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Abstract

During in-situ mechanical tests performed on polycrystalline materials in a scanning electron microscope,
crystal orientation maps may be recorded at different stages of deformation from electron backscattered diffrac-
tion (EBSD). The present study introduces a novel correlation technique that exploits the crystallographic
orientation field as a surface pattern to measure crystal motions. Introducing a quaternion-based formalism
reveals very convenient to handle crystal symmetry and orientation extraction. Spatial regularization is pro-
vided by a penalty to deviation of displacement fields from being the solution to a homogeneous linear elastic
problem. This procedure allows the large scale features of the displacement field to be captured, mostly from
grain boundaries, and a fair interpolation of the displacement to be obtained within the grains. From these data,
crystal rotations can be estimated very accurately. Both synthetic and real experimental cases are considered to
illustrate the method.
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1 Introduction

During the last decades, many developments of multiscale plasticity models have been proposed. The motivation is
often a better prediction of the macroscopic behavior by enriching the constitutive description with applications in
metal forming or fatigue failure [20], or to estimate the long-term behavior of materials subjected to irradiation [25].
For industrial applications with these multiscale models, experimental validations are needed for each model and
each scale transition.

The experimental analysis proposed in this paper is related to the scale transition from single crystal to macro-
scopic plasticity, which constitutes a homogenization problem. Mean-field homogenization is often analytical and
for instance based on Eshelby’s inclusion principle [5], while finite element calculations on polycristalline aggregates
allow numerical homogenization to be performed together with the computation of local mechanical fields [3]. The
main challenge of the scale transition between single crystal and polycrystals is to account for strain gradient contri-
butions. Experimental assessments of strain gradient contributions have been proposed by comparing experiments
involving grain boundaries with strain gradient crystal plasticity models [28] or by measuring the lattice curvature
developing near grain boundaries using high angular resolution electron backscattered diffraction (HR-EBSD) [39].
On the other hand, strain gradients have a known influence on the material macroscopic response in plasticity and
on the stresses developing at grain boundaries [9, 14]. In this context, several validations of crystal plasticity models
exploiting kinematic fields have been conducted, and more specifically the displacement and strain fields obtained
from images acquired with a scanning electron microscope (SEM) [21, 26].

Digital Image Correlation (DIC) techniques [32] have been used to compute kinematic fields from images reg-
istered at the microscale, for instance using SEM pictures [1, 10, 36, 33, 24]. It is worth noting that artifacts
associated with the image capture in an SEM had to be accounted for [34, 30, 13]. DIC has also been utilized to
characterize crystal deformations in processes such as fatigue and crack growth [6, 22]. In particular, EBSD images
have been superimposed onto DIC strain maps to study the relationship between the texture and the plastic defor-
mation at the crack tip [22]. Displacement fields only partly represent the kinematics of a polycrystal subjected to
a mechanical loading. An important and complementary kinematics, when considering finite strain transformation,
is lattice rotation. Measuring rotation fields can be achieved by using for instance orientation imaging microscopy
based on HR-EBSD [17], or using synchrotron X-ray microdiffraction [23] providing average rotations per grain.
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Texture evolutions, measured using EBSD and grain averages, have already been used to validate crystal plasticity
models [19] together with strain distributions in polycrystals.

In the following, it is proposed to simultaneously measure displacement and rotation fields by registering EBSD
maps. Because of their sharp contrasts, grain boundaries allow for a good registration as will be shown below.
However, one of the challenges is that intragranular deformation cannot be followed accurately as the orientation
field shows very small gradients within the grains. Elastic regularization [31] is an efficient way to compensate for
poorly contrasted images [38]. Spatial regularization is provided by a penalty to deviation of displacement fields
from being the solution to a homogeneous linearly elastic problem, either isotropic, cubic or orthotropic. This
procedure allows the displacements to be interpolated within the grains.

The paper is organized as follows. Section 2 is dedicated to the preparation of EBSD images for DIC analyses. It
is proposed to use quaternions to encode orientation maps provided by EBSD analyses. The correlation algorithm
based on orientation maps is developed in Section 3 to evaluate displacement fields. As a key result, the residual field
indicates the disorientation, i.e., crystal rotations between images. Hence it is possible to measure displacement
and crystal rotation fields. A numerical validation based on a synthetic example is first presented in Section 4 and
an experimental application of the algorithm is detailed in Section 5.

2 Quaternion-encoded orientation maps

2.1 General properties of quaternions

Quaternions are hyper-complex numbers generalizing to four dimensions complex numbers in two dimensions [15,
16]. Quaternion algebra is a useful tool for the description of rotations and orientations in 3D spaces (akin to
complex numbers for rotations and orientations in 2D). Quaternions are devoid of the singularity at the origin of
Euler angle space, which is due to the progressive degeneracy of the first and third Euler angles as the second angle
approaches zero (i.e., “gimbal lock”). Quaternions also provide a convenient frame to handle crystal symmetries [7].

Appendix A recalls important features of quaternions. Let us simply define here our notations. Quaternions
consist of a real and three imaginary numbers (1, i, j,k) so that any quaternion is described as q = q1+q2i+q3j+q4k,
which is equivalent to the 4D vector representation q = (q1, q2, q3, q4). In the following, only unit quaternions

|q|2 =
∑
n

q2n = 1 will be considered. A rotation of angle θ about an axis defined by a unit vector d = (d1, d2, d3) is

represented by the unit quaternion

q = e
θ
2 (d1i+d2j+d3k)

= cos(θ/2) + (d1i+ d2j + d3k) sin(θ/2)
(1)

Equation (1) can be seen as an extension of Euler’s formula.
Since a crystal orientation can be identified by the 3D rotation needed to bring a reference crystal orientation

onto it, it can be described by a quaternion. As a consequence, the reference orientation is the unit real number
q0 = (1, 0, 0, 0). Successive applications of rotations q1 and q2 are obtained by a (non commutative) quaternion
product q2×q1 where the elementary multiplication rules are recalled in Appendix A. In the sequel the multiplicative
sign × will be omitted to simplify notations. Thus the rotation that brings q1 onto q2 is q2q

−1
1 . A fundamental

property that will be used in the sequel is that a “distance” between two orientations can be computed from the
minimum magnitude of the disorientation angle θ. The real part <[q−12 q1] = cos(θ/2) gives the cosine of half the
disorientation angle.

