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Abstract

An inverse method for the identification of a set of crystal plasticity parameters is intro-

duced and applied to in situ tensile tests on steel polycrystals. Various mean grain sizes are

obtained with different conditioning of AISI 316LN austenitic stainless steel. Identification is

based on a weighted Finite Element Model Updating (FEMU) using both displacement fields at

the microscale and macroscopic load levels. The values of the identified parameters depend on

the factor weighing the contributions of the microscopic and macroscopic quantities. On the one

hand, surface displacement fields are measured by Digital Image Correlation (DIC). On the other

hand, they are simulated by resorting to Finite Element calculations with a local crystal plasticity

law (i.e., Méric-Cailletaud’s model) and a 2D simulation of the microstructure. The parameters

associated with isotropic hardening are calibrated for the different mean grain sizes. The bene-

fits of considering full-field measurements are manifest for instance in the excellent Hall-Petch

trend captured at the microstructural scale. The identification procedure is also applied to the

estimation of hardening parameters describing the interaction between slip systems.

Keywords: Crystal plasticity, Identification, Digital Image Correlation

1. Introduction

Crystal plasticity models allow the mechanical behavior of heterogeneous materials to be

finely described at the scale of their microstructure. Numerical simulations using such models

give access to local stress and strain fields and more specifically the localizations of these fields

associated with microstructural features such as grain boundaries. These calculations are gener-
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ally conducted by using finite element methods [1] or Fast-Fourier Transform techniques [2]. The

field localizations are of major importance when the degradation mechanisms occurring at the

grain scale(e.g., such as the phenomena of fatigue crack initiation and propagation, intergranular

fracture or stress corrosion cracking) are investigated. Since the constitutive equations of crystal

plasticity models are written at the single-crystal level, their relevance to describe the polycrystal

behavior requires experimental validations. This step deals with the challenging scale transition

between single-crystal and polycrystals, which involves the mechanical role of grain boundaries

on plasticity.

In this context, full-field measurements provide spatially dense experimental information that

can be used to validate both constitutive laws and microstructural calculations. For instance, a

direct comparison between DIC measurements and crystal plasticity calculations in polycrystals

for the austenitic stainless steel A316LN has been addressed in Ref. [3]. A good agreement in

terms of kinematic fields and major slip system activity between experimental measurements and

computations has been found. However, some differences remain in the local fields that may be

minimized by optimizing the model parameters, which is the topic of the present paper.

Various studies have successfully exploited full-field measurements for the parameter iden-

tification of macroscopic constitutive laws [4–7]. Such identification approaches using full-field

measurements are specifically relevant when heterogeneous mechanical fields [4, 6] or hetero-

geneous material properties [6, 8] are considered. It is worth noting that the measurements may

be performed in some cases using images acquired from optical microscopy in order to take into

account the effects of the material microstructure on the experimental fields [5].

At the microstructural scale, the use of Scanning Electron Microscope (SEM) imaging pro-

vides intragranular DIC measurements with high spatial resolution on the surface of polycrystals

that make possible the coupling with crystal plasticity calculations [3, 9–12]. Such high resolu-

tion measurements allow not only the microstructure modeling involved in polycrystal calcula-

tions to be validated but also the intragranular variations of the simulated fields. However, only

few studies have exploited this experimental information for the identification of crystal plastic-

ity parameters [9, 13] or to address the quantitative agreement between polycrystalline models

and experiments [3, 10, 14–16].
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In this study, it is first proposed to discuss the choices made to simulate experimental ten-

sile tests on polycrystals. The second part is devoted to the identification procedure based on

both microstructural displacement fields and the material homogenized behavior. Because the

tensile tests considered herein have no unloading phases, only the isotropic hardening part of the

considered crystal plasticity model will be studied. Last, the identification of the correspond-

ing parameters for the law proposed by Méric et al. [17] and the interaction parameters of slip

systems are presented and discussed.

2. Finite Element model

This first part presents the assumptions used for modeling the local and averaged responses of

polycrystals loaded during an in situ (i.e., inside an SEM) tensile test. The material, the experi-

mental facilities and the displacement fields measurements by DIC have already been introduced

in detail in Ref. [3].

2.1. Simulation of the local response of polycrystals

The simulation of the local response of polycrystals is performed by finite element calcula-

tions using Code Aster (http://www.code-aster.org/). The choice has been made to work with

the phenomenological crystal plasticity law proposed by Méric et al. [17]. Its constitutive equa-

tions and the parameters are detailed in AppendixA. The material considered in this study is a

316LN austenitic stainless steel of face centered cubic (FCC) crystal lattice. The constitutive

relationships are expressed for each of its twelve octahedral slip systems s. While many other

crystal constitutive laws are available [1], the choice of the present model has been motivated

by its good agreement between numerical slip predictions in polycrystals and experimental mea-

surements [3]. Moreover, this law is numerically efficient when implemented in a finite element

code, in terms of Newton iterations and computation time.

An underlying difficulty when simulating the local response of experimental polycrystals is to

model their microstructure using the available experimental information. In the present study, the

microstructure has been characterized in the so-called Region Of Interest (ROI) of each specimen

by Electron Back-Scattered Diffraction (EBSD), which leads to 2D surface fields. The lack of
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knowledge in the bulk of the experimental microstructure may potentially induce a modeling

error that needs to be accounted for. In this work, the use of 2D models with different modeling

strategies is proposed. Since the crystal plasticity law expects a 3D integration, an assumption

in the out-of-plane direction is required. In particular, two assumptions are compared in the

following. The first one, referred to as 2D, consists of approaching the plane stress condition.

