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Abstract—In this paper, we investigate the coordination of
autonomous devices with non-aligned utility functions. Both
encoder and decoder are considered as players, that choose the
encoding and the decoding in order to maximize their long-
run utility functions. The topology of the point-to-point network
under investigation, suggests that the decoder implements a
strategy, knowing in advance the strategy of the encoder. We
characterize the encoding and decoding functions that form an
equilibrium, by using empirical coordination. The equilibrium
solution is related to an auxiliary game in which both players
choose some conditional distributions in order to maximize
their expected utilities. This problem is closely related to the
literature on “Information Design” in Game Theory. We also
characterize the set of posterior distributions that are compatible
with a rate-limited channel between the encoder and the decoder.
Finally, we provide an example of non-aligned utility functions
corresponding to parallel fading multiple access channels.

I. INTRODUCTION

In this paper, we investigate the coordination of autonomous

devices with non-aligned utility functions. We consider a

point-to-point network, depicted in Fig. 1, with an i.i.d. infor-

mation source Pu(u), an encoder P1, a memoryless channel

T (y|x) and a decoder P2. The encoder and the decoder

are considered as players, endowed with utility functions

φ1(u, v) ∈ R and φ2(u, v) ∈ R. Both utilities depend on the

source symbol u ∈ U and on the action v ∈ V of player P2, the

decoder. In the n-stage game, the players choose the optimal

encoding and the decoding functions. The accumulated utilities

are characterized by using the empirical coordination of the

random variables (U, V ).
The problem of empirical coordination was investigated in

both literatures of Game Theory [1], [2], [3], [4], [5] and Infor-

mation Theory [6], [7], [8], [9], [10], [11], [12]. The objective

is to characterize the set of target empirical distributions that

are achievable by using a coding scheme. Optimal solutions

have been characterized for lossless decoding [13], for state-

dependent source and channel [14], for channel feedback

[15], for the two-agent case [16]. Polar coding scheme for

empirical coordination has been further investigated in [17],

[18], [19], [20]. In [21], the authors measure the secrecy in
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communication systems, using a rate-distortion approach that

is closely related to empirical coordination. In [22], the authors

investigate the connexion between the empirical coordination

and the state-leakage induced by a coding scheme. Empiri-

cal coordination captures the knowledge of the transmitters,

regarding the random variables they don’t observe.

The network topology of Fig. 1 suggests that the decoder

P2 implements a strategy, knowing in advance the strategy

of the encoder P1. In contrast to the definition of the “Nash

Equilibrium” [23], this strategic interaction is not simultaneous

and corresponds to the “Stackelberg Equilibrium” [24]. The

transmission of strategic information has attracted a lot of

attention in the literature of Game Theory [25], [26]. In [27],

the authors investigate the problem of “Bayesian Persuasion”

in which a sender wants to persuade a receiver to change her

action. The state of the nature is a random variable observed

by the sender P1 but not by the receiver P2. The sender

applies a strategic quantification, designed in order to modify

the posterior distributions of the receiver, regarding the state of

the nature. The sender chooses an optimal signaling structure,

knowing that the receiver implements a best-reply with respect

to her posterior belief. This problem is called “Information

Un Xn Y n V n

Pu TP1 P2

φ1(u, v) φ2(u, v)

Fig. 1. Strategic Empirical Coordination: The information source is i.i.d.
Pu and the channel T is memoryless. The encoder P1 and the decoder P2

are players, endowed with non-aligned utility functions φ1(u, v) ∈ R and
φ2(u, v) ∈ R, depending on the source U and decoder’s action V .

Design” and relies on the ‘Splitting Lemma” in the literature

on Repeated Games with Incomplete Information [28], [29],

[30]. Dynamic versions of this problem were considered in

[31], [32], [33], where the informed player announces her

strategy in each stage. In [34], the receiver fixes her strategy

before the encoder, that react knowing in advance the strategy

of the decoder. Strategic communication was considered more

recently in the literature of Information Theory, for Gaussian

source and channel with quadratic cost functions in [35], [36]

and [37].
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In this paper, we characterize the encoding and decoding

functions that form an equilibrium in the long-run game. We

introduce an auxiliary game in which both players choose the

conditional distributions that maximize their expected utilities.

