
HAL Id: hal-01383958
https://hal.science/hal-01383958v1

Submitted on 19 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

3D surface measurements with isogeometric
stereocorrelation: Application to complex shapes

John-Eric Dufour, Sylvain Leclercq, Julien Schneider, Stéphane Roux,
François Hild

To cite this version:
John-Eric Dufour, Sylvain Leclercq, Julien Schneider, Stéphane Roux, François Hild. 3D surface
measurements with isogeometric stereocorrelation: Application to complex shapes. Optics and Lasers
in Engineering, 2016, 87, pp.146 - 155. �10.1016/j.optlaseng.2016.02.018�. �hal-01383958�

https://hal.science/hal-01383958v1
https://hal.archives-ouvertes.fr


3D surface measurements with isogeometric

stereocorrelation �

Application to complex shapes

John-Eric Dufoura,b, Sylvain Leclercqc, Julien Schneiderb, Stéphane Rouxa,
François Hilda,∗

aLMT-Cachan, ENS Cachan / CNRS / Université Paris-Saclay, 61 Avenue du Président Wilson
94235 Cachan Cedex, France

bSAFRAN Group, Snecma site Villaroche, YQMC, Rond point René RAVAUD, 77550
Moissy-Cramayel, France

cSAFRAN Group, Messier-Bugatti-Dowty, Inovel Parc Sud, 78140 Vélizy Villacoublay, France

Abstract

The aim of the present study is to measure complex shapes of tested objects by

using a priori information given by their CAD model via stereocorrelation. To follow

a 3D object during its deformation and to determine 3D surface displacement �elds,

a �rst measurement of the object shape is necessary. It is achieved by updating

the CAD reference via a global approach to stereocorrelation. Once the 3D shape

has been determined, the next step is to measure 3D displacement �elds during

loading. The kinematics of the deformed shape is assumed to be written within the

same isogeometric framework. Isogeometric stereocorrelation is applied to analyze

a compression test on a ribbed cylinder in two di�erent con�gurations of the stereo

rig.
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1. Introduction

Many techniques are presently used to measure the 3D external shape of an

object. 3D scanners either probe the surface of interest by physical contact (e.g.,

coordinate measuring machine), emit radiations and detect their re�ection on the sur-

face (e.g., time-of-�ight 3D laser scanners, triangulation-based 3D laser scanners),

or project structured light and analyze the deformation of the fringes [1]. Last,

non-contact passive scanners detect re�ected ambient radiations (e.g., stereoscopic

systems [2, 3, 4, 5]). All these 3D scanners evaluate the position of some points on

the surface and this cloud is further interpolated to obtain a continuous represen-

tation. These techniques involve multitudinous degrees of freedom during the point

cloud evaluation, which is subsequently reduced by interpolation without a posteri-

ori control of the quality. The present approach consists of adding as much a priori

information as possible to measure the 3D shape of the surface and assessing the

quality of the reconstruction. In the case of industrial parts, the CAD model of the

nominal shape is generally available and can be used as a �rst estimate. By resort-

ing to global stereocorrelation, this surface can be deformed to �t as well as possible

(i.e., by minimizing the correlation residuals) the real shape [6].

Shape reconstruction via stereocorrelation consists of �nding the 3D coordinates

of a point using its 2D coordinates in 2 (or more) pictures shot by cameras. This

reconstruction assumes that the calibration of the stereovision system has already

been performed [7, 8, 9]. Classical (i.e., local) approaches perform this operation by

resorting to spatial registrations to extract a cloud of 3D points from 2D pictures.
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The method developed herein does not reconstruct point to point surfaces but uses

Non-Uniform Rational Basis Splines (or NURBS [10]) to measure the 3D shape as a

freeform representation without any need for subsequent interpolation.