The 3D strain and stress tensors are expressed as

ε =


εxx εxy 0

εxy εyy 0

0 0 εzz

 σ =


σxx σxy 0

σxy σyy 0

0 0 σzz

 (1)

where z is the normal direction to the image plane and with σzz tending to zero with the Newton

iterations i of the numerical solution

σ(i)
zz → 0 (2)

This method allows for the use of a 2D mesh, which is chosen as the same employed for the DIC

measurement, taking as support the microstructure grain or twin boundaries [3]. An alternative

route, designated as quasi-2D, consists of extruding the above mesh perpendicular to the surface

with one element through the thickness (with a depth equal to the characteristic length of the

2D mesh). The mesh made of triangular prisms is then cut into 4-noded tetrahedra. For both

assumptions, experimentally measured displacements are prescribed with their time history on

the edges of the meshes. For the quasi-2D mesh, zero displacements along the normal of the

surface are prescribed on the back face. According to the results of previous studies [9, 18],

these choices for modeling the microstructure appear the least arbitrary and the most realistic

ones when the microstructure is unknown in the bulk.

To compare the two assumptions, finite element calculations are performed, one with the 2D

mesh, the other one with the quasi-2D mesh, both with the same boundary conditions and the

same set of parameters given in AppendixA. The assumption of small strain levels is adopted

herein since the calculations are not conducted farther than a mean strain of 5 %. For illustration

purposes, one of the studied experimental microstructures, denoted as D50, is chosen to perform
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this comparison. Figure 1 shows the displacement fields obtained with the 2D assumption for

a macroscopic strain of about 5 %. The difference between the two calculations in terms of the
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Figure 1: Displacement fields expressed in micrometers along the horizontal y (a) and the vertical x (b) axes simu-

lated with the 2D assumption for a macroscopic strain of about 5 %

displacement fields obtained on the surface are presented in Figure 2. On these fields and for

all the following ones the microstructure boundaries are drawn as solid lines. The displacement

difference lies in the 1.5 µm range while the dynamic range (i.e., amplitude) of the displacement

fields is 17 µm at this loading step. Although not negligible, the difference is small and localized

in the vicinity of some microstructure boundaries (the standard deviation of the difference is

equal to 0.4 µm). As a consequence, the 2D assumption has been selected for the identification

method based on the displacement fields (see Section 3) since it is by far more computationally

efficient. For example, the presented calculation takes about 3 h with the 2D assumption and

about 22 h with the quasi-2D assumption, both with MPI parallel computations on 8 processors.

As a comparison, the standard measurement uncertainty for this microstructure is equal to

7.1 nm [3]. It is much lower than the gap between the two simulated fields at a macroscopic

strain of 5 %. This shows that whatever assumption is made, the modeling error is not negligible

and may be reduced thanks to the identification of the crystal plasticity law parameters.
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Figure 2: Absolute difference expressed in micrometers between the displacement fields along the horizontal y (a)

and the vertical x (b) axes for a macroscopic strain of about 5 %, when simulated with the 2D and quasi-2D assump-

tions

2.2. Simulation of the effective behavior

The Region Of Interest (ROI) for which the DIC measurements are performed encompasses

an insufficient number of grains to be considered as a representative volume element. The aim

of the measurements is to get a spatially dense kinematic measurement inside grains and close

to their boundaries, thereby motivating the selection of a small number of grains in the ROI.

Computing the material effective behavior needed in the identification procedure (see Section 3)

can therefore not be achieved using a full 2D field model corresponding to the ROI and an

alternative method is proposed in the following.

For specimen D50, a sequence of EBSD measurements is conducted and stitched in order to

determine the microstructure over the entire width of the specimen (i.e., over 1.9 mm), including

the area, denoted ROI 1, in which displacement fields are measured by DIC and simulated. This

large field microstructure is denoted as ROI 2. Figure 3 shows the full EBSD Inverse Pole

Figure (IPF) map obtained in this region over which is drawn the grain boundary map.

The simulation of the in situ tensile test is performed considering the microstructure of ROI 2,

using the law proposed by Méric et al. and the same set of parameters as for the calculation on

ROI 1. For that purpose, a 2D finite element mesh is built taking as support the microstructure

of ROI 2 with the same characteristic length as the previous ROI 1 mesh. Moreover, the calcu-
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Figure 3: IPF and grain boundary maps of the full width of specimen D50. The edges of the regions of interest

denoted ROI 1 and ROI 2 are drawn with solid and dashed lines, respectively. The scale bar is 200 µm long, and the

specimen width (vertical in the figure) is 2 mm

lation is performed with a plane stress assumption. As to boundary conditions, a homogeneous

displacement corresponding to the experimental macroscopic strain is applied along the horizon-

tal direction for the vertical edges. The horizontal edges matching with the specimen edges are

modeled as traction-free.

The mean values of the obtained stress and strain fields along the loading direction and over

the whole surface allow us to compute the stress-strain curve shown in Figure 4. The latter is

compared with that obtained from the 2D calculation previously performed on ROI 1. Important

stress fluctuations are observed on the second curve, which may be the consequence of the low
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number of grains in ROI 1 and of the experimentally measured displacements prescribed on the

edges. Despite these fluctuations, the effective behaviors simulated by the two calculations are

similar. However, compared with the experimental macroscopic stress-strain curve, the simulated

effective behaviors significantly underestimate the stress level.