The main result is stated in Sec. II. In Sec. III, we characterize

the set of posterior distributions that are compatible with a

rate-limited channel. In Sec. IV, we provide an example of

non-aligned utility functions corresponding to parallel fading

multiple access channels. Conclusion is stated in Sec. V and

the proofs of the main result are stated in App. A and B.

II. STRATEGIC EMPIRICAL COORDINATION

A. Problem Statement

We consider the problem of strategic empirical coordination

depicted in Fig. 1. Notations Un, Xn, Y n, V n stand for

sequences of random variables of information source un =
(u1, . . . , un) ∈ Un, inputs of the channel xn ∈ Xn, outputs

of the channel yn ∈ Yn and decoder’s output vn ∈ Vn,

respectively. The sets U , X , Y , V have finite cardinality.

The set of probability distributions over X is denoted by

∆(X ). The notation ||Q − P||1 =
∑

x∈X |Q(x) − P(x)|
stands for the L1 distance between the probability distributions

Q and P . With a slight abuse of notation, we denote by

Q(x)×Q(v|x), the product of distributions over ∆(X × V).
Notation Y −
−X −
− U denotes the Markov chain property

corresponding to P(y|x, u) = P(y|x) for all (u, x, y). Player

P1 observes a sequence of source symbols un ∈ Un and

chooses at random a sequence of channel inputs xn ∈ Xn.

Player P2 observes a sequence of channel outputs yn ∈ Yn

and chooses at random a sequence of actions vn ∈ Vn.

Definition II.1 (Strategies of both players)

• Player P1 chooses a strategy σ and player P2 chooses a

strategy τ , defined as follows:

σ : Un −→ ∆(Xn), (1)

τ : Yn −→ ∆(Vn). (2)

Both strategies (σ, τ) are stochastic.
• A pair of strategies (σ, τ) induces a joint probability
distribution Pσ,τ ∈ ∆(Un × Xn × Yn × Vn) over the n-
sequences of symbols, defined by:

n
∏

i=1

P
(

Ui

)

× Pσ

(

X
n
∣

∣

∣
U

n
)

×
n
∏

i=1

T
(

Yi

∣

∣

∣
Xi

)

× Pτ

(

V
n
∣

∣

∣
Y

n
)

. (3)

Definition II.2 (Expected n-stage utilities)

The utilities of the n-stage game Φn
1 and Φn

2 are evaluated with

respect to the marginal distribution Pσ,τ over the sequences

(Un, V n) and the utility functions φ1(u, v) ∈ R, φ2(u, v) ∈ R.

Φn
1 (σ, τ) = Eσ,τ

[
1

n

n∑

i=1

φ1(Ui, Vi)

]

=
∑

un,vn

Pσ,τ

(
un, vn

)
·
[
1

n

n∑

i=1

φ1(ui, vi)

]
,(4)

Φn
2 (σ, τ) =

∑

un,vn

Pσ,τ

(
un, vn

)
·
[
1

n

n∑

i=1

φ2(ui, vi)

]
.(5)

Definition II.3 (Equilibrium utilities)

We assume that player P2 knows in advance the strategy σ of

player P1 and chooses the mapping σ 7→ τ(σ).
(
Φ⋆

1,Φ
⋆
2

)
∈

R2 is a pair of equilibrium utilities if there exists strategies(
σ⋆, τ⋆(σ)

)
for both players P1 and P2 that satisfy:

1)
(
Φn

1

(
σ⋆, τ⋆(σ)

)
,Φn

2

(
σ⋆, τ⋆(σ)

))
converge to

(
Φ⋆

1,Φ
⋆
2

)
,

as n −→ +∞,

2) for all ε > 0, there exists a n̄ ∈ N such that for all n ≥ n̄,

the two following equilibrium conditions are satisfied:

∀σ, Φn
2

(
σ, τ⋆(σ)

)
≥ max

τ̃
Φn

2

(
σ, τ̃

)
− ε, (6)

Φn
1

(
σ⋆, τ⋆(σ⋆)

)
≥ max

σ̃
Φn

1

(
σ̃, τ⋆(σ̃)

)
− ε. (7)

Remark II.4 In Definition II.3, player P2 has access to strat-

egy σ of player P1, before choosing her strategy σ 7→ τ(σ).
This “Stackelberg Equilibrium” [24] hypothesis comes from

the topology of the point-to-point network, Fig. 1.