Once the initial 3D shape has been determined, the next step is to follow its

deformation during, say, a mechanical test. Classical stereocorrelation systems pro-

vide the user with point clouds from which the 3D displacements are obtained by

resorting to temporal registrations [9]. An alternative to the former approach, which

will be followed herein, is to describe the surface deformation using a speci�c param-

eterization and to determine those parameters in time. Among the many possible

representations of surface deformation, a natural choice is the NURBS framework

itself, namely, the motion of control points de�ning the initial 3D shape [11]. Let us

note that this choice is not restrictive as it may appear as one can re�ne the shape

description with the introduction of additional control points. In the opposite limit,

too many degrees of freedom may lead to ill-conditioning and high noise sensitiv-

ity. This issue will be illustrated in the present study. Last, the observed 3D shape

may have complex features such as very sharp angles (e.g., see [12]) or areas with

small radii of curvatures (e.g., ribs). In these di�cult cases, standard reconstruction

methods may fail [12]. This particular point will also be addressed herein to analyze

a compression test on the upper diaphragm tube of a landing gear.

The outline of the paper is as follows. First, the isogeometric framework is in-

troduced when surfaces are described by NURBS. The main equations of the global

stereocorrelation procedure are detailed to reconstruct the initial 3D shape of the

surface of interest. This procedure is �rst applied to study a complex shape con-
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taining small scale features with sharp edges and for which not all information is

available on both cameras. The stereocorrelation technique is driven through a novel

regularization scheme, which limits the e�ect of the poor conditioning induced by

hidden parts, and allows the code to converge toward an acceptable solution. To

speed up the computations, a new multiscale algorithm is implemented. Last, 3D

displacement �elds in a compressed ribbed cylinder are measured when the stereo

rig has been moved to a more natural position.

2. Surface representation with NURBS

In this study, the starting point of the analyzed surface is its nominal CAD

model. Its geometry is a freeform surface made of NURBS patches [10]. Nowadays

most parts have a CAD representation based on this type of model [13]. The latter

provides a generic and standard representation of complex shapes with fewer degrees

of freedom than standard meshes.

A NURBS patch is de�ned by i) its order, ii) a network of control points with

associated weights, and iii) its knot vector (Figure 5(b)). The surface X(u, v) =

(X, Y, Z) is expressed in the parametric space (u, v) as

X(u, v) =

∑m
i=0

∑n
j=0Ni,p(u)Nj,q(v)ωijPij∑m

i=0

∑n
j=0Ni,p(u)Nj,q(v)ωij

(1)

with

∀u ∈ [0, 1], Ni,0(u) =


1 when ui ≤ u ≤ ui+1

0 otherwise

(2)

and

Ni,p(u) =
u− ui
ui+p − ui

Ni,p−1(u) +
ui+p+1 − u
ui+p+1 − ui+1

Ni+1,p−1(u) , (3)
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where Ni,p are mixing functions, Pij the coordinates of control points of the surface,

ωij the corresponding weights, (m + 1) × (n + 1) the number of control points and

(p, q) the degrees of the surface.

Figure 1(a) shows the CAD model of a landing gear. The red arrow points to the

location of the studied part once mounted. A picture of the upper diaphragm that

was prepared for correlation purposes (i.e., a random pattern was created by spraying

B/W paint) is shown in Figure 1(b). In the present case it is made of injected PEEK

reinforced by short carbon �bers. This type of structure is found in landing gears.

It is worth noting that 8 ribs are equally spaced along the circumferential direction.

The measurement of the 3D shape becomes very challenging because of the presence

of these ribs. The CAD model of this shape is composed of 18×4 control points with

fourth order shape functions (see Figure 5(b)). In the present case all the weights of

the control points are chosen to be 1. It is worth noting that there is a large number

of points on the rib to be able to describe its sharpness faithfully.

