
displacement gradients with reference locally to the so-
lution to an elastic problem. Let us note that a viscous
fluid, a visco-elastic solid, or a material exhibiting plastic-
ity, viscoplasticity or a damage behavior would all locally
display an incremental relationship between strain and
stress rates that has the same algebraic form as that of
an elastic problem, with the difference of being spatially
heterogeneous. Therefore at the expense of being locally
less precise than using a complete mechanical modeling,
the above filter appears to be very generic. It is to be
noted that the limit of an infinite regularization length
ξ is well-defined, namely, the problem consists of solv-
ing for the minimization of TP−DV C [v], Equation (5),
for v in the regularization kernel, TReg[v] = 0. The elas-
tic problem itself is well-posed once boundary conditions
are set, and hence the problem reduces precisely to the
determination of the boundary conditions. The regular-
ization length ξ can also be tuned down to small values,
comparable to the element size, so that regularization is
essentially deactivated. In the first limit, the number of
effective degrees of freedom are those accounting for the
boundary conditions (i.e., nodes on the surfaces where
displacement is to be set), whereas in the second one, all
nodes of the mesh have an unknown displacement vector.
The limitation of the latter case is that the conditioning
of the problem will get poorer as ξ decreases, and a pos-
sible remedy would imply an increase of the number of
needed projections. Yet, for a very small size such as
ξ = 10 voxels, the number of effective independent de-
grees of freedom is of the order of 300 times less than the
number of voxels, thus potentially leading to more than
two orders of magnitude gain in the number of projec-
tions. The effect of tuning the regularization length is
illustrated in the Supplemental Material [27].
The following example describes the application of the

proposed strategy to a real test case in order to demon-

FIG. 1. Nodular graphite cast iron sample and superimposed
fine mesh. The sample is in its reference state for a 12 N
tensile load

strate that the above strategy works with no more than
two projections, and this for a specimen containing a
crack where a very fine mesh is to be utilized.

A cast iron sample, containing well dispersed 50-µm
nodular graphite particles, was subjected to a cyclic load-
ing so that a fatigue crack propagates throughout a large
portion of the cross-section. The test was performed
in-situ at the European Synchrotron Radiation Facility
(ID19 beamline, 60 keV energy) so that a series of tomo-
graphic images could be acquired at different stages of
loading and/or crack growth.

The region of interest size is 1.67 × 1.72 × 2.59 mm3

or 330× 340× 512 voxels, with a voxel size chosen to be
5.06 µm. A full reconstruction requires Nθ = 600 pro-
jections. Several volumes were imaged at different load
levels (50, 100 and 140 N). In the following the selected
pair of states is chosen after 30,000 cycles (close to failure
that occurred after 50,000 cycles). The reference state is
chosen at a small but non-zero tensile load of 12 N to
cancel out possible plays of the tensile stage. The de-
formed state was that obtained for the highest load level
(i.e., 140 N) for the test to be discriminating.

The trace of the crack was visible on the reference state
of the sample and hence it was possible to segment the
crack and produce a fine mesh where the two crack faces
have been separated. Figure 1 shows the mesh super-
imposed onto the microstructure. It consists of 4-noded
tetrahedron (i.e., T4) elements with about 2,100 nodes
and 8,500 T4 elements. At the crack tip the mesh was re-
fined with element sizes down to 15 voxels. Alternatively
an X-FEM [25] strategy could have been used.

The minimization of the total functional based on pro-
jections is considered. The limit of the regularization
length ξ tending to infinity is selected so that the only
unknowns are the boundary conditions along the top and
bottom faces. The latter sections are moreover consid-
ered as rigid so that only 12 unknowns remain to be
determined. The number of projection directions (cho-
sen to be perpendicular) that are considered is Nθ = 2.
Let us stress that imaging the entire volume required
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FIG. 2. Difference between actual projections of the deformed
state and projections of the corrected reference volume. The
left and right views are the two projections that are used for
P-DVC

more than two orders of magnitude more numerous ra-
diographs, Nθ = 600.