B. Target Probability Distribution

In this section, we characterize the pair of equilibrium

utilities
(
Φ⋆

1,Φ
⋆
2

)
, by using a target probability distribution:

Pu(u)×Q(v|u) ∈ ∆(U × V). (8)

Intuitively, the strategies σ and τ of Definition II.1 form a

coding scheme. An auxiliary random variable W is used to

characterize the message wn ∈ Wn sent by the encoder P1

and the message ŵn ∈ Wn decoded by the decoder P2. The

decoding is correct if wn = ŵn. The objective is to control

the empirical distribution Qn(u,w, v) ∈ ∆(U×W×V) of the

sequences of actions and messages (Un,Wn, V n), in order to

achieve the following joint distribution:

Pu(u)×Q(w|u)×Q(v|w) ∈ ∆(U ×W × V), (9)

with marginals on (U, V ) given by (8). The auxiliary random

variable W captures the common information shared by both

players P1 and P2. The distribution of (9) satisfies the Markov

chain: U −
−W −
− V . We introduce the sets of target joint

probability distributions Pu(u)×Q(w|u)×Q(v|w) ∈ ∆(U ×
W ×V) that are achievable Q0 and that satisfy the best-reply

condition Q2 for player P2.

Definition II.5 (Achievable target distributions)

We define the set Q0 of joint probability distributions Pu(u)×
Q(w|u)×Q(v|w), that satisfy:

Q0 =

{
Pu(u)×Q(w|u)×Q(v|w), s.t.

max
P(x)

I(X ;Y )− I(W ;U) ≥ 0

}
. (10)

The set Q0 is convex since the mutual information I(W ;U)
is convex in Q(w|u), for fixed Pu(u).

The information constraint (10) of Q0 does not depend

on the conditional distribution Q(v|w), but only on the

product of Pu(u) × Q(w|u) and on the channel capacity

maxP(x) I(X ;Y ). It ensures that the decoder can correctly

recover the sequence Ŵn = Wn, with high probability.
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Definition II.6 (Strategic compatibility for player P2)

We define the set Q2 of joint probability distributions Pu(u)×
Q(w|u)×Q(v|w), that are strategically compatible for P2.

Q2 =

{
Pu(u)×Q(w|u)×Q(v|w) s.t.,

EQ

[
φ2(U, V )

]
≥ EQ̃

[
φ2(U, V )

]
,

∀ Q̃(u,w, v) = Pu(u)×Q(w|u)× Q̃(v|w)
}
.(11)

We denote by BR2

(
Q(w|u)

)
, the set of distributions Q(v|w)

that are best-replies of player P2, for distribution Q(w|u). The

set Q2 is convex since the expectation is linear.

For all joint probability distributions Pu(u) ×Q(w|u), the

second player P2 can generate a symbol v ∈ V , by using

another conditional probability distribution Q̃(v|w) than the

prescribed one Q(v|w). Definition II.6 ensures that the target

distribution is optimal for player P2.

Definition II.7 (Set of target distributions)

We define the set Q of joint distributions Pu(u)×Q(v|u) that

satisfy the following conditions:

Q =

{
Q(v|u) s.t. ∃W with U −
−W −
− V,

∑

w

Pu(u)×Q(w|u)×Q(v|w) = Pu(u)×Q(v|u)

and Pu(u)×Q(w|u)×Q(v|w) ∈ Q0 ∩Q2

}
. (12)

The set Q is convex since Q0 and Q2 are convex for any W .

The definition of Q involves an auxiliary random variable W
that satisfies the Markov chain U−
−W−
−V and the marginal

conditions Pu(u)×Q(v|u). The random variable W captures

the information of P2 regarding U and the information of

P1 regarding V . The set Q characterizes the conditional

distributions Q(v|u) that are achievable and that satisfy a best-

reply condition for player P2. The conditional distributions

Q(v|u) outside Q cannot support equilibrium utilities.

Theorem II.8 The equilibrium utility Φ⋆
1 of player P1 is:

Φ⋆
1 = max

Q(v|u)∈Q
E

[
Φ1(U, V )

]
. (13)

The equilibrium utility Φ⋆
2 = E

[
Φ2(U, V )

]
is given by

the expectation with respect to the conditional distribution

Q⋆(v|u) ∈ Q that achieves the maximum in equation (13).