This difference is unexpected since the three parameters associated with isotropic hardening

of the crystal plasticity law used for the two calculations are identified by homogenization from

the experimental curve considering a random texture. For that purpose, Berveiller-Zaoui’s model

is used [19] considering a uniformly-distributed random sampling of 300 crystallographic orien-

tations. Figure 4 shows a very good agreement between the experimental data and the response

of the model at convergence. The difference in stress levels between the latter and the macro-

scopic behavior obtained with the calculation on ROI 2 seems to be related to the plane stress

assumption. This gap is reduced by half when the calculation on ROI 1 is performed using the

quasi-2D assumption. Consequently, Berveiller-Zaoui’s model will be utilized in the following

to estimate the macroscopic behavior of the material from a given set of parameters of the crystal

plasticity law.
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Figure 4: Stress-strain curves corresponding to the mean values of the fields obtained from the 2D calculations on

ROI 1 and ROI 2, from the homogenization calculation (B.Z.) and experimental curve (Exp.)
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3. Weighted FEMU

3.1. Identification method

This part is devoted to the presentation of the inverse method used in this work to identify

crystal plasticity parameters. It is based on the minimization of a cost function χT that is the

combination of two least squares criteria, namely, one dealing with the measured displacement

fields at the microstructural scale, denoted by χu, and the other one with the measured load level

at the macroscopic scale, denoted by χF , such that

χ2
T ({p}) =

Ndo f

1 + Ndo f
χ2

u(p) +
1

1 + Ndo f
χ2

F(p) (3)

where {p} is the column vector gathering the parameters to identify, and Ndo f the number of

degrees of freedom of the mesh. This combination allows the (dimensionless) cost function χT

to have a mathematical expectation equal to unity in absence of model error. Any model error

probed via kinematic and static data will induce an increase of χT . The larger χT the higher the

model error.

On the one hand, the expression of χu reads

χ2
u({p}) =

1
Ndo f Nt

∑
t

{δu}Tt [Covu]−1
{δu}t (4)

with {δu}t the column vector of the difference evaluated at each degree of freedom between mea-

sured displacements {um}t and simulated ones {uc({p})}t at time step t. Ndo f and Nt, the number

of time steps, are introduced to normalize χ2
u. In absence of model error, the mathematical expec-

tation of χu will be equal to 1. The covariance matrix [Covu] of the measured kinematic degrees

of freedom is used to weight the least squares criterion since it is a known quantity related to the

DIC matrix [M ] determined at each time step [20], such that

[Covu] = 2η2
f [M ]−1 (5)

where η f is the standard deviation of noise on SEM images, assumed to be white and Gaussian.

On the other hand, χF is given by
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χ2
F({p}) =

1
η2

F Nt
{δF }T {δF } (6)

where {δF } is the column vector of the difference evaluated at each time step t between the exper-

imental load {Fm} and that obtained by a homogenization calculation {Fc({p})} with Berveiller-

Zaoui’s model and the current value of {p}. A normalization by the number of time steps is

used to be consistent with the definition of χ2
u. Similarly, the standard deviation of the load

measurement, denoted by ηF , is introduced to normalize χF .

All these normalizations imply that χu and χF are dimensionless. The closer their value to

unity, the closer the gap between the simulation and the experiment to measurement resolution,

in terms of displacement fields and macroscopic stresses respectively. In practice, the model

imperfections imply that the cost functions are strictly greater than one but can be minimized by

optimizing the crystal plasticity parameters.

The balance in this identification method between the microstructural (χu) and the macro-

scopic (χF) scales appeared to give too much weight to the displacement gap. The parameters

associated with isotropic hardening of the law proposed by Méric et al. and identified with the

presented method led to an unrealistic predicted effective behavior (see Section 4). This result

may be the consequence of a limitation of the constitutive law in describing the locally ob-

served hardening, of a modeling error induced by the lack of knowledge in the experimental

three-dimensional bulk morphology, or of too noisy boundary conditions extracted from the DIC

analysis and that feeds the numerical model. To allow the parameters of a given crystal plastic-

ity law to be optimized according to both microstructural displacement fields and macroscopic

stresses, a weight w is introduced to define a global residual

χ2
T ({p}) = (1 − w)χ2

u({p}) + wχ2
F({p}) (7)

Its value is to be chosen between 0 and 1. This weight has been utilized in a previous study

for the identification of Ramberg-Osgood’s parameters [7]. In the present case, when w = 0,

the identification is only based on the local displacement fields, while it only takes into account

the effective (i.e., macroscopic) behavior when w = 1. Note that the natural choice of w based
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on the balance between the measurement uncertainties of the two sources of information (i.e.,

w = 1/(1 + Ndo f )) is of the order of 10−4.

The minimization of the cost function χT with respect to the parameters {p} is performed

iteratively via a Newton-Raphson algorithm. At iteration n, the parameter corrections {δp(n)} are

given by

(
(1 − w)[H (n−1)

u ] + w[H (n−1)
F ]

)
{δp(n)} = (1 − w){h(n−1)

u } + w{h(n−1)
F } (8)

with the Hessian matrices expressed as

[H (n−1)
u ] =

1
2η2

f Ndo f Nt

∑
t

[S(n−1)
u ]T

t [M ] [S(n−1)
u ]t (9)

[H (n−1)
F ] =

1
η2

F Nt
[S(n−1)

F ]T [S(n−1)
F ] (10)

and with

{h(n−1)
u } =

1
2η2

f Ndo f Nt

∑
t

[S(n−1)
u ]T

t [M ] {δu}t (11)

{h(n−1)
F } =

1
η2

F Nt
[S(n−1)

F ]T {δF } (12)

where [S(n−1)
u ]t, respectively [S(n−1)

F ], is the sensitivity matrix of the displacement fields at the

time step t, respectively of the macroscopic stress, evaluated from the current value of the pa-

rameters {p(n)}.

3.2. Test cases

The identification method is now studied for two numerical test cases. The first one consists

of identifying known reference values of the parameters r0, q and b associated with isotropic

hardening. The “experimental” displacement fields, respectively macroscopic stress-strain curve,

are obtained from a first finite element calculation, respectively homogenization calculation, per-

formed with the reference values of the parameters. No noise is considered on the reference data

in this study and [Covu] is chosen equal to the identity matrix. As a consequence, χu and χF
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can reach values lower than one. For the finite element calculation, a simplified microstructure

made of four grains is considered and the 2D assumption is used. The parameters to identify are

initially set with a relative difference of about 20 % from the reference values. The identification

is performed with an equal weight given to both cost functions (i.e., w = 1/2).