3. 3D shape measurements via isogeometric stereocorrelation

In the following, the calibration and 3D reconstruction of the reference con�g-

uration of the studied shape is performed by resorting to a self-calibration proce-

dure [7, 14]. This is of particular interest for structures for which the calibration via

targets may become cumbersome if not impossible. The �rst step is to calibrate the

stereoscopic setup by determining the projection matrices. Once the latter ones are

known, the freeform de�nition of the surface of interest is matched as well as possible

to the actual 3D shape. These two steps are controlled by analyzing the correlation
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(a) (b)

Figure 1: (a) Landing gear. The red arrow points to the location of the upper diaphragm, which

is an internal part. (b) Picture of the observed surface for which 4 ribs are visible

residuals.

3.1. Calibration of the stereoscopic system

The calibration of the stereoscopic system is achieved by using a global approach

to stereocorrelation [6]. In the present case, the object of interest will serve as

calibration target since its nominal shape is known. First the projection matrices [15,

9] for the left (i.e., [Ml], which is a 3×4 matrix) and right (i.e., [Mr], a second 3×4

matrix) cameras are calibrated by resorting to integrated DIC [16], which consists of

minimizing the sum of squared di�erences (Figure 2)

η2([Ml,r]) =
∑
ROI

(
f l(xl(u, v, [Ml]))− f r(xr(u, v, [Mr]))

)2
(4)
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with respect to each unknown matrix componentM r,l
ij , where the homogeneous coor-

dinates of any 3D point {X} = (X, Y, Z, 1)† are related to the corresponding left and

right homogeneous coordinates ({xl} = (slxl, slyl, sl)† and {xr} = (srxr, sryr, sr)†,

by the two projection matrices [17]

{xl} = [Ml]{X} and {xr} = [Mr]{X} (5)

where sl and sr are scale factors, † the transposition operator, and f l,r the left and

right pictures in the reference con�guration. In the present setting, the sensitivity

�elds, ∂xi/∂[Mi] (with i = l or r), with respect to each unknown component are

used to compute the new coordinates induced by small increments δ[Ml] and δ[Mr]

xl([Ml] + [δMl]) = xl([Ml]) +
∂xl

∂[Ml]
([Ml])δ[Ml] (6)

xr([Mr] + [δMr]) = xr([Mr]) +
∂xr

∂[Mr]
([Mr])δ[Mr] (7)

where the dependence on the parametric coordinates (u, v) has been omitted for the

sake of conciseness. Consequently, the vectors {δxl,r} gathering all the variations

δxl,r when (u, v) span over the parametric space read

{δxl,r} = [SM]{δm} (8)

where {δm} gathers 22 out of 24 unknown components of the projection matrices

M r,l
ij , and [SM] is the sensitivity matrix whose lines span over all the considered

values of the parametric space (i.e., nu × nv) and the number of rows is equal to

22. The two remaining unknowns have to be determined from the knowledge of an

absolute dimension in the observed structure [6].
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Figure 2: Determination of the projection matrices via isogeometric stereocorrelation

The previous minimization is achieved by resorting to Newton-Raphson scheme in

which linearizations and corrections are performed [18]. The following linear system

is solved to determine the corrections {δm}

[CM]{δm} = {bM} (9)

where [CM] denotes the (22× 22) stereocorrelation matrix

[CM] = [GM]†[GM] (10)

{bM} the stereocorrelation vector

{bM} = [GM]†{r} (11)
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{r} the vector gathering all correlation residuals for the considered values (u, v) in

the parametric space

r(u, v) = f l(xl(u, v, [Ml]))− f r(xr(u, v, [Mr])) (12)

and [GM] the (nu× nv)× 22 matrix collecting all values of the scalar product of the

picture gradients ∇f l,r(u, v) by the sensitivity �elds ∂xl,r/∂mi(u, v, [M
l]).