2.2 Crystal symmetry and quaternions

One practical difficulty associated with crystal symmetry is that several orientations having distinct quaternion
representations are equivalent. For the cubic symmetry class, 48 quaternions pcubi (1 ≤ i ≤ 48) are to be considered
as identical to the reference orientation (Appendix B). When reading an orientation “.ang” file from an EBSD
analysis re-encoding it as a field of quaternion requires a convention to be chosen in order to minimize spurious
discontinuities due to arbitrary choices of quaternions within the symmetry class.

At a particular point of the EBSD map, where one determination of the orientation is converted into quaternion
q(x), any other pcubn q(x) (for all n) is a valid choice. One possible convention is to select the one having the largest
real part,

q(1)(x) = Argmax
n

(<(pcubn q(x))) (2)
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This choice can be understood as the one that requires the smallest rotation angle to be mapped onto the reference
configuration i.e., q0 = 1. Figure 1 shows the quaternion field q(1)(x) extracted from an OIMTM file. Some
discontinuities observed in those maps do not correspond to a real grain boundary but simply to a slight rotation
of the physical frame that produces a change in the symmetric representative.
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Figure 1: Maps of the four components of the quaternion field after selecting the closest representative with respect
to the reference orientation q0 = 1. The inverse pole figure corresponding to these maps is shown in Figure 10(b)

In order to reduce spurious discontinuities, a second procedure is proposed herein. After the first determination
of orientation has been performed a local reference is defined per grain. It is chosen as the orientation at the center
of mass of each grain. The labeling of grains is performed thanks to the OIMTM software, which provides the grain
boundary image according to a given disorientation threshold, set to be 1 degree in practice. From this image, a
label ` is assigned to each grain, and shared by all pixels x of the grain, so that one may refer to its label `(x). The
center of mass of the grain is also computed, x`c. The local grain reference is then set to qref (x) = q(1)(x`(x)c ). A
new determination of the symmetric representative q(2)(x) is performed by selecting the symmetric representative
n∗ that maximizes the real part of pcubn qref (x)−1q(x), i.e., choosing the orientation that is the nearest to that of
the center of mass of the grain. Figure 2 shows the resulting quaternion map. This second convention will reveal
very convenient for filtering quaternion fields, which will be detailed in Section 3.2. Its justification is that within
one grain, the change in orientation is small, and hence, no spurious apparent discontinuities will appear.

3 Proposed correlation algorithm

Conventional DIC consists in registering two gray-level images, one in the reference state f(x) and a second one in
the deformed state g(x). It is based on the determination of the displacement field u(x) such that the corrected
deformed image g̃u(x) = g(x+u(x)) coincides as best as possible with the reference image g̃u(x) = f(x), and hence
minimizes the quadratic norm of the so-called residual (g̃u(x)− f(x)) summed over the entire region of interest.

The proposed extension consists in matching quaternion-valued images f(x) and g(x). Hence, the crystallo-
graphic orientation is treated as equivalent to a speckle pattern, as the orientation is not expected to undergo large
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Figure 2: Maps of the four components of the quaternion field after selection of the closest representative to the
local grain reference qref (x). The inverse pole figure corresponding to these maps is shown in Figure 10(b)

changes during deformation. Following the above schematic formulation, a corrected deformed image is introduced
g̃u(x) = g(x+ u(x)), and the registration is achieved via the minimization of the “discrepancy” defined here as

Φ[u] =
∑
ROI

ψ2(g̃u(x),f(x)) (3)

so that the sought displacement field is the minimizer of Φ

u(x) = Argmin
u

Φ[u] (4)

In order to follow a strict parallel with classical DIC, ψ should measure a distance in unit quaternion space between
its two arguments. As above discussed, a good definition for this “distance” is based on the minimum magnitude
of the angle of the rotation θ relating the two orientations. In addition, all possible symmetry replicas of one of
the two arguments should be considered and the minimum value should be selected. This operation is numerically
expensive as it has to be performed pixelwise. Considering that the discrepancy between orientations will be small
at convergence, it is proposed to substitute to the above quadratic distance a function that behaves similarly close
to the origin, namely 1 − cos(θ/2) ∼θ→0 θ

2/8. Thus, assuming crystal symmetry degeneracies are accounted for,
the following choice of ψ2 is made

ψ2(f , g) ≡ <
[
1− fg−1

]
= 1− figi
= 1− cos(θ/2)

(5)

where < denotes the real part (or first component) of the quaternion. Last, without further restriction, the problem
is generally ill-posed. Thus following the usual practices of DIC, the displacement field is sought as the minimizer
of Φ[u] where u is confined to a vector space generated by a suited basis of vector fields ϕi, so that

u(x) =

m∑
i=1

λiϕi(x) (6)
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This formulation leaves λi as unknowns that can be determined through a Gauss-Newton algorithm [27].

3.1 Gauss-Newton scheme

A Gauss-Newton procedure iteratively computes corrections {δλ(n)} to the column vector {λ(n−1)}, based on the
solution to a linearized system

[M (n−1)]{δλ(n)} = {γ(n−1)} (7)

where [M (n−1)] and {Γ(n−1)} are respectively the approximate Hessian matrix and residual vector that are to be
updated at each iteration n. The correction vector is λ(n) = λ(n−1) + δλ(n).