Figure 5 shows the changes of the cost functions χu and χF , of the load, and of the three

parameters to be identified simultaneously with the number of iterations of the identification

procedure. 20 iterations are required to identify the three parameters with an absolute error less

than 10−4. The isotropic hardening parameter r0 is determined first. The effective behavior is

also quickly captured as shows the tenth iteration in Figure 5b. The difficulty in this test case is

that q and b are to be identified simultaneously while these parameters have a very similar role in

the isotropic hardening law. For low values of b the hardening rate becomes linear and controlled

only by the bq product (see Equation (A.4)). As soon as r0 and the effective behavior are close

enough to the reference data (i.e., from iteration 8 on), q and b start to converge to their reference

values. If the same exercise is performed with r0 and q to be identified and b kept fixed, only 4

iterations are then required to solve the problem with the same final value of χu and χF .

A second test case is conducted to address the errors associated with the 2D modeling hy-

pothesis. A finite element calculation of a 3D polycrystalline aggregate obtained with a Voronoi

tessellation is used to generate the “experimental” data. It consists of a tensile loading of a cube

composed of 300 grains with randomly-distributed orientations producing an isotropic texture.

The normal displacement on each face of the cube is prescribed as uniform (i.e., planar boundary

conditions). The loading is prescribed on the bottom and top faces. Then, the reference dis-

placement field is read on one of the lateral face, denoted the “observed” face. The reference

stress-strain curve is obtained by averaging the longitudinal strain and stress components over

the whole volume. The observed face is then extracted for a 2D calculation, with the same 2D

mesh and crystallographic orientations. The same boundary conditions are applied, namely, a

normal uniform displacement on each edge. Thus, the identification of crystal plasticity param-

eters is performed by minimizing the gap between the local response of this 2D calculation and

the reference fields. As previously, the calculated stress-strain curve is given at each iteration by

the homogenization model and w = 1/2.
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Figure 5: Cost functions χu and χF (a), macroscopic stress-strain curve (b) and parameters r0 (c), q (d) and b (e), as

functions of the iterations i of the identification procedure performed with w = 0.5

The results of the identification of the parameters r0 and b are shown in Figure 6 with an initial

guess for the parameters that are about 50 % different from the reference values. At convergence,

the effective behavior is well captured and the identified parameters, r0 = 65.2 MPa and b = 1.14,

are close to the reference values (i.e., r0 = 67 MPa and b = 1.2). The final gap between the

response of Berveiller-Zaoui’s model and that of the 3D calculation is low (i.e., χF = 0.9).

However, the gap in terms of displacements between the two finite element calculations is rather

significant and barely changes over the iterations (i.e., χu = 14.5). More precisely, during the first

twenty iterations, the identification is mostly driven by χF since it is greater than χu. During these

first iterations χu is increasing but then decreases when χF reaches low values. At the end of the
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Figure 6: Cost functions χu (a) and χF (b), macroscopic stress-strain curve (c) and parameters r0 (d) and b (e), as

functions of the iterations i of the identification procedure performed with w = 0.5

identification the displacement gap χu remains large as a result of the 3D to 2D approximation in

the modeling when the parameters r0 and b are optimized. For instance, the displacement field

along the tensile direction obtained with the 2D calculation at convergence is compared to the

reference one in Figure 7. It is observed that local differences remain notable.

The main result of this test case is the small change of χu with the number of iterations. To

better understand this result, Figure 8 shows the change of the cost functions χu and χF with the

values of the parameters r0 and b about their identified values. It illustrates that χu is weakly

sensitive to r0 and b. Conversely, χF is very sensitive to r0 and less to b. Moreover, when looking
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(a) (b)

Figure 7: Displacement fields expressed in micrometers along the horizontal (tensile) direction obtained on the

“observed” face, from the 3D calculation with the reference values of parameters (a) and from the 2D calculation

with the identified values of parameters (b), for a macroscopic strain of 3 %. The spatial axes are expressed in

micrometers

at the map of χu, it is noted that the identified point is not a minimum of the function. Thus, by

considering only this cost function, the identification would lead to small values of b and high

values of r0, which would not be consistent with the reference effective behavior according to

Figure 8b. Consequently, the combination of the two cost functions appears mandatory. Through

the level of w, a lower weight may be given to the effective behavior to enable for a decrease of

the gap in displacement fields. In the present test case, this would not allow χu to significantly

change according to the dynamic range of this function (Figure 8a). However, it will be shown

in the sequel that the adjustment of w is key to optimize the identification.

4. Identification results

The numerical test cases have shown in the previous section the robustness and effectiveness

of the identification procedure. An application to experimental data is now proposed.

4.1. Reference experimental fields

Five experimental microstructures obtained from a 316LN austenitic stainless steel, denoted

A70, B10, C10, D50 and E1000+, are considered with different mean grain sizes (see Table 1).
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Figure 8: Cost functions χu (a) and χF (b) versus the values of the parameters r0 and b when the reference values

are r0 = 67 MPa and b = 1.2

The microstructures are shown in Figure 9. Kinematic measurements are performed on their

surface by DIC in ROIs of different sizes and from a sequence of SEM images acquired during

in situ tensile tests [3]. The corresponding macroscopic stress-strain curves are presented in

Figure 10. The displacement uncertainties for each specimen are given in Table 1. Figure 11

shows the displacement fields along the horizontal (tensile) direction for the five microstructures

measured for a mean tensile strain of the order of 4 %. The two components of the displacement

fields with their time evolution up to 4 % are used in the following identification procedure as

Table 1: DIC standard displacement uncertainties for the five studied microstructures