3.2. Self-Calibration

The �rst guess of the 3D shape (i.e., its nominal freeform) is projected onto

the 2D space using the previously measured projection matrices [Ml,r] generating

two grids associated with positions in the parametric space. Right and left pictures

are interpolated through these grids to create two sub-pictures in the parametric

space. A global approach to stereocorrelation [6] is performed between these two

sub-�gures by moving the control points Pij of the NURBS patches. These motions

induce pseudo displacements in the left and right pictures

xl = xl
0 +

∂xl

∂X

∂X

∂Pij

δPij and xr = xr
0 +

∂xr

∂X

∂X

∂Pij

δPij (13)

which induce new sensitivity �elds in the same spirit as those introduced above,

where xl,r
0 denote the initial positions, and xl,r the corrected ones. This leads to an

estimate of the increment of control point positions δPij that is to be added to the

previous coordinates (Figure 3).

The global stereocorrelation procedure consists of minimizing the sum of squared

di�erences

η2(Pij) =
∑
ROI

(
f l(xl(u, v,Pij))− f r(xr(u, v,Pij))

)2
(14)
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Figure 3: Measurement of the initial 3D shape via isogeometric stereocorrelation

with respect to each unknown position of the control points. Let {δp} gather all the

control point motions when (u, v) span over the parametric space. The minimization

is again achieved by resorting to a Newton-Raphson scheme. The following linear

system is solved to determine the corrections {δp}

[CP]{δp} = {bP} (15)

where [CP] denotes the (np × np) stereocorrelation matrix

[CP] = [GP]
†[GP] (16)

with np equal to three times the total number of control points, {bM} the stereocor-

relation vector

{bP} = [GP]
†{r} (17)
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{r} the vector gathering all correlation residuals

r(u, v) = f l(xl(u, v,Pij))− f r(xr(u, v,Pij)) (18)

and [GP] the (nu × nv) × np matrix collecting all values of the scalar product of

picture gradients ∇f l,r(u, v) by the sensitivity �elds ∂xl,r/∂pi(u, v).

It is worth noting that these two steps (i.e., determination of the projection

matrices, 3D shape corrections) are to be repeated until �nal converge is observed.

In the present cases, only two iterations were needed.

At convergence, the surface black and white paint speckle pattern that is observed

on both views can be transferred to the parametric space. This endows the shape

information contained in the CAD model with a texture, which will further allow for

the measurement of the surface displacement �eld not only along its normal but also

in its tangent components. This will be the topic of Section 5.

4. First application

The previous method is tested on an industrial part with a complex shape (i.e.,

upper diaphragm of a landing gear). It consists of a cylinder with 8 vertical ribs

(Figure 1(b)). Two digital single-lens re�ex cameras (DSLRs) are used (de�nition:

2601× 1733 pixels, digitization: 8 bits) with 50-mm lenses. Lighting is provided by

two LED panels. A third DSLR camera can be seen in Figure 4(a). It has been used

to monitor a smaller part outside the region of interest (Figure 4(b)) and will not

be discussed herein. In this �rst application, the stereoscopic setup is oriented, on

purpose, in such a way that the left part of the observed rib is not visible by both
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cameras (Figure 4(b-c)). It will be shown that the NURBS framework o�ers a very

convenient framework for dealing with such problems through regularization.

(a) (b) (c)

Figure 4: (a) Stereoscopic setup to monitor the tested upper diaphragm. Corresponding left (b)

and right (c) pictures. The reconstructed zone is shown in the red box

4.1. Direct analysis

The theoretical shape used in this case is, on purpose, quite distant from the

real one and the rib is very smooth compared to the observed one (Figure 5(a)).

To perform an accurate reconstruction of the rib, the surface contains more control

points on that speci�c area than in the cylindrical part. Furthermore, only few points

are used in the longitudinal direction (i.e., it is assumed that the 3D shape is close

to a cylinder whose nominal directrix is shown in Figure 5(b)).