A reformulation based on quaternion algebra is given in this subsection. If the reader is interested in the final
results, intuitive and familiar expressions of both Jacobian {γ(n−1)} and Hessian [M ] are retrieved in Equations (14)
and (15) respectively. The Jacobian reads

γ
(n)
i ≡ ∂Φ

∂λi
= −

∑
ROI

<
[
f(x)∇(g̃(n)(x))−1

]
ϕi(x)

= −
∑
ROI

(∑
α

fα(x)∇g̃(n)α (x)

)
ϕi(x)

(8)

and the Hessian

M
(n−1)
ij ≡ ∂2Φ

∂λi∂λj

= −
∑
ROI

<
[
f(x)(∇⊗∇)(g̃(n−1)(x))−1

]
: (ϕi(x)⊗ϕj(x))

= −
∑
ROI

(∑
α

fα(x)(∇⊗∇)g̃(n−1)α (x)

)
: (ϕi(x)⊗ϕj(x))

(9)

Since quaternions can be seen as unit vectors in a 4D space, they obey qq−1 = qαqα = 1 with α = 1, ..., 4.
Therefore they are always orthogonal to their gradient

∇(qq−1) = 0 (10)

and in particular for the real part of this identity, qα∇qα = 0

(∇⊗∇)(qq−1) = 0 (11)

and thus in particular, qα(∇⊗∇)qα+∇qα⊗∇qα = 0. The last identity is used to rewrite second order derivatives
as

qα(∇⊗∇)qα = −∇qα ⊗∇qα (12)

or fαfα,ij = −fα,ifα,j .
Using the above properties leads to equivalent expressions of the residual vector {γ(n−1)} and Hessian [M (n−1)].

The former is rewritten using Equation (10)

γ
(n−1)
i = −

∑
ROI

(fα(x)− g̃(n−1)α )∇g̃(n−1)α (x) ·ϕi(x) (13)

Moreover since g̃(n−1) is expected to converge to f , one may substitute one to the other at dominant order and
finally express γ as

γ
(n−1)
i =

∑
ROI

(∇fα(x) ·ϕi(x))(g̃(n−1)α − fα(x)) (14)

The same simplification can be extended to the Hessian. Equation (12) is used to transform the second order
derivatives into first order ones, and again f is substituted to g̃(n−1)

Mij =
∑
ROI

(∇fα(x) ·ϕi(x))(∇fα(x) ·ϕj(x)) (15)
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Let us emphasize that the final expression of [M ] does not depend any longer on the iteration number n, and hence
it can be computed once for all. Although the above detailed justification appears to be somewhat involved, the final
expressions of [M ] and γ(n−1) could have been guessed by extending global DIC to quaternions componentwise. For
a single α, the expression of [M ] and γ(n−1) are exactly those of global DIC [18], where the quaternion component
fα is analogous to the gray level of a speckle pattern. Thus the summation over the four components is equivalent
to having four different speckles (i.e., four imaging modalities) of the same surface, which would all obey the same
kinematics. A parallel could be drawn with DIC based on color images, wherein each channel R, G or B would be
treated as an independent information.

3.2 Filtering quaternion fields

One difficulty is related to the discontinuities of f (and g). The orientation is uniform in each grain but each grain
boundary appears as a large discontinuity. This specific texture (i.e., piecewise constant texture) is not very well
suited to a Gauss-Newton scheme as gradients do not give a fair picture of how f varies with the displacement over
large distances. In order to be able to correct for large displacements, a solution consists of smoothing out the grain
boundaries. A simple way to achieve such filtering is to apply to the quaternion field a convolution, component-wise,
with a Gaussian kernel of width ξ, followed by a reprojection on the unit sphere in 4D (to preserve the unitary

property of quaternions that has been lost in the convolution). Such filtered quaternion field is denoted as f̂ξ.
For given length ξ the correlation procedure is straightforward as above discussed. The only care to be taken

is that g should be first corrected by the displacement field, using the raw signal, and then filtered at the scale
ξ, in order to compute differences with the filtered reference image. This determination tolerates displacement
amplitudes of order ξ. Hence a large ξ is to be used to initialize the procedure. However, the accuracy of the
evaluation of the displacement is based on the sharpness of the grain boundary. A smooth grain boundary may
only provide a gross determination. Hence it is proposed to progressively reduce the length ξ using the previously
measured displacement field at a large ξ value to initialize a computation with a smaller ξ.

3.3 Elastic regularization

EBSD images generally show high contrast only between grains (see e.g., Figures 1 and 2) thus the correlation
procedure determines the displacement field at grain boundaries. Seeking the displacement field inside grains by
DIC is not a well-posed question, even if the displacement field is considered in a weak formulation as shown in
Equation (6). An elastic regularization provides a very convenient interpolation scheme for the displacement field
inside the grains where the image contrast is insufficient for registration purposes.

Mechanics-aided DIC has been proposed to solve such issues [31, 38], and the regularization technique has also
been applied to digital volume correlation [35]. Readers are referred to these works for detailed justification. The
spirit of the approach, which was pioneered by Tikhonov and Arsenin [37], is to introduce a regularization term,
i.e., an additional functional of the displacement field that incorporates a prior information (or assumption) on the
displacement field. However, one would like the regularization to interfere in a minimal way with the field to be
measured, minimal meaning that it should matter only when no other data can be exploited. The chosen reference
is to favor locally solutions to homogeneous elasticity, without specifying boundary conditions. The “equilibrium
gap” is precisely one such functional, based on a second order differential operator acting on the displacement, and
which is quadratic in the displacement [31, 2]. It can be supplemented by a similar edge regularization (otherwise
absent from the bulk equilibrium gap) [38].