Specimen Mean grain size (µm) ROI size (µm2) Displacement uncertainty (nm)

A70 70 200 × 200 4.3

B10 10 200 × 200 5.9

C10 10 100 × 100 2.2

D50 50 400 × 400 7.1

E1000+ >1000 400 × 400 4.4
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Figure 9: IPF of the the five studied microstructures sorted in increasing mean grain size order. The scale bar is

100 µm long

the (reference) experimental fields.
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Figure 10: Experimental macroscopic stress-strain curve of the in situ tensile tests for the the five studied microstruc-

tures

From monotonic tensile tests, only parameters associated with the isotropic hardening part

of the crystal plasticity law (i.e., r0, b and q; see AppendixA) will be identified. One may also

consider the coefficients hsr of the interaction matrix between slip systems used in the isotropic

hardening equation. These parameters will also be investigated in the following. To identify the

parameters associated with kinematic hardening (i.e., c and d), cyclic tests are required.
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Figure 11: Displacement fields expressed in micrometers measured by DIC along the horizontal (tensile) direction

for a mean tensile strain of 4 %, for the microstructures denoted A70 (a), B10 (b), C10 (c), D50 (d) and E1000+ (e). The

microstructure boundaries are shown as black lines on these fields
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4.2. Isotropic hardening parameters

It is first proposed to identify the sought isotropic hardening parameters r0, b and q. The sen-

sitivity of the computed displacement fields uc and average stress Fc to each considered param-

eter is first assessed, focusing on the case of specimen A70. A nonzero sensitivity is a necessary

condition for making the identification possible. It is assessed by calculating the difference of

the simulated response involved by a chosen variation of each parameter. Figure 12 shows the

sensitivity of uc to r0, b and q for a mean tensile strain of the order of 4 %. It corresponds to

a (forward) variation of 20 % of each parameter from the values identified by homogenization

(given in Table A.5), the other parameters being fixed (Table A.6). It is noted that the sensitivity

fields are identical for a variation of either b or q, but different from a variation of r0.
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Figure 12: Absolute value of the sensitivity of the simulated displacement field |δuc| (expressed in nanometers),

for a 20 % (forward) variation of each of the parameters r0, b and q shown along the horizontal y and vertical x

directions for a mean strain of about 4 %. The spatial axes are expressed in micrometers

This result is valid throughout the loading history as shown in Figure 13a. Thus, b and q

cannot be identified separately from the displacement fields, nor from the macroscopic behavior
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according to Figure 13b showing the sensitivity of the load calculated by homogenization with

respect to each parameter. Only r0 and the product qb are chosen to be identified in the sequel.
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Figure 13: Root mean square value of the field δuc (a) and sensitivity of the load calculated by homogenization (b)

corresponding to a 20 % variation of each of the parameters r0, b and q as functions of the mean strain

Moreover, it is observed that the fields δuc change significantly from grain to grain and

the highest values are generally reached close to grain boundaries. A given microstructure can

potentially be more or less favorable to the identification of the parameters. However, among the

five studied microstructures, no significant differences on the sensitivity fields have been noticed.

It is worth noting that the sensitivity of the displacement fields to r0 is higher than that to b or q

in the first part of the loading (i.e., for a mean tensile strain less than 2.8 %), then the opposite

trend occurs (Figure 13a). It is related to the role of these parameters with the yield condition

and with the hardening rate, respectively. At the same time, the macroscopic load is much more

sensitive to r0 than to b or q (Figure 13b).

It is interesting to note that δuc is locally several times higher than the measurement resolu-

tion (4.3 nm for the investigated microstructure, see Table 1). However, the root mean square of

δuc is greater than the measurement uncertainty only for the last three time steps (Figure 13a).

The displacement fields associated with high levels of average strain will thus contribute to the

parameter identification. Furthermore, as reported in other studies [7, 8], it is possible to a priori

estimate the uncertainty of the identified parameters related to the DIC measurement uncertainty
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corresponding to SEM noise. Only the displacement fields are considered in this analysis (i.e.,

w = 0). According to Equation (8), a variation of the displacement fields {δu} from the con-

verged value implies a variation of parameters {δp} such that

{δp} = [Hu]−1

∑
t

[Su]T
t [M ] {δu}t

 (13)

Assuming that {δu} is only due to the imaging noise and time-independent, from the expression

of the covariance matrix [Covu] of the measured kinematic degrees of freedom (Equation (5)),

the covariance matrix
[
Covp

]
= 〈{δp} ⊗ {δp}〉 of the identified parameters reads

[
Covp

]
= 2η2

f [Hu]−1

∑
t

[P ]t[M ]−1[P ]T
t

 [Hu]−1 (14)

with

[P ]t = [Su]T
t [M ] (15)

It is evaluated in the case of the specimen A70 as

[
Covp

]
=


0.0018 −0.0001 0.032

−0.0001 0.0002 −0.040

0.032 −0.040 8.4

 (16)

when {p} = {r0 b q}T (r0 and q are to be expressed in MPa while b is dimensionless). The di-

agonal terms correspond to the variance of each parameter considered separately. It is observed

that the variance on these three parameters is low. It means that the identification procedure

proposed in this study shows little sensitivity to SEM imaging noise. The off-diagonal coeffi-

cients are clearly not negligible indicating a coupling between parameters. To better highlight

this result, one may use the correlation matrix [R] defined as

Ri j =
Covpi j√

CovpiiCovp j j

(17)

The value of Ri j is equal to 1 when the parameters i and j are correlated, −1 when anti-correlated,

and 0 when uncorrelated. The corresponding matrix reads

21



[R] =


1 −0.24 0.26

−0.24 1 −0.998

0.26 −0.998 1

 (18)

This result shows that b and q are strongly coupled, which is consistent with the previous ob-

servations (Figures 12 and 13a). More precisely, they are anti-correlated. Since d(qb)/(qb) =

dq/q + db/b, if dq/q and db/b have opposite trends (i.e., dq/q = −db/b) their normalized cross

correlation is −1, and d(qb) vanishes. Moreover, the coupling between r0 and b or q is low but

non-zero thereby indicating a rather low correlation.