The determination of the displacement field was ob-
tained from the minimization of the functional Ttot us-
ing a Newton-Raphson procedure. Convergence was ob-
served to be reached within about 5 iterations only.

One way to evaluate the quality of the procedure is to
consider the difference between the two projection im-
ages whose quadratric norm is the integrand of Equa-
tion (5). These differences, called “projection residuals”,
are shown in Figure 2. Qualitatively, it is observed that
most features of the projections have disappeared in the
residuals, but the projection of the crack whose morphol-
ogy is only approximately captured by the mesh, and
where phase contrast effects — not modeled in the pro-
cedure — are expected. Quantitatively, the gauge to in-
terpret faithfully the level of residuals is provided by ap-
plying the P-DVC procedure to a deformed state that is
chosen as the reference. The displacement is identically
null, yet the projection of the reconstruction in the two
chosen directions is never exactly equal to the recorded
projections because of acquisition imperfections, as well
as reconstruction or projection biases. These baseline
residual levels amount to a Signal to Noise Ratio, SNR,
of about 31.5 dB for the projections. The same estimate
for the actually deformed sample leads to a SNR ≈ 30 dB
which is only about 1.5 dB lower. Hence reconstruction,
projection, and interpolation are responsible for most of
the remaining residuals, thereby validating the registra-
tion process.

The initial claim was that the proposed technique
would allow to track the entire 3D volume although only
two projections were used. In the discussed example,
the entire set of 600 projections had been acquired, so
that one may directly compare the reference volume ad-
vected by the estimated P-DVC displacement field and
the direct reconstruction of the deformed volume. These
two volumes and their difference are shown in Figure 3.
The difference between the volumes reveals mostly recon-
struction artifacts that impact differently the two proce-
dures, and slight inaccuracies in the description of the

FIG. 3. (left) Advected reference volume using the P-DVC
estimated displacement field; (right) Reconstructed deformed
volume; (center) Absolute difference between the two preced-
ing volumes

crack geometry from segmentation and meshing. The
SNR estimated on the reconstructed volume amounts to
24 dB, to be compared to 25 dB when the displacement
field issued from standard DVC (based on volumes), and
30 dB when the proposed P-DVC is applied to the ref-
erence volume itself, and the displacement field (that
should ideally be 0) is used to “correct” the volume. Sim-
ilarly, the RMS difference between displacement fields
obtained from P-DVC and standard DVC amounts to
0.18 voxel. The Supplemental Material [27] presents ad-
ditional details on the influence of the chosen reconstruc-
tion procedure, mesh fineness, or regularization length
for this experimental example.

It has been shown that considering (even complex)
kinematics regularized through an equilibrium-gap elas-
tic penalization as a regularization allowed for tracking
the time evolution of a loaded cracked sample. In this
experimental test case, the number of projections was
reduced from 600 down to 2. The low level of residuals
and the very good agreement with standard DVC consti-
tute a validation of the proposed principle.

The presented analysis is based on the assumption that
the temporal evolution of the specimen is due to motion
and that this motion can be (at least at small scales)
approached by an elastic problem. Cases where the mi-
crostructure topology changes — as when a new phase
appears (e.g., void nucleation), when two features merge
into one (coalescence) or when an unexpected crack ini-
tiates — fall out of the scope of the proposed formal-
ism. However, it is believed that the general philoso-
phy remains valid, namely, provided the evolution can
be modeled faithfully, with a number parameters that
is much smaller than the voxel number, then matching
virtual (computed) projections with a set of few actual
projection allows to track the time evolution with few ra-
diographs, and hence at a high rate. This methodology
opens the way to an enhanced temporal resolution, i.e.,
4D tomography, based on a data processing approach and
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I. ELASTIC REGULARIZATION