Two parameters are used to characterize the weight of mechanical regularization, i.e., `b and `m, representing
the regularization lengths at the edge of the ROI and in the bulk of the ROI respectively. According to previous
works [38], the optimized ratio `b/`m = 0.5 is chosen for all the calculations reported hereafter. It should be noted
that due to the contrast being concentrated at grain boundaries, the minimal mechanical regularization length `m
should at least be of the same order of magnitude as the grain size to provide a mechanical regularization in the
core of the grains without constraining too much the displacement determined at grain boundaries.

3.4 Correlation residuals

When registering EBSD images, it is expected that the motions of grain boundaries are mainly captured. Within
each grain, elastic regularization will provide a smooth interpolation that is unbiased by the superposition of
arbitrary rigid body motion, or even any displacement field that would be the solution to a homogeneous linear
elastic problem. While displacement accuracy is reduced far from grain boundaries, disorientations are expected to
be small in these areas, and therefore the residual will allow the crystal rotations to be quantified very accurately.
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Further, at the grain boundaries the confidence index and image quality of EBSD acquisition tend to be low.
If the electron beam hits two grains at the same time an unreliable orientation will be recorded. Besides, at grain
boundaries the interpolation procedure of g results in an orientation that is close to neither grain. Therefore grain
boundaries will always appear distinctively in the residual fields.

4 Application of the algorithm on a synthetic test case

A synthetic test case is numerically generated in order to validate the determination of the displacement field with
known values. The displacement field is computed from a finite element simulation with Code Aster [8]. A two-
dimensional microstructure shown in Figure 3 with isotropic texture is modeled from an experimental orientation
map.

(a)

001

111

101

(c)

(d)

Figure 3: (a) Inverse pole figure of the 2D polycrystalline model for FE simulations. (b) FE mesh utilized in tensile
simulation. (c) FE mesh superimposed onto the polycrystalline model

It allows a mesh to be created in such a way that it very closely follows the grain boundaries, (GB), as performed
in Refs. [12, 11, 4]. The ability for the mesh to conform with GBs opens the way to detect and measure strain
discontinuities across GBs. This property holds for FE-based (global) DIC when a speckle pattern marking is
deposited on the observed surface. It also holds herein since the GBs carry the information exploited by quaternion
correlation, namely, the component of velocity normal to GBs. This property is valuable as any other approach
would either betray the grain geometry or determine displacements only away from GBs.

The finite element calculation is performed under a plane strain assumption. Crystallographic orientations are
uniform inside each grain. The numerical model is subjected to a monotonic uniaxial tensile simulation up to 6% of
macroscopic strain. A constitutive law based on dislocation dynamics for body centered cubic crystals (DD CC [29])
has been chosen in the FE simulation. A finite strain framework is used to implement the constitutive equations in
order to properly account for the rotation of crystals during the tensile loading. The displacement field and crystal
rotation in the ROI obtained by the FE simulation are shown in Figure 4.

Virtual EBSD images are processed for different macroscopic strain levels as shown in Figure 5. The displacement
and crystal orientation at the nodes of the model are updated by FE simulation, and the orientation at virtual
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Figure 4: Displacement (a-b) and crystal rotation θ (c) fields given by FE simulation

acquisition points inside each element are obtained by linear interpolation (see Appendix A) from the data of the
three vertices (i.e., corner nodes). Therefore, the orientation at each acquisition point is always affected by the
crystal orientation of only one grain, resulting in distinct grain boundaries. It should be noted that this is an ideal
scenario that does not exist in realistic EBSD acquisition. A correlation analysis is performed with the orientation
maps (Figure 3(a) and 5(a-c)). The calculation is run with a MatlabTM implementation on a computer with an i7
CPU.

(a) 0.6% (b) 3% (c) 6%

001

111

101

Figure 5: Inverse pole figures corresponding to macroscopic strain equal to 0.6% (a), 3% (b) and 6% (c) respectively

The analyzed ROI has a size of 775× 1181 pixels (Figure 6(a)). The registration procedure is performed twice,
namely, on two different meshes consisting of triangular elements with a characteristic length of 50 pixels and
10 pixels respectively (Figure 6(b-c)). It should be noted that the meshes are not conforming to the grain geometry.
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Figure 6: Parameters used in quaternion correlation of the validation test case. (a) ROI of the artificial reference
EBSD image. (b) FE mesh with characteristic length of 50 pixels. (c) FE mesh with characteristic length of 10
pixels. The boxed zone is zoomed in (d)

When one Gauss-Newton iteration results in an average incremental displacement less than 5 × 10−5 pixel,
convergence is obtained. To avoid local minimum trapping, the elastic regularization length `m and the length of
the Gaussian kernel ξ are both initialized with high values. Once convergence is reached, the resulting displacement
field is used to initialize the next correlation step in which the values of `m and ξ gradually decrease. Table 1 gives
an example of the settings of quaternion correlation for the final state of `m = 100 pixels and ξ = 0. It should be
noted that ξ = 0 means that the quaternion field is not subjected to any filtering. In total, about 700 iterations are
needed to reach convergence.