The identification of the parameters r0 and qb (i.e., b with q fixed) is first performed for

specimen A70 and for several values of the weight w. The values identified by homogenization

(i.e., for w = 1, given in Table A.5) are used as an initial guess of the parameters. The other

parameters of the law are kept fixed to the reference values (Table A.6). When w = 1/2, the

identification procedure leads to negligible changes of the cost functions and of the parameter

values. The minimization procedure seems to be locked in a minimum point and the cost function

dealing with the displacement fields appears to bring no added value. Lower weights given to

the macroscopic behavior are then considered (i.e., 0.1, 0.01, 0.001). In these cases, Figure 14

shows the change of the cost functions χu and χF with the iteration number of the identification

procedure. As expected, the lower the weight, the greater the gap on the effective behavior and

the lower the gap on the displacement fields. Starting from 21.8, a minimum of 18.3 is reached

for χu with w = 0.001. A minor difference is however observed between w = 0.01 and w = 0.001.

The variation of w has a much stronger effect on χF .

The corresponding change of the simulated effective behavior is presented in Figure 15. De-

creasing w allows the homogenized behavior to deviate from the experimental curve. If the

simulated stress-strain curves obtained with w = 0.01 or w = 0.001 do not appear realistic,

the gap between the simulated curve obtained with w = 0.1 and the experimental data remains

acceptable. This is subjective. An acceptance criterion may be investigated in future studies

considering for example a confidence indicator in the homogenization model [21].

The identified values of the parameters r0 and b are shown in Figure 16 as functions of
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Figure 14: Changes of the cost functions χu (a) and χF (b) with the iteration number of the identification procedure

performed with w = 0.1, w = 0.01 and w = 0.001
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Figure 15: Comparison between the stress-strain curves obtained experimentally and those obtained by homoge-

nization at convergence of the identification procedure performed with w = 0.1, w = 0.01 and w = 0.001

the value of the weight w. A range of values is obtained, bounded by the extrema obtained

by considering only the macroscopic stress (i.e., for w = 1) and microscopic (i.e., for w = 0)

displacement fields.

Regarding the displacements, the influence of w on the gap between the measured and sim-

ulated fields is shown in Figure 17. In order to underline the influence of the whole loading

history, the sum of the gaps over all the time steps is presented in this figure, which is consistent
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Figure 16: Values of the identified parameters r0 and b as functions of the value of w

with the cost function χu. The same displacement dynamic range is used to make the comparison

easier. The identification leads to a decrease of the gap over the displacement fields for either

value of w. This gap is reduced even further if a low value of w is chosen. One may note that the

gap is still significant when convergence is complete, even if only χu is considered (i.e., w = 0).

In that case, the gap is virtually identical to that obtained when w = 0.001. This residual gap,

much higher than the measurement uncertainty, corresponds to the error of the polycrystalline

model once the parameters associated with isotropic hardening of the crystal plasticity law have

been optimized.
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Figure 17: Sum over all time steps of the absolute value of the difference between displacements fields along

the horizontal and vertical, when measured by DIC and simulated before and after the identification procedure is

performed with w = 0.1, w = 0.01 and w = 0.001. The spatial axes are expressed in micrometers
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The influence of the mean grain size on the identified parameters is assessed. For that purpose

the four experimental microstructures C10, D50, A70 and E1000+, whose measured mean grain size

is respectively 10 µm, 50 µm, 70 µm and millimetric, are considered [3]. For each microstruc-

ture, the identification of r0 and qb is performed for w = 0.1 since this weight is identified in the

case of A70 as the best trade-off to reduce χu while obtaining a satisfactory simulated effective

behavior (Figures 14 and 15). The identified values are reported in Table 2. A slight change of

the parameter levels is observed when compared to their reference values (identified with w = 1).

Moreover, the decrease of the critical resolved shear stress r0 with an increase of the mean grain

size is observed both on the initial values and at convergence of the optimization procedure. This

trend is associated with the Hall-Petch effect and is consistent with the experimental observa-

tions [3].

Table 2: Identified values of the parameters associated with isotropic hardening when w = 0.1 for different mean

grain sizes

r0 (MPa) b (-) q (MPa) qb (MPa)

Specimen reference identified reference identified reference reference identified

C10 60 56 1.20 1.27 195 234 248

D50 41 42 1.20 1.17 179 215 209

A70 50 38 1.20 1.57 163 196 254

E1000+ 29 30 0.40 0.38 159 64 61

If the Hall-Petch relationship is usually identified at the macroscopic scale from the yield

stress dependence on the mean grain size, it is proposed herein to identify it at the slip system

scale from the critical resolved shear stress. For that purpose, a relationship between r0 and the

mean grain size d is sought such that

r0 = c1 +
c2
√

d
(19)

where c1 is a constant and c2 is the Hall-Petch factor. The results of the least squares fit are

presented in Figure 18 for the identified values of r0 when w = 1 and w = 0.1. It is observed
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that the choice w = 0.1 for the identification leads to the best fit of Hall-Petch’s law with a

correlation coefficient of 0.99 against 0.91 when w = 1. In that case c1 = 28 MPa and c2 =

0.09 MPa.m1/2. To the best of the authors’ knowledge, no similar identification results of Hall-

Petch’s law at the slip systems scale are reported in the literature. The fact that a better agreement

is found than by using macroscopic data tends to validate the choice of w = 0.1 to optimize the

simulated displacement fields. This application of the identification method from experimental

fields then leads to a new set of parameters associated with isotropic hardening with an improved

representativity of the polycrystalline behavior.