The proof of Theorem II.8 is stated in App. A and B. The n-

stage game of Definition II.3 is reformulated using a one-shot

game in which P1 chooses the optimal achievable distribution

Q(w|u), knowing that P2 implements a best-reply Q(v|w) ∈
BR2

(
Q(w|u)

)
.

III. INFORMATION DESIGN: STRATEGIC COMPRESSION

A. Control of the Posterior Distributions

We consider the binary information source U ∈ {u1, u2}
with parameter p ∈ [0, 1], Pu(u1) = p and a binary auxiliary

random variable W ∈ {w1, w2}. The set of conditional

distributions Q(w|u) is represented by Fig. 2 where Q(w|u)
involves two parameters α ∈ [0, 1] and β ∈ [0, 1]. The

u2

u1

(1− p)

p

b

b

b

b

b

w2

w1

1− α

1− β

α

β

Fig. 2. Signaling Q(w|u) depending on α ∈ [0, 1] and β ∈ [0, 1].

posterior distributions of u1 given w1 or w2 are denoted by

p1 and p2 and write:

Q(u1|w1) =
p · (1− α)

p · (1− α) + (1− p) · β = p1, (14)

Q(u1|w2) =
p · α

p · α+ (1− p) · (1− β)
= p2. (15)

By inverting the system of equations (14) - (15), we obtain the

parameters (α, β) corresponding to the pair of target posterior

distributions (p1, p2).

α =
p2 · (p1 − p)

p · (p1 − p2)
, (16)

β =
(1− p1) · (p− p2)

(1− p) · (p1 − p2)
. (17)

Lemma 1 The parameters (α, β, p1, p2) correspond to

Bernouilli distributions if and only if:

1) p /∈ {0, 1} and

2) p1 < p < p2 or p2 < p < p1.

For each pair of posterior distributions (p1, p2) ∈
[0, p[×]p, 1], there exists a pair of (α, β) such that the prior

distribution p can be splitted according to p1 ∈ [0, p[ and

p2 ∈]p, 1].

B. One-Shot Transmission with a Noisy Channel

We consider a binary symmetric channel T (y|x) with

noise parameter ε ∈ [0, 0.5], as represented by Fig. 3. The

concatenation of the signaling structure Q(w|u) with the noisy

channel T (y|x) can be directly expressed with parameters

α ⋆ ε ∈ [0, 1] and β ⋆ ε ∈ [0, 1], instead of α, β and ε.

α ⋆ ε = (1− α) · ε+ α · (1− ε). (18)

Proposition III.1 A pair of posterior distributions (p1, p2) is

achievable with the noisy channel T (y|x) if and only if there

exists (α, β) such that:

α ⋆ ε =
p2 · (p1 − p)

p · (p1 − p2)
, (19)

β ⋆ ε =
(1− p1) · (p− p2)

(1− p) · (p1 − p2)
. (20)
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u2

u1

(1− p)

p

b

b

b

b

b

w2

w1

x2

x1

b

b

b

b

y2

y1
1− ε

1− ε

ε

ε

1− α

1− β

α

β

u2

u1

(1− p)

p

b

b

b

b

b

y2

y1
(1− α) ⋆ ε

(1− β) ⋆ ε

α ⋆ ε

β ⋆ ε

Fig. 3. The concatenation of the conditional distributions Q(w|u) and T (y|x)
can be expressed using a binary symmetric channel P(y|u), with noise
parameters α ⋆ ε ∈ [0, 1] and β ⋆ ε ∈ [0, 1].

We can see on Fig. 4 that no α exists such that α ⋆ ε =
α · (1 − 2ε) + ε > 1 − ε or α ⋆ ε < ε. This imposes a

restriction over the set of achievable posteriors (p1, p2), that

is represented by the “region of the circle”, in Fig. 5.

ε

1− ε

α ⋆ ε

α

1

α10.5

Fig. 4. Function α ⋆ ε depending on α ∈ [0, 1].

C. Block Transmission with a Noisy Channel

We consider the scenario represented by Fig. 1 where the

symbols are encoded by blocks. Theorem II.8 states that the

conditional distribution Q(w|u) defined with (α, β) in Fig. 2,

is achievable if and only if:

max
P(x)

I(X ;Y )− I(U ;W ) ≥ 0, (21)

⇐⇒ 1−H(ε)−H
(
P(W1)

)

+ p ·H(α) + (1 − p) ·H(β) ≥ 0, (22)

with P(W1) = p · (1− α) + (1− p) · β.