Table 1: Evolution of `m and ξ during quaternion correlation

Step 1 2 3 4 5 6 7
`m (pixel) 400 400 400 200 100 100 100
ξ (pixel) 16 3 2 2 2 1.2 0

Number of iterations 484 68 22 41 61 43 10

The displacement error is computed from the root mean square (RMS) difference between computed and mea-
sured vector displacement fields. In order to optimize the parameterization of mechanical regularization `m, the
displacement error obtained with the mesh with characteristic length of 50 pixels is shown in Figure 7(a) for dif-
ferent values of `m and three different macroscopic strains, 0.6%, 3% and 6%. The error tends to be high for large
`m values (200 pixels) as for such sizes, the regularization influences the registration of grain boundaries. The
error displays small variations at different macroscopic strain levels in case of small `m levels (50 pixels) as the
displacement field around the center of grains is not regularized by the orientation contrast at grain boundaries.
Therefore the displacement error is higher inside grains. The best compromise is obtained when `m = 100 pixels.
This is in agreement with the fact that the equivalent grain size in the ROI is 85 pixels as shown in Figure 7(b),

9



and hence this size is a target value for `m. It is to be noted however that the grain size is heterogeneous, and hence
selecting a single value for the entire ROI results from a compromise. Let us finally note that the error tends to
increase with the macroscopic strain, presumably because the effect of regularization on the displacement increases
with the latter, and the elastic regularization becomes poorer and poorer adapted as the mean strain increases.
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Figure 7: (a) RMS displacement error as a function of `m for different macroscopic strain levels: 0.6%, 3% and 6%.
Results with 50-pixel characteristic length mesh. (b) Equivalent grain size in ROI. The mean equivalent grain size
is 85 pixels in the ROI

The performances of calculations on meshes of different sizes are listed in Table 2. It is seen that the error of
displacement and rotation measurements is slightly lower with finer mesh elements, whereas the computation time
is significantly longer.

Table 2: Performance of quaternion correlation for meshes of different sizes for a macroscopic strain of 3% and
`m=100 pixels

Characteristic length iteration time RMS of ∆U RMS of intra-grain ∆θ
50 pixels 17 s 0.320 pixel 0.0026 degree
10 pixels 135 s 0.305 pixel 0.0024 degree

The quaternion correlation results between the initial state and 3% strain with `m=100 pixels and 10-pixel
elements are illustrated in Figure 8. At convergence, the residual, [fg̃−1], is the disorientation between the reference
and the deformed orientation transported with the measured displacement field. This quaternion field can be
decomposed into a disorientation angle θ, 2 × cos−1(<[fg̃−1]), shown in Figure 8(a), and the orientation of the
rotation direction (vx, vy, vz) (i.e., imaginary components of [fg̃−1] rescaled to a unit norm), shown in Figure 8(b-
d). The disorientation angle remains quite small (typically from 1 to 2 degrees) and is markedly affected by the
crystallographic orientation. Some grains are prone to displaying lattice rotations whereas others are not. It is
observed from Figure 8(b-d) that the rotation axis, roughly uniform within grains, tends to be close to the z-axis.
This is consistent with the plane-strain setting used in the FE simulation.

The measured displacement field is shown in Figure 8(e-f) and the differences between the measured and com-
puted displacement fields are shown in Figure 8(g-h). The texture is no longer visible on the two images, which
means that there is no noticeable difference for displacements at grain boundary and within grains. The RMS of
displacement error reaches 0.3 pixel, which is high compared with the error of standard DIC (usually of the order
of 0.01 pixel). This difference is attributed to the complete absence of contrast inside the grains, and the difficulty
to set a fair interpolation of the orientation very close to grain boundaries. Figure 6(a) shows the used texture that
is not the best suited to DIC, and even dealing with a scalar gray level would not allow such low uncertainty values
to be reached. On the contrary, it is noteworthy that in spite of such poor texture, the resulting displacement
difference is still well below 1 pixel.

The disorientation angle is shown in Figure 8(a). It should however not be considered as an error. In the simula-
tion grains do rotate during their plastic deformation, and hence this phenomenon violates the assumption that the
crystallographic orientation remains invariant. Because this rotation is small, it does not prevent the correlation
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Figure 8: Quaternion correlation residual disorientation decomposed into a disorientation angle (a), and the three
components of the rotation director (b-d). Measured displacement field along the x (e) and y (f) directions, and
the displacement difference along the x (g) and y (h) directions. Results obtained with `m=100 pixels, 10-pixel
elements
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procedure to extract the displacement field. This disorientation angle can be compared with the computed one.
The difference using the same scale as Figure 8(a) is shown in Figure 9(a). It is observed that the difference is
mostly localized at grain boundaries (for reasons discussed in Section 3.4). Figure 9(b) shows the error of rotation
measurement inside the grains, with rotation error for pixels located on grain boundaries (as obtained from the
EBSD file) being set to 0. The error is of the order of 10−3 to 10−2 degree, with an observable concentration of
measurement error. In the calculation with 3% macroscopic strain, the average rotation of intra-grain pixels is
0.75 degree and the average rotation error is 2.6 × 10−3 degree. As a result, the present procedure can measure
disorientations due to plastic deformation extremely precisely, with an error less than 0.5%.
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Figure 9: (a) Rotation difference ∆θ (degrees) between quaternion correlation results and FE computed values.
(b) ∆θ after canceling out the grain boundary values, thus intra-grain values become visible

It should be noted that the isotropic elastic regularization does not correspond to the simulation based on crystal
plasticity. However, as the previous results have shown, isotropic elastic regularization gives a fair interpolation. This
result is very convenient for the registration of experimental EBSD pictures. It is concluded that the displacements
measured by the correlation procedure proposed herein are very close to those calculated by FE simulation. Besides,
the residual field corresponds to the simulated rotation field except along grain boundaries. The measurement error
is quite low (i.e., 0.3 pixel for the displacement and about 3 × 10−3 degree for crystal rotation) although image
contrast essentially exists at grain boundaries. Therefore, the algorithm is deemed validated.

5 Application to experimental maps

Inconel 600, which is a nickel-based alloy, is used to carry out an in-situ tensile experiment. A 10×2×1 mm3 tensile
sample is machined. Mechanical polishing of the sample surface is performed with cloths and diamond suspension
down to 0.25 µm followed by a finishing with 40-nm colloidal silica suspension for 45 minutes. The sample is
subjected to an in-situ tensile test at a strain rate of 4× 10−4 s−1 up to 20 % longitudinal strain.