In the present case, di�erent descriptions of the observed surface could have been

used. Instead of adding control points (Figure 5(b)), the multiplicity of some of
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(a)
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(b)

Figure 5: (a) Initial model of the analyzed area (Figure 4). The color encoding indicates the height

with respect to the underlying cylinder. (b) Corresponding directrix of the studied cylinder. The

blue circles are control points

them may have been increased in order to tackle the discontinuity of slopes or high

curvatures of the ribs. Although an enhanced �delity to the actual shape would
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de�nitely promote a better solution, the choice is made herein to deal with an ap-

proximate description. As will be seen in the sequel, the poor conditioning induced

by the presence of small scale features and hidden parts leads to di�culties. This

calls for a regularization strategy whose bene�ts and limitations will be shown. If

a more faithful description had been chosen, the regularization by itself would have

been able to achieve an excellent registration, and thus would not be a convincing

demonstration of the respective role of stereocorrelation and regularization.

As a side remark, let us also note that other speci�c mathematical descriptions

(i.e., not using NURBS) may have been considered to model the rib (e.g., continuous

facets). This may be a very wise choice in practice. However, the present study

focuses on a uni�ed isogeometric (i.e., NURBS-based) description of both shapes

and displacements, and thus such variants in the description will not be investigated

hereafter.

The calibration process of the stereo rig is performed using the self-calibration

method described above. It is worth noting that in the present case, two physical

dimensions need to be speci�ed because of the particular shape of the object (i.e.,

invariant along the longitudinal direction). For con�dentiality reasons, these absolute

dimensions are not given and all the results will be expressed in arbitrary units.

Figure 6 shows the theoretical shape used as a �rst guess during the calibration

step. The colors correspond to the residual map prior to (Figure 6(a)) and after

(Figure 6(b)) the calibration of the projection matrices. In these maps the gray

levels of the registered pictures have been logarithmically re-encoded. As expected,

the rib is very distant from the real one so that very high residuals are observed
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after this �rst calibration step. The RMS value of r is equal to 7.4 % of the dynamic

range of the reference pictures after the �rst step. It is worth noting that even though

the initial shape is signi�cantly smoother than the actual one, the calibration of the

stereoscopic system is deemed acceptable. However, the residuals indicate that the

shape is not the right one.

(a) RMS(r) = 7.4 % (b) RMS(r) = 4.9 %

Figure 6: Initial shape used as �rst guess. The color map indicates the correlation residuals prior

to (a), after (b) the calibration of the projection matrices

The second part of the calibration process is the measurement of the 3D shape

of the surface of interest after which the RMS value of r is brought down to 4.9 %

of the dynamic range of the reference pictures. It may be concluded that this result
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is satisfactory. However, a closer analysis of the reconstruction of the rib (Figure 7)

shows spurious results. The circled zones show that loops are obtained. Although

the obtained shape is closer to reality, this result is non physical.
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Figure 7: Close-up view of the reconstructed section. The areas of concern are circled in red

To understand the reason for the occurrence of such a phenomenon, the condi-

tionning of the stereocorrelation matrix is analyzed. Because of the large number

of poles needed to describe the rib (see Figure 5(b)) and visibility issues the condi-

tioning of the stereocorrelation matrix [CP] indicates that the raw analysis is very

sensitive to acquisition noise [19]. This is particularly true in the present case since

part of the rib is not seen by both cameras. On the pictures of �gures 4(b) and (c)

one notes that the left part of the rib is not visible by any of the two cameras. Since

no information is available on this part of the rib, noise sensitivity is very important.

At this stage two decisions can be made. First, the registration is regularized as
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shown below. Second, the stereoscopic system may be repositioned in such a way

that the reconstruction becomes well-posed. This route will be followed later on

(Section 6).

4.2. Regularized analysis

Because of the poor conditioning of the stereocorrelation matrix [CP] observed

above, a regularized approach is constructed using Tikhonov's procedure [20] to

compute the corrections {δp} to the positions of the control points

([CP] + λ[1]){δp} = {bP} − λ({p} − {p0}) (19)

where {p} is the current estimate of the control point coordinates, {p0} the �rst

guess of the control point positions (i.e., those of the nominal CAD model), and λ

is a parameter (to be chosen). Figure 8 shows that λ acts as a cut-o� length for a

low-pass �lter when the spectrum of eigen values of the stereocorrelation matrix is

analyzed. The higher λ, the closer the reconstructed shape to its nominal model.