Fig. 5 represents three regions of posterior distributions

(p1, p2). The “region of the square” corresponds to posteriors

(p1, p2) that satisfy the information constraint of the set Q0.

It includes the “region of the circle”, in which the posteriors

(p1, p2) are achievable in one-shot and satisfy equations (19)

- (20) of Proposition III.1. The posteriors (p1, p2) that belong

to the “region of the cross”, are not achievable.

Fig. 5. Regions of achievable posteriors (p1, p2), for channel noise ε = 0.25.

IV. NON-ALIGNED UTILITIES: PARALLEL FADING

MULTIPLE ACCESS CHANNELS

A. Power Allocation Game

In this section, we consider an example involving two

transmitters that communicate with two base stations over

parallel fading multiple access channels [38]. The transmis-

sions are simultaneous and cause mutual interferences. Both

transmitters have maximal power equal to 1 and the noise

variance is σ2 = 1. We consider two possible configurations

for the random channel gains G ∈ {gA, gB}, described by

the following table and chosen with probability (p, 1− p) for

p = 0.5. In this section, the channel gains are considered as

an information source U = G.

gA gB
g11 1.1878 0.1811

g12 1.1566 1.4475

g21 0.8407 0.0717

g22 0.6293 0.6858

The notation g12 corresponds to the channel gain between

the first transmitter and the second base station. We assume

that the power allocation of the first transmitter is fixed

(a1, 1 − a1) = (0.16, 0.84). The second transmitter chooses

a power allocation (v, 1 − v) from the discrete set v ∈
V = {0, 0.25, 0.5, 0.75, 1}, in order to maximize her expected

utility E
[
φ2(G, v)

]
.

E
[
φ2(G, v)

]
= p · φ2(gA, v) + (1− p) · φ2(gB, v),(23)

φ2(g, v) = log2

(
1 +

v · g21
σ2 + a1 · g11

)

+ log2

(
1 +

(1 − v) · g22
σ2 + (1− a1) · g12

)
. (24)

We consider the game between the base station P1 and the

second transmitter P2. The base station is informed of the

realization of the channel gains G ∈ {gA, gB} and wishes

to persuade the second transmitter P2 to choose a favorable
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2
(G,v)] with v = 0

E[φ
2
(G,v)] with v = 0.25

E[φ
2
(G,v)] with v = 0.5

E[φ
2
(G,v)] with v = 0.75

E[φ
2
(G,v)] with v = 1

v* = 0
v* = 0.25

v* = 0.5

v* = 0.75

v* = 1

Posteriors (p
1
,p

2
)

optimal for player P
1

Best-replies of player P
2

Fig. 6. Expected utility function E
[

φ2(G, v)
]

of the second transmitter P2,
depending on her power allocation v ∈ {0, 0.25, 0.5, 0.75, 1}. The best-reply
of P2 is denoted by v⋆ and depends on her prior probability p ∈ [0, 1].

power allocation v ∈ V . The utility of the base station φ1(G, v)
is equal to the utility of the first transmitter:

φ1(g, v) = log2

(
1 +

a1 · g11
σ2 + v · g12

)

+ log2

(
1 +

(1− a1) · g12
σ2 + (1− v) · g22

)
. (25)

Depending on the realization of the channel gains gA

Fig. 7. Expected utility E
[

φ1(G, v)
]

depending on the pair of posterior
distributions (p1, p2), induced by the signaling Q(w|u) of Fig. 2. The
discontinuities are due to the changes of best-reply v⋆ of P2, see Fig. 6.

or gB , the base station P1 sends a strategic signal W ∈
{w1, w2} to the second transmitter P2 using the signaling

structure Q(w|u), depicted in Fig. 2. Given the strategic

signal W , player P2 chooses the power allocation v ∈

{0, 0.25, 0.5, 0.75, 1} that maximizes her own expected utility

E
[
φ2(G, v)

]
.

