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Résumé. Nous présentons dans ce travail un algorithme de coclustering pour données
fonctionnelles. Cet algorithme repose sur le modèle des blocs latents utilisant une modélisation
gaussienne des composantes principales fonctionnelles et un algorithme SEM-Gibbs pour
l’inférence.
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Abstract. A model-based coclustering algorithm for functional data is presented.
This algorithm relies on the latent block model using a Gaussian model for the functional
principal components and a SEM-Gibbs algorithm for inference.
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1 Introduction

With the introduction of new technologies and services in mobile networks, the complex-
ity of these latter have increasingly grown creating an heterogeneous environment where
different architectures (micro-, macro-, pico-, femto-cells) and different radio access tech-
nologies (GSM, UMTS, LTE, . . .) coexist. In this context, mobile operators need to deal
with the new challenges in order to provide a top quality of services without increasing
costs.

The quality of services is measured by data captured from the network. These data are
generated from different sources such as probes, robots and key performance indicators
(KPI). They are used for different needs such as network maintenance, optimization,
troubleshooting and management. They are also used for self-organizing networks e.g for
self-healing and self-optimization tasks.

KPIs are measurements used to monitor quality of service perceived by the user and the
network performance. The KPIs concern different network elements such as transceivers,
cells, sites, . . . and they are defined by mathematical formulas derived from different
counters, computed periodically from the network. Therefore, KPIs are continuous data
that are computed with different temporal granularities (hourly or less, daily, weekly).
Figure 1 provides an illustration of 20 daily evolutions of 30 KPIs, with a temporal
granularity of 15 minutes.
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Figure 1: Sample of daily evolutions of 30 KPIs.

Some KPIs are common across the different radio access technologies while others are
specific to each one of them. Even under the same technology, the counters/KPIs may
differ from one constructor to another. Therefore, as the number of technologies, services,
cell types, and constructors grows, the number of KPIs observed by the support team
becomes enormous and network planning and operating becomes more complex. However,
nowadays, the number of procedures, e.g related to optimization and fault management,
that are manually carried out is still considerable. This has triggered a significant research
effort, gathered under the term ”automatic networking”.

In this context, with this work, we are interested in KPIs and the study of their
behaviors. We define a clustering of not only the different KPIs, but also of observations.
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The proposed model can help the technical support team of mobile operators and it can
afford additional information to self-organizing networks by discovering new relationships
between the different KPIs and new similarities between their behaviors in different days.
In other terms, we define a model for co-clustering of both KPIs and days.

The rest of this paper is organized as follows. Section 2 presents the data representation
and its pre-processing. Section 3 presents the latent block model for functional data that
we propose and Section 4 details its inference. Finally, Section 5 describes briefly the
ongoing work.

2 The data

The data under study are a sample of n observations (days), each observation being
described by a set of p curves (functional features, KPIs). The statistical model underlying
data represented by (multivariate) curves is a stochastic process with continuous time:

X = {X(t)}t∈[0,T ] with X(t) = (X1(t), . . . , Xp(t))
′ ∈ Rp, p ≥ 2.

A sample path of X is represented by a set of p curves.

2.1 Transformation of the observed discretized curves

In practice, data are generally observed at discrete time points and with some noise. In
order to reflect the functional nature of data, smoothing methods consider that the true
curve belongs to a finite dimensional space spanned by some basis of functions. Let us
assume that each observed curve xij (1 ≤ i ≤ n, 1 ≤ j ≤ p) can be expressed as a linear
combination of basis functions {φj`}`=1,...,mj

:

xij(t) =

mj∑
`=1

aij`φj`(t), t ∈ [0, T ]. (1)

The basis expansion coefficients aij = {aij`}`=1,...,mj
can be estimated by least square

smoothing (see [3] for instance). In this work, the same basis {φ`}`=1,...,m is used for all
the functional features (KPIs).

2.2 Principal components analysis for functional data

Principal components analysis is often used to give a simple representation of the func-
tional data. Principal components analysis for functional data (FPCA, [3]) consists in
computing the principal components Ch and principal factors fh of the Karhunen-Loeve
expansion:

X(t) = µ(t) +
∑
h≥1

Chfh(t), t ∈ [0, T ]. (2)
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When curves are assumed to be decomposed into a finite basis of function (1), FPCA
consists in a classical PCA of the basis expansion coefficients using a metric defined by
the inner product between the basis functions. FPCA has been extended to multivariate
functional data in [2].

In theory, the number of principal components are infinite. However, in practice, due
to the fact that the curves are observed at discrete time points and then approximated
on a finite basis of functions, the maximum number of components one can compute is
equal to the number m of basis functions used for approximation.

3 Latent block model for functional data

In a co-clustering study, the goal is to gather observations as well as (functional) features
into clusters. For this, we use the latent block model which assumes that data into a
block (defined by a cluster of observations and a cluster of features) are independent and
identically distributed. Let Kr be the number of clusters in row and let Kc be the number
of clusters in column.

Let x = (xij)1≤i≤n,1≤j≤p be the matrix of curves (xij : xij(t), t ∈ [0, T ]) whose
rows are observations (days) and whose columns are the functional features. Let c =
(chij)1≤i≤n,1≤j≤p,1≤h≤m be the principal components resulting from a (univariate) FPCA of
all the curves x, without distinction between curves from different observations or dif-
ferent features. In the following, the straightforward ranges for i, j, h, kr and kc will be
omitted for simplicity of notations.