Conversely, the lower λ, the more freedom is given to the stereocorrelation procedure

to match the actual surface. However, it also becomes more sensitive to noise.

The proposed procedure therefore starts with values of λ of the order of one hun-

dredth of the maximum eigen value of [CP]. After convergence of the minimization

scheme, λ is divided by 10 and the procedure is repeated until λ reaches levels less

than 10−10 times the maximum eigen value of [CP], which is very close to an unregu-

larized procedure (Figure 8). This procedure allows the stereocorrelation code to be

driven toward the minimum level without being trapped in secondary minima. This

is all the more important when studying complex shapes.
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Figure 8: Spectrum of eigen values of the stereocorrelation matrix [CP] for the 3D reconstruc-

tion of the upper diaphragm. The horizontal dotted line corresponds to the current value of the

regularization constant λ

Due to the Tikhonov regularization and relaxation, the algorithm currently re-

quires more iterations (i.e., 78 in the present case) to reach convergence. Once

the control point displacement amplitude is less than 10−5, the shape of the recon-

structed surface is obtained directly in the NURBS formulation. An estimate of the

real observed surface is obtained without being perturbed by uncertainties coming

from the poor conditioning of high degree NURBS shapes (Figure 9). The RMS
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value of r is equal to 2.9 %, to be compared with the level observed without a priori

regularization (i.e., 4.9 %). This �nal result validates the proposed strategy.

(a)
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(b)

Figure 9: Measured 3D shape with regularization. (a) The color map indicates the correlation

residuals after the 3D reconstruction. (b) Cross section of the reconstructed pro�le (the control

points cannot be represented at the scale of the picture). The red box depicts the part with no

visibility

The rib on the reconstructed surface has been sharpened (Figure 10). It �ts better

the real shape on one side. The other side cannot be reconstructed as accurately

because it is not properly visible by one of the cameras (Figure 4). Thanks to the

proposed approach, the problem is well-posed. Let us stress that for the hidden part

the initial geometry is used as a substitute to the missing information (albeit it is

not the exact shape).
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Figure 10: Initial (a) and reconstructed (b) shapes with regularization. The rib pro�le has been

sharpened on the left side. The right side is not visible by one of the camera and thus cannot be

reconstructed without the a priori knowledge. The color encoding indicates the height with respect

to the underlying cylinder

5. 3D displacement measurements via isogeometric stereocorrelation

In this section, the formulation of the 3D displacement �eld measurement via

isogeometric stereocorrelation is introduced. For the sake of simplicity, it is assumed

hereafter that the displacement �elds are described in the same setting as the surface

itself (i.e., the surface deformation is obtained by moving the control points). Let

us stress that this point is not restrictive as an arbitrary dense set of control points
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could be considered if needed, notwithstanding the issue of actually computing the

displacement. Other choices can be made (e.g., �nite element descriptions [21, 22]).

Within an isogeometric framework, motions of the control points will induce physical

motions of any point of the analyzed surface that belongs to the parametric space.

Because the surface texture can be transferred into the parametric space, all three

components of the displacement are retrieved. A global approach to stereocorrelation

consists of minimizing the functional η

η2(dPij) =
∑
ROI

(
gl(xl

n(u, v, dPij))− f l(xl
0(u, v))

)2
+

∑
ROI

(gr(xr
n(u, v, dPij))− f r(xr

0(u, v)))
2 (20)

with respect to each coordinate motion dPij of the control points Pij for the n-

th picture pair. In the present case, f l,r denote the two pictures in the reference

con�guration, and gl,r the pictures in the deformed con�guration (Figure 11). These

control point motions induce (true) displacements in the left and right pictures (see