Fig. 6 represents the expected utility function E
[
φ2(G, v)

]

depending on the prior probability p ∈ [0, 1], for each

power allocation v ∈ {0, 0.25, 0.5, 0.75, 1}. The best-reply

allocation of P2 is denoted by v⋆ and depends on the interval

to which belongs the prior probability p ∈ [0, 1]. Upon

receiving symbol w ∈ W and knowing the joint distribution

Pu(u)×Q(w|u) of Fig. 2, player P2 implements a best-reply

Q(v|w) ∈ BR2

(
Q(w|u)

)
. Theorem II.8 guarantees that the

i.i.d. distribution Q(v|w) induces an ε-best-reply in the long-

run game.

Fig. 8. The “green plus” represents the equilibrium utility Φ⋆
1 =

maxQ(v|u)∈Q E
[

φ1(G, v)
]

characterized by Theorem II.8, for channel noise
ε = 0.25.

The base station P1 already knows that P2 implements

a best-reply. It chooses accordingly the signaling structure

Q(w|u) that induces the more favorable response of P2. Fig

7 shows the expected utility E
[
φ1(G, v)

]
of P1, depending

on the pair of posterior distributions (p1, p2), induced by the

signaling structure Q(w|u). The discontinuities are due to the

changes of best-reply v⋆ of P2, according to the posterior dis-

tributions (p1, p2), see Fig. 6. The equilibrium utility E[φ1] ≃
0.74 of P1 is represented by the “black circle” and corresponds

to the posterior distributions (p1, p2) = (0, 0.6415), with

(α, β) = (1, 0.4424). This pair of optimal posteriors for P1

is also represented by the “black circles”, on Fig. 6. This

equilibrium utility provides 9.1% of improvement compared

to the revealing strategy (“blue cross” E[φ1] ≃ 0.67), i.e. when

the channel gains are revealed to the second transmitter P2,

with α = β = 0. The authors would like to thank Claudio

Weidmann for fruitful discussions regarding this section.

B. Rate-Limited Channel between Players P1 and P2

We assume that the channel between the base station P1 and

the second transmitter P2 is rate-limited, i.e. there is a noisy

channel T (y|x) between P1 and P2, as depicted in Fig. 1. The

rate-limited constraint reduces the set of posterior distributions

(p1, p2), see Fig. 5. We determine the equilibrium solutions

for a binary symmetric channel with parameter ε = 0.25, for

one-shot and block transmission, as depicted in Fig. 9 and
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Fig. 9. The “red square” represents the equilibrium utility for one-shot
transmission over a noisy channel that satisfies the conditions of Prop. III.1.

Fig. 8. These figures correspond to the utility E
[
φ1(G, v)

]

of Fig. 7, restricted to the “region of the circle” and “region

of the square”, in Fig. 5. The equilibrium utilities correspond

respectively to E
[
φ1(G, v)

]
≃ 0.72 and E

[
φ1(G, v)

]
≃ 0.73.

In both cases, the revealing strategy is not achievable since

it is not compatible with the rate-limitation imposed by the

noisy channel T (y|x).

V. CONCLUSION

We investigate the strategic coordination of an encoder

and a decoder, endowed with non-aligned utility functions.

We characterize the encoding and decoding functions that

form an equilibrium, by using empirical coordination. The

equilibrium solution is related to an auxiliary game in which

both players choose the conditional distributions in order to

maximize their expected utilities. We characterize the set of

posterior distributions that are compatible with a rate-limited

channel between the encoder and the decoder and we provide

an example of non-aligned utility functions corresponding to

parallel fading multiple access channels.

APPENDIX A

PROOF OF THE UPPER BOUND FOR THEOREM II.8

In this section, we consider that the strategies (σ⋆, τ⋆) form

an equilibrium. Qn(u, v) denotes the empirical distribution of

the sequences (un, vn).