I.1. A simple 1D analogy

Let us propose a simple analogy in 1D rather than 3D,
where the motion is described with a displacement field
being a 1D function v(x). Let us assume that the true
displacement, u(x), is given, and no specific properties
are assumed. The effect of image registration can be
mimicked by an “attachment to data” term such as

T1(v) =

∫
(u(x)− v(x))2dx (1)

to be minimized. The elastic regularization in 1D re-
duces to a penalty proportional to the norm of the second
derivative

T2(v) =

∫
v′′(x)2dx (2)

with a weight ω. Then the problem consists of minimiz-
ing

Ttot(v) = T1(v) + ωT2(v) (3)

Dimensionally, ω is the fourth power of a length scale.
In order to normalize it properly, a gauge function is
selected as a pure Fourier mode, v0 = e2iπx/λ, so that

Ttot(v) =
T1(v)

T1(u+ v0)
+
ξ4

λ4
T2(v)

T2(v0)
(4)

where ξ is by definition the regularization length (this
equation can be compared to Equation (8) of the main
text).

I.2. Regularization length

An infinite weight ω given to this penalty would enforce
u to be an affine function, or in other words, the kernel
of T2 is not empty. Its dimension is 2, and any boundary
conditions u(x0) and u(x1) for the interval (x0, x1) can
be accommodated to select a unique element from the
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† stephane.roux@lmt.ens-cachan.fr
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kernel. The minimization of Ttot naturally results in u(x)
being a linear regression through the data v(x).

Similarly, if ω is finite, u(x) can be shown to be math-
ematically a low-pass filter applied to v(x), namely pre-
serving the long wavelength modulations of v, while high
frequencies are dampened to produce smooth variations.
Crudely, one may say that at small scales, λ � ξ the
smooth variation is a way to get closer to an affine vari-
ation of u(x) (the kernel of T2), hence displaying a con-
stant strain, although u(x) is not affine over large dis-
tances.

The regularized displacement field requires only a
coarse sampling (at the scale of the regularization length,
ξ) to be accurately described. Thus, for a sample of size
L, the number of unknowns scales as L/ξ when ξ � L,
whereas for a large weight being given to the regulariza-
tion, ξ � L, the number of unknowns is equal to the
dimension of the T2 kernel, 2. It is clear that the regu-
larization can be made arbitrarily flexible at the expense
of a larger number of unknowns.

The analogy with the proposed strategy is direct, and
only dimensionality matters. An infinite regularization
length ξ corresponds to strictly obeying homogeneous
linear elasticity. The “equilibrium gap” TReg used in the
paper has a kernel that consists of all displacement fields
with arbitrary Dirichlet boundary conditions. A reduced
regularization length (i.e., smaller than the sample size
L) gives more and more flexibility (as would do a finer
mesh). The effective number of degrees of freedom scales
as (L/ξ)3 where the third power comes from the space
dimensionality.

In the case study that is presented in the manuscript,
the choice of an infinite ξ has been made. The Dirich-
let boundary conditions are the prescribed displacements
on the top and bottom face of the sample. As a further
simplification, it is assumed that these faces are simply
subjected to rigid body motions, and thus 12 degrees of
freedom are to be determined. The displacement along
those faces may be more complex, and may involve addi-
tional strains. However, the latter are expected to decay
as one moves away from the boundary where they are
prescribed. The level of residuals shows that it is a good
enough approximation for the considered example, allow-
ing for the determination of the displacement field with
no more than two projections.
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II. RELEVANCE OF THE REGULARIZATION

The foundation of the present approach is that changes
with time, specialized to the sample motion, requires
much less data than the image itself. The higher the
displacement complexity, the more numerous projections
to be used. For instance, rigid body motion is the most
simple set of displacements, but it lacks the versatil-
ity needed to encompass a broad class of applications.
What is proposed is to refer to the most generic kine-
matic model, i.e., an elastic model.