Equation (13)). In the present case, xl,r
0 are the 2D positions of 3D points associated

with the control points Pij(0) in the reference con�guration, and xl,r
n those in the

deformed con�guration (i.e., when the control points have moved by an amount

dPij such that dPij = Pij(un) − Pij(0), see Figure 11). The minimization is again

performed by resorting to a Newton-Raphson scheme. The following linear system

is solved to determine the corrections {δp}

[CdP]{δp} = {bdP} (21)

with

[CdP] = [Cl
dP] + [Cr

dP] and {bdP} = {bl
P}+ {br

P} (22)
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where [Cl,r
P ] denotes the (np × np) (left and right) stereocorrelation matrices

[Cl,r
P ] = [Gl,r

P ]†[Gl,r
P ] (23)

{bl,r
M} the (left and right) stereocorrelation vectors

{bl,r
P } = [Gl,r

P ]†{rl,r} (24)

{rl,r} the (left and right) vectors gathering all correlation residuals

rl,r(u, v) = gl,r(xl(u, v, dPij))− f l,r(xr
0(u, v)) (25)

and [Gl,r
P ] the (nu × nv) × np matrix collecting all values of the scalar product of

picture gradients ∇f l,r(u, v) by the sensitivity �elds ∂xl,r/∂pi(u, v).

This type of approach will be used hereafter to monitor the displacement �eld in

a compression test of the upper diaphragm tube.

6. Second Application

In the present case, a new con�guration of the stereoscopic system is considered.

The two DSLR cameras are oriented in such a way that their plane of symmetry

approximately coincides with that of the observed rib. The compression test is in

displacement-controlled mode on a servohydraulic testing machine and a series of

2 × 344 pictures is shot during the �rst loading ramp. The whole stereocorrelation

steps are followed to analyze the mechanical test. The �nal goal is to have access to

the measured 3D displacement �eld of the region of interest.
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Figure 11: Measurement of 3D displacements via isogeometric stereocorrelation

6.1. Self-Calibration

The stereoscopic setup having been used for other purposes, the two-step cali-

bration procedure is performed again. The initial guess of the 3D shape is still that

shown in Figure 5(a) (i.e., the ribs are blunted as compared to what is expected).

Figure 12(a) shows the initial correlation residuals prior to the �rst calibration step.

Its RMS level is equal to 8.5 %. When the projection matrices are determined, it de-

creases down to 7.1 %. This level is of the same order as that observed in Section 4.1.
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(a) RMS(r)=8.5 % (b) RMS(r)=7.1 % (c) RMS(r)=3.7 %

Figure 12: Correlation residuals prior to the calibration step (a), after the calibration of the pro-

jection matrices (b), and after the 3D shape measurement

From Figure 12(b), it is concluded that the remaining gap is mainly due to the

fact that the actual ribs are sharper than what has been initially proposed to the

stereocorrelation code. The second step of the calibration procedure thus consists of

moving the control points to match as best as possible the actual surface. At the end

of this second step, the correlation residuals have decreased to reach an RMS level of

3.7 % (again close to what was achieved in Section 4.2). Figure 12(c) shows that most

areas have been successfully registered. There are still zones where the match is not

perfect. One of the reasons is due to the fact that light re�ection is not identical on

the left and right cameras, and also that close to the ribs, information is still missing,

to a lesser degree than before, on either of the cameras. Brightness and contrast

corrections have not been considered in the present case. It is expected that the �nal

residuals will be lowered even more with such an additional procedure [23, 24].
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A Multiscale analysis is performed in this study to speed-up the convergence of

the registration scheme. First, pictures are coarsened [25, 26]. The mean level of

each 2×2-pixel block is used as a superpixel in the next scale. Second, the projection

matrices are divided by the power of 2 corresponding to the scale change in order

to be consistent with the new image size. Figure 13 shows the change of the RMS

correlation residual as a function of the iteration number for scales no. 2 and 1.

The �rst iterations at scale 2 are regularized with λ equal to one hundredth of the

maximum eigen value of the stereocorrelation matrix. After convergence has been

reached (i.e., after 5 iterations), the second part is solved with no regularization and

an exponential convergence is observed. Similarly, for scale no. 1, when the system is

regularized with a high weight, convergence is very fast (i.e., in one iteration). Had

the multiscale approach not been used, many more iterations would have been used

(i.e., 260 in the present case).