The SEM used in this study is a TESCAN Mira3 600. Backscattered electron detector in Z-contrast has been
used, with an acceleration voltage of 9 kV and a working distance of 17 mm. The physical size of one pixel is 250 nm.
This resolution is chosen to ensure that a sufficient number of grains could be observed and each of them with a
significant number of pixels. The scanned area is 500× 500 µm2 with a definition of 2000× 2000 pixels. The data
obtained by EBSD acquisitions, and processed with OIMTM software are used as a starting point of the analysis.
The .ang file contains the measurement coordinates, three Euler angles, image quality index and confidence index
of each pixel.

A series of EBSD analyses performed in the course of an in-situ tensile experiment on the specimen has been
used to test the quaternion-based registration algorithm. Figure 10 shows two inverse pole figures in the reference
and deformed states as obtained from OIMTM. Figure 10(b) corresponds to the raw data used to extract the
quaternion fields shown in Figures 1 and 2.

From these maps, a region of interest is selected (Figure 11(a)) in which variable grain sizes are observed.
Figure 11(b) shows the disorientation between the reference and deformed images (as obtained by a raw discrepancy
1 − <[fg−1]), which exhibits a “ribbon” shape where the ribbon width reveals the displacement magnitude and
orientation, the color indicates the disorientation value. The mesh used for quaternion correlation consists of
triangular elements with a rather uniform size (here about 30 pixels) spanning the chosen ROI but not conforming
with the grain shapes (Figure 11(c)).
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Figure 11: (a) ROI of the reference EBSD image. (b) Initial residual between the reference and deformed images.
(c) FE mesh of the quaternion correlation calculation

The convergence criterion is still set to 5× 10−5 pixel, which is a very low value given the fact that only grain
boundaries are highly contrasted. The elastic regularization length `m is initially chosen to be 400 pixels, and
decreased to 200 pixels once convergence is obtained. The value of ξ decreases from 16 to 1 pixel, and is followed by
no filtering at all (i.e., ξ = 0). The final value of `m is greater than the 100-pixel level adopted in the previous case
study because the largest grain size is somewhat larger. A total of 800 iterations is needed to reach convergence.
With the same implementation as for Section 4, each iteration requires about 30 s.

The measured displacement field in x and y directions is shown in Figure 12(a-b). Figure 12(c) displays the
corresponding crystal rotation field between the two image acquisitions. It is observed that in this experimental
case the rotations are specific to grains, with discontinuities across grain boundaries just as in the FE simulation
(Figure 8(a)).

The residual of quaternion correlation is shown in Figure 13(a). Grain boundaries are still visible, though
very thin. Isolated intra-grain points can also be noticed. They are due to EBSD acquisition noise. Most of
the grain boundaries are not wider than 3 pixels (see Figure 13(b)) and the emergence of several bright zones
indicates substantial crystal rotations during tension, which is presumably due to crystal twinning. Figures 13(c)
and 13(d) show the confidence index of the reference image and the displacement-corrected deformed image of
the corresponding region. It is concluded that at triple points the confidence index is lower than for regular
grain boundaries, i.e., the crystal orientation is not well determined and leads to high residuals. The quaternion
correlation procedure cannot produce results that are more reliable than the exploited starting EBSD information.
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Figure 12: Quaternion correlation results. (a-b) Measured displacement field in x and y directions (in pixels). (c)
Corresponding rotation angle θ field (in degrees)

In order to validate the result, it is natural to consider the final residual, i.e., disorientation angle after regis-
tration. However, as discussed above, within grains this quantity is not exactly an error, namely, it corresponds
to the actual lattice rotation that takes place in the plastic flow. The other part of the residual is the one that is
supported by the grain boundaries. It is the latter that validates the convergence of the procedure. As shown in the
magnified region (Figure 13(b)) the final residuals are essentially localized on grain boundaries. It is noteworthy
that they are even more concentrated than what the confidence index would suggest.

6 Conclusion and perspectives

The algorithm introduced herein evaluates displacements based on crystallographic orientations re-encoded as
quaternions instead of gray levels. Its main application deals with EBSD acquisitions. Displacement fields are
measured and correlation residuals quantify the crystallographic rotation between images. Two cases have been
studied. First, a synthetic case for which the displacement and rotation fields were known thanks to a crystal
plasticity computation. The algorithm was deemed validated and the error levels of the algorithm were quantified.
Second, EBSD maps acquired during an in-situ tensile test on a nickel-based alloy show that such a technique can
also be applied to experimental cases. Consequently, acquisition noise does not hinder such technique. However,
drift and other artifacts related to EBSD imaging need to be quantified.

The global lack of image contrast, except at grain boundaries, makes the correlation very challenging. Con-
sequently, convergence is slow in comparison with registrations of speckle patterns. Pixel-wise crystal symmetry
application at each step leads to additional computation steps. Standard DIC results based on the EBSD quality
map treated as speckles can be used to initialize quaternion correlation, which speeds-up the calculation in practice.
Besides, the discontinuity of crystal orientations at grain boundaries makes the convergence very difficult near the
minimum point.