Otherwise, if it is known beforehand that the sample
consists of different parts, each of which having different
elastic properties, then such a description can be used as
a regularization scheme right away. In the same spirit,
a more sophisticated constitutive law could also be used
instead of linear elasticity, if such an information is avail-
able. This emphasizes the fact that modeling is the key
to access a reduction in the number of unknowns more
than elasticity. The latter is used herein as a decent
guess, easy to continuously relax by decreasing ξ, in case
of absence of information on the mechanical behavior.

II.1. Applicability to non-elastic deformation

How restrictive is the reference to elasticity for regu-
larization? As above discussed, the motion of the sample
is sought. This motion is usually produced by forces or
torques (generically called loads) being applied to the
specimen. Hence the motion is a manifestation of its
mechanical constitutive behavior. For a homogeneous
medium, the specimen motion will reflect its constitutive
law, e.g., elasticity (linear or nonlinear), visco-elasticity,
plasticity, elasto-plasticity, visco-plasticity. Similarly,
damage coupled to plasticity or visco-plasticity, all give
rise to a tangent operator relating stress and strain in-
crements that is identical to that of an elastic problem,
but with heterogeneous (tangent) elastic properties. This
point will be discussed in the next subsection.

Our present experience in the field of Digital Volume
Correlation (DVC) is that even if wrong or inaccurate,
the elastic regularization turns out to be very useful
even for describing plastic strain, up to localized regimes
where shear is concentrated into bands and not evenly
distributed (see e.g., Ref. [1]).

II.2. Applicability to homogeneous elasticity

Therefore nonlinear constitutive laws can also be cast
in the very same category as spatially inhomogeneous
elasticity. Limitations will not result from elasticity by
itself, but rather from its assumed homogeneity. This is
the very reason a scheme is introduced where an internal
length scale, ξ, can be used. Its meaning is such that

over such a length scale the tangent constitutive law of
the sample is considered as homogeneous, while above it,
different behaviors may be at play varying from region
to region.

Let us also stress that, for an elastic medium, using a
wrong value of the Young’s modulus can be compensated
by having rescaled forces applied on the boundaries, with
no further consequence in terms of displacement field.

II.3. Consequence of having a small regularization
length

By tuning the regularization length, the “complexity”
of the displacement field can be adjusted. As ξ is reduced,
the number of effective unknowns increases, and when the
regularization length becomes too small, more than two
projections may be needed to be able to solve the prob-
lem. Yet, in all cases, the number of parameters needed
to describe the motion will always be much smaller than
those needed to reconstruct the full microstructure. For
instance, a finite element description of an arbitrary dis-
placement field over a regular cubic mesh, with a mesh
size of 10 voxels between nodes, produces one thousand
times less nodes than voxels. Even considering that the
unknown is a vector at nodes, rather than a scalar at vox-
els, the ratio is still above 300. Thus, without regular-
ization, a small mesh discretization of the displacement
field requires 300 times less unknowns to be determined.
Elastic regularization is only a ‘smarter’ way to produce a
coarse mesh, and because it is often much more realistic,
the number of required unknowns for a similar quality
is lower. Building on the previously used 1D analogy,
the recourse to a coarse mesh would simply consist of
constructing u(x) as a piecewise linear and continuous
function as an approximation of the displacement v(x),
whereas regularization aims at minimizing the norm of
the second derivative, thereby producing a more regular
approximation for a length ξ comparable to the previous
linear element size.

II.4. How should the regularization length be
determined?

A general approach is proposed, which is actually fol-
lowed in the context of DVC. The first stage consists of
measuring the minimum value of residuals that can be
expected, and this is achieved as described in the pa-
per, by computing the projection residual from the refer-
ence volume. This sets the level of residuals that can be
reached at best. Then, a first computation is performed
with a large value of the parameter ξ, so that very few
degrees of freedom are needed, at the potential expense
of being inaccurate (because of the heterogeneity or the
constitutive law being different from elasticity). Yet the
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mean displacement is generally well captured and only
medium to high frequency details are missing at places
that can be guessed from the projection residuals. These
residuals (if higher than those to be attributed to noise
or artifacts) may motivate for leaving more freedom to
the displacement field and hence reduce ξ down to either
convergence to a low enough value of the residuals, or
poor conditioning of the inverse problem and thus where
the only parry is to add another projection. Experience
from DVC is that large regularization lengths can be used
for a fairly large class of displacement fields.