0 100 200 300

30

40

50

60

70

r 0
 (

M
P

a
)

d
−0.5

 (m
−0.5

)

 

 

Ref.

H.P.

w=0.1

H.P.

Figure 18: Identification of the Hall-Petch (H.P.) law from the values of the initial critical resolved shear stress r0

(dots) identified by homogenization and from the ones identified when w = 0.1

4.3. Coefficients of the interaction matrix between slip systems

It is now proposed to identify the coefficients of the interaction matrix between slip systems.

These coefficients currently remain poorly known and difficult to identify via experimental or

numerical investigations. For example, conducting tedious and numerous dislocation dynamics

simulations is one way of obtaining such coefficients [22]. Since the interactions between slip

systems should be associated with variations of the polycrystalline material response at the mi-

crostructural scale, it is interesting to apply the present identification method to these coefficients.

As only local microstructural kinematic effects are considered and not the effective response,

the weight w = 0 is chosen to perform the identification. Such an identification, which is only
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based on measured displacement fields, is possible since they are sensitive to a (forward) varia-

tion of each coefficient as shown in Figure 19 in the case of specimen A70. It is observed that the

displacement fields at the last time step (i.e., for a mean tensile strain of about 4 %) are particu-

larly sensitive to a variation of h5, h4 and h1. This is true throughout the loading history, which

is quantified by considering the root mean square difference of displacement fields at every time

step (Figure 20a). As for r0, q and b, only a part of the displacement fields contributes to the

identification of the coefficients, where δuc is higher than the standard displacement resolution

(4.3 nm for this microstructure, see Table 1).

Moreover, the correlation between the coefficients is assessed prior to running the identifi-

cation procedure. The correlation matrix [R] is calculated considering a white Gaussian noise

and {p} = {h1 h2 h3 h4 h5 h6}
T . The corresponding matrix is plotted in Figure 21a. The

absolute value of [R] is also given in Figure 21b to highlight the various correlations. The self-

hardening coefficient h1 and the coplanar interaction coefficient h2 are uncorrelated. In addition,

the coefficient h5 appears almost uncorrelated with h1, h2 and h3. Conversely, h2 and h3 are

strongly correlated. As a consequence, h1, h2, h4 and h5 are chosen to be identified because they

involve the highest sensitivity of the displacement fields and they are sufficiently uncorrelated.

However, arbitrary variations of these coefficients translate into changing the macroscopic

loading curve (Figure 20b). Thus, to ensure that the identification based only on the displacement

fields lead to a realistic simulated effective behavior, a particular combination of the coefficients

that keeps the simulated homogeneous load level unchanged is desirable. It is helpful to consider

the Hessian matrix [HF] defined in Equation (10) and assessed from the reference values of

the parameters (i.e., identified by homogenization). The eigen vectors corresponding to the two

highest eigen values of [HF] express the two directions for searching the parameters leading to

the highest variation of the simulated homogeneous load level. The coefficients are then chosen to

be sought in the subspace orthogonal to these two directions. This provides the first two equations

of system (20). Since the coefficient h1 is directly involved in the isotropic hardening rate, it is

chosen to keep it fixed to its reference value. Thus, the full system of equations preventing the

variations of the effective behavior reads
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Figure 19: Absolute value of the sensitivity of the simulated displacement field |δuc| (expressed in nanometers),

for a 20 % (forward) variation of each of the coefficients of the interaction matrix shown along the horizontal y and

vertical x directions for a mean strain of about 4 %. The spatial axes are expressed in micrometers
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Figure 20: Root mean square value of the field δuc (a) and sensitivity of the load calculated by homogenization (b)

corresponding to a 20 % (forward) variation of each of the coefficients of the interaction matrix as functions of the

mean strain
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Figure 21: Correlation matrix [R] of the coefficients hi (a) and its absolute value (b). The axes correspond to the

index i


0.02δh2 + 0.37δh3 − 0.89δh4 − 0.01δh5 + 0.27δh6 = 0

0.22δh2 + 0.81δh3 + 0.38δh4 − 0.38δh5 + 0.06δh6 = 0

δh1 = 0

(20)

The identification of the interaction matrix is then performed by minimizing χu with respect to

h2, h4 and h5, the other coefficients being set by system (20) and the other constitutive parameters

being fixed to their reference values. Figure 22 shows the results of the identification. The cost

function has been reduced by 0.22, which is relatively small. One may note that the identified
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values of the coefficients are virtually constant during 10 iterations. The components of the

whole interaction matrix are given and compared to their initial values in Table 3.
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Figure 22: Cost function χu (a) and identified coefficients of the interaction matrix (b) as functions of the iterations

of the identification procedure

Several observations can be made. First, the coefficient h4, which is related to collinear in-

teractions, barely increases and remains predominant. Then, the weight of coplanar interactions

(h2) increases and now differs from self-hardening interactions (h1). Conversely, the initial slight

predominance of h5 accounting for the glissile junction is not observed anymore at convergence.

Last, a large increase of h6, which is related to Lomer’s lock, is observed and a strong decrease

of h3, which is related to Hirth’s lock. Given the small number of studies on the coefficients of

the interaction matrix, the present approach appears as original.

Table 3: Identified values of the coefficients of the interaction matrix in the case of the specimen A70

h1 (-) h2 (-) h3 (-) h4 (-) h5 (-) h6 (-)

Initial value 1.00 1.00 0.60 12.3 1.60 1.30

Identified value 1.00 1.64 0.10 12.5 0.87 2.60

The inverse method proposed herein has been applied to the identification of the coefficient
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of the interaction matrix minimizing the gap on the displacement fields and keeping the predicted

effective behavior realistic. This first identification provides valuable information on the relative

weights of each coefficients leading to the optimized simulation of the kinematic fields at the

microstructural scale.