The measurement of kinematic and rotation fields at microstructure scale opens many possibilities in materials
science. For example, the quaternion correlation algorithm can be used in the detection of crack tip, as the
propagation of crack induces crystallographic rotations. Both displacement and rotation fields can be used for the
study of plasticity and for the identification of constitutive laws. The algorithm can also be adapted to filter a
series of consecutive EBSD results. As shown in Figure 13(a), isolated intra-grain high residuals indicate the noise
of EBSD acquisitions either in the reference or deformed images. The algorithm provides a way of locating these
spurious pixels and filter them out. Apart from detecting ‘bad’ pixels inside grains, the algorithm can also be used
to adjust grain boundaries. Due to the discrete sampling effect, EBSD gives more rigged grain boundaries than the
actual ones. Correspondence of pixels at grain boundaries has an ’averaging’ effect, which helps to straighten grain
boundaries. This mechanism can also be understood as several EBSD acquisitions actually improve the spatial
resolution on the grain boundary, under the assumption that the grain boundary does not change much between
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Figure 13: (a) Residual map in analyzed ROI. The isolated intra-grain high residuals in the triangle indicate EBSD
acquisition noise. The bright zones shown in the ellipses indicate substantial crystal rotations during tension,
presumably crystal twinning. The rectangle indicates the enlarged area shown in (b-d). (b) Zoomed residual map.
Confidence index in the corresponding area in reference and deformed images are shown respectively in (c) and (d)

acquisitions.
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Appendix A: Basic properties of quaternions

Multiplication rules for elementary quaternions reads

i× i = −1, j × j = −1, k × k = −1
i× j = k, j × k = i, k × i = j
j × i = −k, k × j = −i, i× k = −j

(16)

The multiplicative sign × was shown explicitly in order to avoid possible confusions. In particular, the third line
shows that the product is not commutative, and thus special care is to be exercised. In the following, to simplify
notations, the product sign will be omitted and q1 × q2 will be denoted q1q2. The conjugate of a quaternion
q = a+ bi+ cj + dk is defined as

q∗ = a− bi− cj − dk (17)

and its quadratic norm is
‖q‖2 = qq∗ = a2 + b2 + c2 + d2 (18)

A unit quaternion Uq is such that its norm is unity, and hence its inverse is its conjugate

U−1q = U∗q (19)

The multiplication of two unit quaternions produces a new unit quaternion, its corresponding rotation is the
combination of the two original quaternions. The ‘division’ of two unit quaternions p and q, qp−1, indicates the
rotation between them, with the following relationship between rotation angle θ and (qp−1)1

(qp−1)1 = cos
θ

2
≈ 1− θ2

8
, with small θ (20)

Linear quaternion interpolation (Lerp) reads

L(p, q, h) = p(1− h) + qh (21)

Linear quaternion interpolation needs to be projected onto the unit sphere in 4D to obtain unitary quaternions

UL(p,q,h) =
p(1− h) + qh

‖p(1− h) + qh‖
(22)

Figure 14 illustrates the Lerp of quaternions in 2 dimension. The secant pq is equally split by Lerp, while the angle
between p and q is not. Lerp is easy to implement, namely, component-wise linear interpolation and renormalization.

p q

UL(p,q,0.5)

UL(p,q,0.25) UL(p,q,0.75)

L(p,q,0.25) L(p,q,0.5)

L(p,q,0.75)

Figure 14: Lerp illustrated in the orientation space. Quaternions p and q are shown in orientation space with their
linear interpolations

All representation of rotations, namely, Euler angle notation, axis-angle notation and quaternion are inter-
changeable. Their transformation can be performed by comparison of the rotation matrices. The rotation matrix
based on Euler angles (ϕ1,Φ, ϕ2) reads in Bunge notations cosϕ1 cosϕ2 − sinϕ1 sinϕ2 cos Φ sinϕ1 cosϕ2 + cosϕ1 sinϕ2 cos Φ sinϕ2 sin Φ

− cosϕ1 sinϕ2 − sinϕ1 cosϕ2 cos Φ − sinϕ1 sinϕ2 + cosϕ1 cosϕ2 cos Φ cosϕ2 sin Φ
sinϕ1 sin Φ − cosϕ1 sin Φ cos Φ

 (23)

16



The rotation matrix based on axis-angle (θ, [d1, d2, d3]) is written as (
1− d21

)
cos θ + d21 d1d2 (1− cos θ) + d3 sin θ d1d3 (1− cos θ)− d2 sin θ

d1d2 (1− cos θ)− d3 sin θ
(
1− d22

)
cos θ + d22 d2d3 (1− cos θ) + d1 sin θ

d1d3 (1− cos θ) + d2 sin θ d2d3 (1− cos θ)− d1 sin θ
(
1− d23

)
cos θ + d23

 (24)

The quaternion (q1, q2, q3, q4) and axis-angle notation (θ, [d1, d2, d3]) are related as

q1 = cos
θ

2
, q2 = sin

θ

2
d1, q3 = sin

θ

2
d2, q4 = sin

θ

2
d3 (25)
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Appendix B: 48 unitary quaternions corresponding to cubic crystal sym-
metry

There are 24 crystal symmetry systems in a cubic crystal:

• 3-fold rotation symmetry in cubic diagonal direction {111}

• 4-fold rotation symmetry in orthogonal direction {100}

• 2-fold rotation symmetry in facial diagonal direction {110}

Crystal symmetry can be represented by unit quaternion. For example, a rotation of θ = 2π/3 about d =

(1/
√

3)(1, 1, 1) can be represented as

p = (cos(π/3), d1 sin(π/3), d2 sin(π/3), d3 sin(π/3)) = (1/2)(1, 1, 1, 1) (26)

All of the 48 cubic symmetry quaternions pcubi are listed in Table 3.