III. CASE STUDY

The companion Letter discusses an example, under
conditions that lead to a good registration of the two
projections used, based upon an “infinite” regularization
length, so that the displacement field lies in the kernel
of the elastic model. On the two sides where a displace-
ment field is prescribed, these fields are further simplified
to rigid body motions, so that only 12 degrees of freedom
are left.

Many variants can be considered in order to check the
robustness of the method.

• Reconstruction: First, the quality of the reconstructed
volume is of great importance. Different flat-field nor-
malizations and reconstruction algorithms have been
tried. An original flat-field normalization based on a
principal component analysis of control regions that
are never masked in the radiographs was designed (un-
published) and proved useful. Algebraic reconstruc-
tion (SIRT) from the ASTRA software [2] was used in
the companion Letter. When using a Filtered Back-
Projection (FBP) reconstruction — a standard refer-
ence algorithm — the projection residual for the ref-
erence image (prior to any motion) lead to SNR of
22 dB, whereas the algebraic reconstruction provides
a much higher value of 41 dB. Those values are esti-
mated without any motion correction. If the proposed
algorithm is used in order to compute a displacement
field (although it should be equal to 0), the RMS norm
of the displacement field gives an estimate of the uncer-
tainty. In this case, using the same mesh, the displace-
ment uncertainty increases from 0.32 vx. to 0.96 vx.
respectively for SIRT and FBP.

• Projection angles: The sample cross-section being rect-
angular, one choice (termed (0, π/2)) was to choose
angles aligned with the principal axes of the sample.
A second choice (−π/4, π/4) is to select intermediate
values to limit possible phase contrast artifacts. Sur-
prisingly, the (0, π/2) choice led to 31 dB as compared
to the 27 dB of (−π/4, π/4).

• Number of projections: The latter, np, can easily be

tuned in the test case as the quality of the determined
displacement field is anticipated to increase more and
more with their number. In the present case, the num-
ber of used projections was pushed to the extreme limit
of np = 600. There, the quantity of information was
the same as for traditional DVC. However, it was no-
ticed that in the reference case, the SNR remains of
the same order of magnitude (28 dB) as for two pro-
jections only. Thus it is deduced that the quality of the
determination is not limited by the amount of available
information in the projections, but rather by extrane-
ous factors (acquisition artifacts, noise).

• Masks: Because of the expected phase contrast in the
vicinity of the crack, a mask procedure is used so that
the immediate vicinity of the crack projection is not
considered in the residuals. Different masking variants
can be considered, either on the reconstructed volume,
or fixed on the projections. When initialized by a close
enough result, then no significant differences in the
SNR at convergence were observed. However, when
initialization is far from the actual solution, the mask-
ing variants display different performances.

• Mesh size: Three different mesh sizes have been con-
sidered, from coarse to fine as shown in Figure 1 (the
fine mesh was used in the main body of the Letter).
The observed SNR was quite close for the three meshes.
Figure 2 shows that very faint differences appear in the
displacement fields as the mesh is refined. Whenever
the displacement field is not penalized by too coarse a
mesh, then regularization makes the mesh size insensi-
tive. (The ill-posed character of the problem is cured
by the regularization.)

• Regularization: It has been checked on a coarse mesh
that relaxing the regularization length to ξ = 1600 vox-
els, has no visible consequence. When reducing this
length scale further, noise sensitivity becomes clearly
visible, especially close to free boundaries, and crack
faces, as shown in Figure 3b where ξ = 160 voxels has
been reduced by a factor of 10. A further 10-fold re-
duction to ξ = 16 voxels (Figure 3c) leads to manifestly
unphysical displacements especially close to the crack
faces.