5. Conclusion and perspectives

An inverse method is proposed based on both microstructural displacement fields and macro-

scopic stress in a combined cost function. The reason for this choice is due to the fact that

microscopic displacement fields do not span over the whole width of the sample. Further, the

microstructural information obtained via EBSD is only available on the surface of the sample.

The present case is therefore complex and prone to model errors (e.g., partially known boundary

conditions, constitutive law error). This leads to a weighting between the two data sets (i.e.,

displacement field and applied load) to be altered with respect to a consistent probabilistic treat-

ment.

Once the weight associated with the total cost function is chosen, it is shown by a sensitiv-

ity analysis that only two isotropic hardening coefficients can be identified for studied law, and

three parameters of the interaction matrix associated with slip systems. This a priori analysis

is possible thanks to the knowledge of the measurement uncertainties [3] and the present setting

with a finite element model updating framework. Four different microstructures have been ana-

lyzed and it is observed that the initial yield stress of each slip system follows a Hall-Petch trend,

which is more faithfully captured when displacement fields at the microstructural level are con-

sidered. Three interaction parameters could also be identified. Their values varied significantly

with respect to their initial guesses.

The present results show that crystal plasticity parameters can be identified at the grain level.

However, they are more challenging since a lot of information is missing (e.g., underlying mi-

crostructure, average stress in the region of interest). If more complex loading histories are

considered, it is likely that more parameters could be identified (in particular those associated

with kinematic hardening). To check such hypotheses, the sensitivity analysis used herein can

also be considered. Other crystal plasticity laws may also be tested.
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One key information that was missing is associated with the true 3D microstructure. In

this work, 2D assumptions have been investigated to address this question. However, various

approaches may be considered in future studies. First, diffraction contrast tomography allows this

type of information to be retrieved in a non destructive way [23]. It may be combined with global

digital volume correlation [24] to compare measured 3D displacement fields with those simulated

numerically. It is worth noting that the 3D simulations of such complex microstructures require

an extensive computation power, which is even more critical when updating procedures are to be

followed. Second, columnar microstructures may be tailored so that the surface information is

representative of the whole 3D polycrystal [15, 16, 25]. Although difficult to reach for industrial

materials (such as martensitic or bainitic steels, fine grain metals), this type of situation will

remain more tractable with the tools developed herein.
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AppendixA. Crystal plasticity constitutive relationships and parameters

At a single crystal level, the resolved shear stress τs is determined on each slip system s from

the stress tensor σ

τs = σ : µs (A.1)

whereµs is Schmid’s tensor also known as orientation tensor. The crystal plasticity model chosen

in this study has been proposed by Méric et al. [17]. The plastic flow relationship expressed for

each slip systems s provides the shear strain rate γs as a function of τs

γ̇s = ṗs
τs − cαs

| τs − cαs |
(A.2)

and

ṗs =

〈
| τs − cαs | −rs(ps)

k

〉n

+

(A.3)

where c is a kinematic hardening modulus, and k and n are viscosity coefficients. The brackets

〈.〉+ denote the positive part of their argument. The crystal plasticity law has two hardening

contributions, namely, one relationship associated with isotropic hardening rs

rs = r0 + q

 12∑
r=1

hsr

(
1 − e−bpr

) (A.4)

and another one associated with kinematic hardening αs

α̇s = γ̇s − dαs ṗs (A.5)

where r0, q, b and d are constitutive parameters, and hsr the coefficients of the interaction matrix

between slip systems detailed in Table A.4. Last, the viscoplastic strain rate ε̇p is assumed to be

the sum of plastic glide along all the slip systems

ε̇p =

12∑
s=1

γ̇sµs (A.6)

For each specimen, the parameters associated with isotropic hardening have been identified by

homogenization from the experimental curve with Berveiller-Zaoui’s model [19]. Their values
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are gathered in Table A.5. To model the anisotropic elastic behavior of the material, cubic sym-

metry is assumed. The cubic elastic constants C1111, C1122 and C1212 used are those obtained

by acoustic measurements [26] and are gathered in Table A.6. The parameters of the crystal

plasticity law also given in Table A.6 are those identified for the same 316LN plate, with the

identification method proposed in Ref. [27]. All these values are considered as references in this

study.

Table A.4: Interaction matrix between slip systems

1 2 3 4 5 6 7 8 9 10 11 12

1 h1 h2 h2 h4 h5 h5 h5 h6 h3 h5 h3 h6

2 h1 h2 h5 h3 h6 h4 h5 h5 h5 h6 h3

3 h1 h5 h6 h3 h5 h3 h6 h4 h5 h5

4 h1 h2 h2 h6 h5 h3 h6 h3 h5

5 h1 h2 h3 h5 h6 h5 h5 h4

6 h1 h5 h4 h5 h3 h6 h5

7 h1 h2 h2 h6 h5 h3

8 h1 h2 h3 h5 h6

9 h1 h5 h4 h5

10 h1 h2 h2

11 h1 h2

12 h1
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Table A.5: Values of the parameters associated with isotropic hardening of the crystal plasticity law [17] identified

by homogenization for each specimen

Specimen r0 (MPa) q (MPa) b (-)

A70 50 163 1.2

B10 69 183 1.2

C10 60 195 1.2

D50 41 179 1.2

E1000+ 29 159 0.4

Table A.6: Values of the parameters of cubic elasticity and of the crystal plasticity law [17] kept constant in this

study

C1111 (GPa) C1122 (GPa) C1212 (GPa) n (-) k (MPa.s1/n) c (GPa) d (-)

207 133 117 10 25 10.4 340

h1 (-) h2 (-) h3 (-) h4 (-) h5 (-) h6 (-)

1.0 1.0 0.6 12.3 1.6 1.3
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