Table 3: List of the 48 quaternions image of q0 = 1 in a cubic symmetry. For the sake of simplicity a constant scale
factor is factorized in the first column

Scale factor p1 p2 p3 p4 Scale factor p1 p2 p3 p4
1 +1 0 0 0 1 -1 0 0 0
1 0 +1 0 0 1 0 -1 0 0
1 0 0 +1 0 1 0 0 -1 0
1 0 0 0 +1 1 0 0 0 -1

1/2 +1 +1 +1 +1 1/2 -1 -1 -1 -1
1/2 +1 -1 -1 -1 1/2 -1 +1 +1 +1
1/2 +1 +1 -1 +1 1/2 -1 -1 +1 -1
1/2 +1 -1 +1 -1 1/2 -1 +1 -1 +1
1/2 +1 -1 +1 +1 1/2 -1 +1 -1 -1
1/2 +1 +1 -1 -1 1/2 -1 -1 +1 +1
1/2 +1 -1 -1 +1 1/2 -1 +1 +1 -1
1/2 +1 +1 +1 -1 1/2 -1 -1 -1 +1√
2/2 +1 +1 0 0

√
2/2 -1 -1 0 0√

2/2 +1 0 +1 0
√

2/2 -1 0 -1 0√
2/2 +1 0 0 +1

√
2/2 -1 0 0 -1√

2/2 +1 -1 0 0
√

2/2 -1 +1 0 0√
2/2 +1 0 -1 0

√
2/2 -1 0 +1 0√

2/2 +1 0 0 -1
√

2/2 -1 0 0 +1√
2/2 0 +1 +1 0

√
2/2 0 -1 -1 0√

2/2 0 -1 +1 0
√

2/2 0 +1 -1 0√
2/2 0 0 +1 +1

√
2/2 0 0 -1 -1√

2/2 0 0 -1 +1
√

2/2 0 0 +1 -1√
2/2 0 +1 0 +1

√
2/2 0 -1 0 -1√

2/2 0 -1 0 +1
√

2/2 0 +1 0 -1
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[2] F. Amiot, J. N. Périé, and S. Roux. Equilibrium Gap Method, pages 331–362. John Wiley & Sons, Inc., 2012.

[3] F. Barbe, L. Decker, D. Jeulin, and G. Cailletaud. Intergranular and intragranular behavior of polycrystalline
aggregates. Part 1: F.E. model. International Journal of Plasticity, 17(4):513–536, 2001.

[4] M. Bertin, C. Du, J.P.M. Hoefnagels, and F. Hild. Crystal plasticity parameter identification with 3d mea-
surements and integrated digital image correlation. Acta Materialia (in press), 2016.

[5] M. Berveiller and A. Zaoui. An extension of the self-consistent scheme to plastically-flowing polycrystals.
Journal of The Mechanics and Physics of Solids, 26:325–344, 1979.

[6] J. Carroll, C. Efstathiou, J. Lambros, H. Sehitoglu, B. Hauber, S. Spottswood, and R. Chona. Investigation
of fatigue crack closure using multiscale image correlation experiments. Engineering Fracture Mechanics,
76(15):2384 – 2398, 2009.

[7] J.H. Cho, A.D. Rollett, and K.H. Oh. Determination of a mean orientation in electron backscatter diffraction
measurements. Metallurgical and Materials Transactions A, 36(12):3427–3438, 2005.

[8] Code Aster. www.code-aster.org. 2015.

[9] N.M. Cordero, S. Forest, E.P. Busso, S. Berbenni, and M. Cherkaoui. Grain size effects on plastic strain and
dislocation density tensor fields in metal polycrystals. Computational Materials Science, 52(1):7–13, 2012.

[10] P. Doumalin and M. Bornert. Micromechanical applications of digital image correlation techniques. In Pierre
Jacquot and Jean-Marc Fournier, editors, Interferometry in Speckle Light, pages 67–74. Springer Berlin Hei-
delberg, 2000.

[11] A. Guery, F. Hild, F. Latourte, and S. Roux. Identification of crystal plasticity parameters using dic measure-
ments and weighted femu. Mechanics of Materials, 100:55 – 71, 2016.

[12] A. Guery, F. Hild, F. Latourte, and S. Roux. Slip activities in polycrystals determined by coupling DIC
measurements with crystal plasticity calculations. International Journal of Plasticity, 81:249 – 266, 2016.

[13] A. Guery, F. Latourte, F. Hild, and S. Roux. Characterization of SEM speckle pattern marking and imaging
distortion by digital image correlation. Measurement Science and Technology, 25:12pp, 2014.

[14] M.E. Gurtin, L. Anand, and S.P. Lele. Gradient single-crystal plasticity with free energy dependent on dislo-
cation densities. Journal of the Mechanics and Physics of Solids, 55(9):1853 – 1878, 2007.

[15] W.R. Hamilton. Lectures on Quaternions. Dublin : Hodges and Smith, 1853.

[16] W.R. Hamilton. Elements of Quaternions. London, Longmans, Green, & co, 1866.

[17] J.H. Han, K.K. Jee, and K.H. Oh. Orientation rotation behavior during in situ tensile deformation of poly-
crystalline 1050 aluminum alloy. International Journal of Mechanical Sciences, 45(10):1613 – 1623, 2003. 6th
Asia-Pacific Symposium on Advances in Engineering Plasticity and its Applications.

[18] F. Hild and S. Roux. Digital Image Correlation. Wiley-VCH, 2012.
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[21] E. Héripré, M. Dexet, J. Crépin, L. Gélébart, A. Roos, M. Bornert, and D. Caldemaison. Coupling between
experimental measurements and polycrystal finite element calculations for micromechanical study of metallic
materials. International Journal of Plasticity, 23(9):1512–1539, 2007.

19



[22] H. Jin, W.Y. Lu, S. Haldar, and H.A. Bruck. Microscale characterization of granular deformation near a crack
tip. Journal of Materials Science, 46(20):6596–6602, 2011.

[23] H.D. Joo, J.S. Kim, K.H. Kim, N. Tamura, and Y.M. Koo. In situ synchrotron x-ray microdiffraction study of
deformation behavior in polycrystalline coppers during uniaxial deformations. Scripta Materialia, 51(12):1183
– 1186, 2004.

[24] F. Latourte, T. Salez, A. Guery, N. Rupin, and M. Mahé. Deformation studies from in-situ SEM experiments of
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