The latent block model for functional data we propose is defined by:

p(x; θ) =
∑
v∈V

∑
w∈W

p(v; θ)p(w; θ)f(c|v,w; θ) (3)

where,

• V is the set of all possible partitions of the rows into K groups, W is the set of all
possible partitions of the columns into M groups,

• p(v; θ) =
∏

ikr
α
vikr
kr

, αkr being the row-mixing proportion and v = (vikr)ikr with
vikr = 1 if observation i belongs to the row cluster kr, 0 otherwise,

• p(w; θ) =
∏

jkc
β
wjkc

kc
, βkc being the column-mixing proportion, and w = (wjkc)jkc

with wjkc = 1 if the functional covariate j belongs to the column cluster kc, 0
otherwise,

• f(c|v,w; θ) =
∏

ijkrkc
p(cij;µkrkc ,Σkrkc)

vikrwjkc with,

– cij = (chij)1≤h≤m are the functional principal components of xij(t),
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– p(·;µkrkc ,Σkrkc) is the m-variate Gaussian density with mean µkrkc = (µhkrkc)1≤h≤m
and diagonal variance matrix Σkrkc with diagonal (σ2

hkrkc
)1≤h≤m,

• θ = (αkr , βkc , µkrkc ,Σkrkc)1≤kc≤Kc,1≤kr≤Kr .

4 Inference via a SEM-Gibbs algorithm

Let us assume that a FPCA has been carried out on the whole data set of curves, and
then each curve xij is represented by its principal components chij for h = 1, . . . ,m.

Inference of the latent block model is computationally infeasible with an EM algorithm
[1] and we choose to use its stochastic version SEM coupled with a Gibbs sampling.
Starting from an initial value of the parameter θ(0) and of the missing data w(0), the qth

iteration of the partial SEM-Gibbs alternates the following SE and M steps.

SE step Execute a small number (at least 1) of successive iterations of the two following
steps:

1. generate the row partition v
(q+1)
ikr
|c,w(q) for all 1 ≤ i ≤ n, 1 ≤ kr ≤ Kr:

p(vikr = 1|c,w(q); θ(q)) =
α
(q)
kr
fkr(ci|w(q); θ(q))∑

k′r
α
(q)
k′r
fk′r(ci|w(q); θ(q))

where ci = (chij)j,h and fkr(ci|w(q); θ(q)) =
∏

jkc
p(cij;µ

(q)
krkc

,Σ
(q)
krkc

)w
(q)
jkc

2. generate the column partition w
(q+1)
jkc
|c,v(q+1) for all 1 ≤ j ≤ p, 1 ≤ kc ≤ Kc:

p(wjkc = 1|c,v(q+1); θ(q)) =
β
(q)
kc
fkc(cj|v(q+1); θ(q))∑

k′c
β
(q)
k′c
fk′c(cj|v(q+1); θ(q))

where cj = (chij)i,h and fkc(cj|v(q+1); θ(q)) =
∏

ikr
p(cij;µ

(q)
krkc

,Σ
(q)
krkc

)v
(q+1)
ikr

M step Estimate θ(q+1) conditionally on v(q+1),w(q+1):

α
(q+1)
kr

=
1

n

∑
i

v
(q+1)
ikr

β
(q+1)
kc

=
1

p

∑
j

w
(q+1)
jkc

µ
(q+1)
krkc

=
1

n
(q+1)
krkc

∑
i

∑
j

c
v
(q+1)
ikr

w
(q+1)
jkc

ij

Σkrkc
(q+1) =

1

n
(q+1)
krkc

− 1

∑
i

∑
j

(cij − µ(q+1)
krkc

)t(cij − µ(q+1)
krkc

)v
(q+1)
ikr

w
(q+1)
jkc

where n
(q+1)
krkc

=
∑

i

∑
j v

(q+1)
ikr

w
(q+1)
jkc

.
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Choosing the parameter estimation and the final partition After a brun in
period, the final estimation θ̂ of the parameter θ is defined by the mean of sample distri-
bution. The final partition is estimated by maximum a posteriori according to θ̂.

5 Ongoing work

In this paper, we defined a co-clustering model for functional data. Our ongoing work
includes the establishment of an experimental study in order to test our approach. The
experimentation is composed of tests with simulated data as well as tests with real data.
The results will be presented during the conference.

Our model is characterized to be generic so it can be applied to any application that
uses multivariate functional data and that aims to discover the relationship between them
and the different observations. In particular, in the mobile network domain, our model
can extract new knowledge about KPIs which will help the technical support team of
network operators in optimization and troubleshooting tasks. Moreover, it can be applied
as a pre-processing step of self-organizing networks procedures in order to explore the
enormous number of the used KPIs.

The main advantage of this model is that it offers a way to get labeled data, which
is very hard to obtain in the area of mobile network. Actually, in some use cases such
as self-healing, where there is no dataset available (neither issued from live networks nor
artificial), designing and evaluating data mining approaches is still a challenge that should
be tackled. Therefore, starting from unlabeled data, we proposed a technique of clustering
which result i.e the different clusters can be addressed to mobile network experts who can
identify them. The resulted labeled data will allow the use of supervised techniques and
prediction of new observations.
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