This procedure is more costly, as the number of de-
grees of freedom increases but it clearly demonstrates
the benefit of regularization. Not only does the dis-
placement look more regular (which is a very natural
consequence), but the residual level reaches much lower
values. This last observation shows that indeed the
regularized displacement field displays a better consis-
tency with the data than the unconstrained displace-
ment where noise sensitivity prevents convergence to a
physically sensible solution.
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(a)Coarse

(b)Medium

(c)Fine

FIG. 1. (a) Coarse, (b) medium and (c) fine meshes that con-
tain the crack surface as a traction-free boundary. The crack
geometry has been segmented from the reference tomography

IV. 4D ANALYSES

Once the principle of reconstructing the time evolution
in between two states is established, there is no theoret-
ical limitation to accumulate successive pairs of radio-
graphs to follow in 4D the specimen under study. How-

(a)Coarse

(b)Medium

(c)Fine

FIG. 2. z-component of the displacement field obtained with
the (a) coarse, (b) medium and (c) fine meshes

ever, the main interest of such an approach is to achieve
a much finer time resolution than what is traditionally
expected. Hence, it is probable that in between the two
radiographs being captured in the deformed state, some
changes take place.

In order to deal with such a problem, a natural strat-
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egy is similar to the one used in space, namely, rather
than considering that all nodal displacements are to be
determined at each instant independently, it is proposed
to use a temporal regularization. More precisely, nodal
displacements ui(t) at node i and time t are written as

ui(t) =

Nt∑
j=1

uijϕj(t) (5)

where Nt denotes the number of time intervals, and uij
the spatiotemporal degrees of freedom. The temporal
shape functions can take different forms. A simple one
is to use a linear continuous 1D finite element approach,
with equal size time intervals. In this case,

ϕj(t) = max(1− |t− tj |/(∆t), 0) (6)

where tj+1 − tj = ∆t. Now, at any time t, the displace-
ment field ui(t) can be assessed even if it does not coin-
cide with an instant of the discrete series tj . Therefore,
radiographs can be shot at any time, and the actual time
will be used to relate the instantaneous displacement to
the parameters uij .

With the reservation that the real displacement his-
tory can be well approximated by the discretized form
(Equation (5)), the 4D evolution can be addressed with,
say, at least two radiographs acquired per interval ∆t.

It is also interesting to observe that if a sudden change
takes place, the discrete expression may fail, because it

cannot capture say a discontinuity in time. In such a
case, the inability of the chosen form to account for the
real kinematics, will be manifest in the residuals. Once
diagnosed, the finite-element representation can be en-
hanced with a discontinuous enrichment, as performed
in X-FEM [3].

It is also noteworthy to observe that the motion is
computed between the reference state and the current
time. Therefore, because it is not incremental displace-
ments that are determined, but rather total ones, there
is no fear of observing an accumulation of errors that
would corrupt the determination of displacements over
long time horizons.

[1] T. Taillandier-Thomas, S. Roux, T. Morgeneyer, F. Hild,
“Localized strain field measurement on laminography
data with mechanical regularization,” Nucl. Instr. Meth.
B 324, 70–79 (2014).

[2] van Aarle, W., Palenstijn, W. J., De Beenhouwer, J.,
Altantzis, T., Bals, S., Batenburg, K. J., and Sijbers,
J., “The ASTRA toolbox: A platform for advanced al-
gorithm development in electron tomography,” Ultrami-
croscopy 157, 35–47 (2015).
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(a)ξ = 1600 vx.

(b)ξ = 160 vx.

(c)ξ = 16 vx.

FIG. 3. z-component of the displacement field obtained with a
coarse mesh (Figure 1a) and three values of the regularization
length, (a) ξ = 1600, (b) 160 and (c) 16 voxels