6.2. 3D Displacement �elds

Figure 14(a) shows the history of the longitudinal displacement �eld. At the very

beginning of the experiment, the displacements correspond to the cylinder set-up.

After this initial phase, there is a uniform displacement gradient along the loading

direction corresponding to uniaxial compression. Figure 14(b) shows the correlation

residuals for the registration of the two image pairs corresponding to the maximum

compression load. The RMS residual is equal to 1.1 %, which is very close to levels

associated with acquisition noise. The random pattern is no longer visible thereby

proving that the stereocorrelation algorithm has fully converged. The results are

therefore deemed trustworthy. It is worth remembering that some areas close to
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Figure 13: RMS correlation residual vs. iteration number for scale no. 2 (from iteration 1 to 23)

and scale no. 1 (from iteration 23 to 52)

the rib edges are not measurable per se. However, thanks to the global support of

NURBS over the whole investigated surfaces, the corresponding displacements are

extrapolated thanks to the continuity properties.

7. Conclusion

Isogeometric stereocorrelation has been used to analyze the deformation of an

upper diaphragm of a landing gear. This global technique uses a mathematical model
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(a) (b)

Figure 14: (a) Measured 3D displacements via regularized stereocorrelation, and (b) corresponding

correlation residuals for the peak load. Online version: corresponding movie for 65 analyzed steps

of the surface of interest. In the present case NURBS patches are chosen. First,

the calibration consists of two steps (i.e., calibration of the stereoscopic setup and

measurement of the 3D shape). This type of calibration procedure is of special

interest for structures for which classical procedures [9] may not be performed easily.

A regularization strategy has been implemented since parts of the surface of

interest were not observed by both cameras of the stereo rig. Further, a multiscale

approach allows to speed up the iterative scheme of global stereocorrelation. This

is of particular interest when the initial guess is not very close to the reconstructed

shape. As shown herein, these two features are very useful when dealing with complex

3D shapes.

Once the self-calibration is performed, the system is used to measure the 3D

deformation of the analyzed surface during mechanical loading. The 3D displacement

�eld is parameterized by the motion of the control points used to de�ne the NURBS
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patches. The quality of the registrations is given by the correlation residuals, which

are �elds themselves so that local deviations can be monitored in addition to the

global RMS level.

A complex shape with ribs on a cylinder has been reconstructed. This recon-

struction does not need per se any subsequent interpolation stage, unless hidden

parts exist on at least one camera. Otherwise, the NURBS representation provides

a natural and convenient frame for regularization. This method can be applied to

shapes of any complexity degree as far as a NURBS formulation is available and a

regularization procedure used when the number of unknowns becomes too large to

avoid spurious shape �uctuations, or when some small parts of the surface of interest

is not observable by the camera(s).

Once validated thanks to the correlation residuals, the measured displacement

�elds give access to the computation of strain �elds. The NURBS being very regu-

lar, they are very convenient to obtain the surface normals. Further, the determina-

tion of the displacement gradients can be evaluated analytically. It is worth noting

that isogeometric measurements can be directly coupled with isogeometric simula-

tions [27]. For instance, isogeometric model updating techniques can be considered

for parameter identi�cation purposes [23] or for validating the numerical procedures

with realistic boundary conditions.

Last, the isogeometric setting can be extended to FE-based stereocorrelation,

which uses meshes instead of NURBS patches. The principle is very close to the

present approach. However, the regularity of the surface will not be as high as

freeform descriptions. Consequently, more degrees of freedom will be needed to
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describe the surface of interest and regularized procedures may also be needed. These

two global approaches belong to the class of dense multiview methods [28]. In the

case of FE-based approaches, the use of facets de�ned by triangular elements [29],

Delaunay triangulation [30] or quadrilaterals [21, 22] are currently investigated.
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