Φn
1 (σ

⋆, τ⋆)

=
∑

un,xn,

yn,vn

Pσ⋆τ⋆(un, xn, yn, vn) · 1
n

n∑

i=1

φ1(ui, vi)

=
∑

un,xn,

yn,vn

Pσ⋆τ⋆(un, xn, yn, vn) ·
∑

u,v

Qn(u, v) · φ1(u, v)

=
∑

u,v

Eσ⋆,τ⋆

[
Qn(u, v)

]
· φ1(u, v) (26)

We denote by Q⋆(u, v), the expected empirical distribution

Eσ⋆,τ⋆

[
Qn(u, v)

]
= Q⋆(u, v) corresponding to the strate-

gies (σ⋆, τ⋆). The marginal distribution over U satisfies

∑
v∈V Eσ⋆,τ⋆

[
Qn(u, v)

]
= Pu(u). We denote by Qc the

complementary of the set Q. We show that the conditional

distribution Q⋆(v|u) ∈ Q should belong to the set Q of Defini-

tion II.7. Player P1 cannot choose a distribution Q(v|u) ∈ Qc

that lie outside Q, in order to maximize her long-run utility:

Φn
1 (σ

⋆, τ⋆) ≤ max
Q(v|u)∈Q

E

[
Φ1(U, V )

]
. (27)

A. Information Constraint

We show that there exists an auxiliary random variable W
that satisfies the Markov chain U−
−W−
−V and the information

constraint maxP(x) I(X ;Y )−I(U ;W ) ≥ 0 of Definition II.5.

0 ≤ I(Xn;Y n)− I(Un;Y n) (28)

≤
n∑

i=1

H(Yi)−
n∑

i=1

H(Yi|Xi)

−
n∑

i=1

H(Ui) +

n∑

i=1

H(Ui|Y n, U i−1) (29)

=
n∑

i=1

I(Xi;Yi)−
n∑

i=1

I(Ui;Wi) (30)

≤ n ·max
P(x)

I(X ;Y )−
n∑

i=1

I(Ui;Wi) (31)

= n ·
(
max
P(x)

I(X ;Y )− I(U ;WT , T )

)
(32)

= n ·
(
max
P(x)

I(X ;Y )− I(U ;W )

)
. (33)

Equation (28) comes from the Markov chain Y n−
−Xn−
−Un.

Equation (29) comes from the memoryless property of the

channel and the i.i.d. property of the source.

Equation (30) comes from the identification of the auxiliary

random variable Wi = (Y n, U i−1) that satisfies the Markov

chain of the set Q for all i ∈ {1, . . . , n}:

Ui −
−Wi −
− Vi. (34)

Equation (31) comes from taking the maximum over P(x).
Equation (32) comes from the introduction of the uniform ran-

dom variable T over the indices {1, . . . , n}, the independence

between T and UT , that implies I(T ;UT ) = 0 and the i.i.d.

property of the source UT = U .

Equation (33) comes from the identification of the auxiliary

random variable W = (WT , T ) = (Y n, UT−1, T ) and the

Markov chain property:

U −
− (WT , T )−
− VT . (35)

Hence, the joint distribution Pu(u) × Q⋆(w|u) ×Q⋆(v|w)
induced by the auxiliary random variable W = (WT , T ) =
(Y n, UT−1, T ) satisfies:

1) the Markov chain condition U −
−W −
− V ,

2) the marginal condition
∑

w Pu(u)×Q⋆(w|u)×Q⋆(v|w) =
Pu(u)×Q⋆(v|u) given by equation (26),

3) the positive information constraint (33).

In App. A-B, we prove that the distribution Pu(u)×Q⋆(w|u)×
Q⋆(v|w) belongs to the set Q2, i.e. it satisfies the best-reply

condition for P2.
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B. Profitable Deviation of the Second Player

In this section, we consider a target distribution Pu(u) ×
Q(w|u) × Q(v|w) ∈ Q0 ∩ Qc

2, that lies outside Q2 and that

is achievable, i.e. maxP(x) I(X ;Y ) − I(W ;U) ≥ 0. Hence,

there exists a distribution Q̃(v|w) 6= Q(v|w) that increases the

utility of player P2:

EQ̃

[
φ2(U, V )

]
> EQ

[
φ2(U, V )

]
,

⇐⇒
∑

u,w,v

Pu(u)×Q(w|u)× Q̃(v|w) × φ2(u, v)

>
∑

u,w,v

Pu(u)×Q(w|u)×Q(v|w) × φ2(u, v).(36)

Since the target distribution Pu(u) × Q(w|u) × Q(v|w) ∈
Q0 is achievable, the second player P2 correctly decodes the

sequence Wn, with high probability. There exists a deviating

strategy τ 6= τ⋆ based on the i.i.d. distribution Q̃(v|w) that

is profitable for P2. Hence there is a δ > 0 such that the

equilibrium condition is not satisfied:

Φn
2 (σ

⋆, τ) > Φ⋆
2 + δ. (37)

APPENDIX B

PROOF OF THE LOWER BOUND FOR THEOREM II.8

In this section, we provide a coding scheme (σ⋆, τ⋆) that

satisfies both equilibrium conditions of Definition II.3:

Φn
2

(
σ⋆, τ⋆(σ⋆)

)
≥ max

τ̃
Φn

2

(
σ⋆, τ̃

)
− ε, (38)

Φn
1

(
σ⋆, τ⋆(σ⋆)

)
≥ max

σ̃
Φn

1

(
σ̃, τ⋆(σ̃)

)
− ε. (39)

A. Separated Source-Channel Coding

We consider the target joint probability distribution

Q(u,w, v) = Pu(u) × Q(w|u) × Q(v|w) ∈ Q0 ∩ Q2 that

corresponds to the optimal utility Φ⋆
1 of equation (13). By

definition of Q0, the target distribution Q(u,w, v) satisfies the

information constraint:

max
P(x)

I(X ;Y )− I(W ;U) ≥ 0. (40)

In this section, we assume that equation (40) is satisfied with

strict inequality (41). The case of equality in the information

constraint will be treated in App. B-B.

max
P(x)

I(X ;Y )− I(W ;U) > 0. (41)

Inequality (41) implies that there exists a small parameter δ >
0 and a rate R ≥ 0, such that:

R ≥ I(W ;U) + δ, (42)

R = max
P(x)

I(X ;Y )− δ. (43)

We define a code c = (f, g) ∈ C(n) using the following

encoding and decoding functions, that involve sequence Wn:

f : Un −→ Xn ×Wn, (44)

g : Yn −→ Wn × Vn. (45)

We show the existence of an optimal code c⋆ ∈ C(n)
such that the empirical distribution Qn(u,w, v) of symbols

(Un,Wn, V n), is close to the target distribution Q(u,w, v) =
Pu(u) × Q(w|u) × Q(v|w), with large probability. More

precisely, we prove that for all ε > 0, there exists an n̄ ∈ N,

such that for all n ≥ n̄, there exists a code c⋆ ∈ C(n) that

satisfies:

Pc⋆

(∣∣∣
∣∣∣Qn(u,w, v) −Q(u,w, v)

∣∣∣
∣∣∣
1
≥ ε

)
≤ ε. (46)

The parameter ε > 0 is involved in both the definition of the

typical sequences and the upper bound of the error probability.

• Random codebook. We generate |M| = 2nR sequences

Wn(m) and Xn(m), drawn from the marginal i.i.d. prob-

ability distributions Q×n
w and P×n

x with index m ∈ M.

• Encoding function. The encoder observes the sequence of

symbols of source Un ∈ Un. It finds an index m ∈ M
such that the sequences

(
Un,Wn(m)

)
∈ A⋆n

ε (Q) are

jointly typical. The encoder sends the sequence Xn(m)
corresponding to the index m ∈ M.

• Decoding function. The decoder observes the sequence

of channel output Y n ∈ Yn. It returns an index m̂ ∈ M
such that the sequences

(
Y n, Xn(m̂)

)
∈ A⋆n

ε (Q) are

jointly typical. It deduces the sequence Wn(m̂) and

returns V n, drawn from the conditional probability dis-

tribution Q×n
v|w depending on Wn(m̂).

• Error Event. An error occurs in the coding process if:

1) the indexes m ∈ M and m̂ ∈ M are not equal, not

unique or does not exists, 2) the sequences of symbols(
Un,Wn, V n

)
/∈ A⋆n

ε (Q) are not jointly typical.

Expected error probability. We introduce the parameter

ε1 > 0, in order to provide an upper bound on the expected

error probability. For all ε1 > 0 there exists an n̄ ∈ N such

that for all n ≥ n̄, the expected probability of the following

error events are bounded by ε1:

Ec

[
P
(
∀m ∈ M,

(
Un,Wn(m)

)
/∈ A⋆n

ε (Q)

)]
≤ ε1,

(47)

Ec

[
P
(
∃m′ 6= m,

(
Y n, Xn(m′)

)
∈ A⋆n

ε (Q)

)]
≤ ε1,

(48)

Ec

[
P
((

Un,Wn(m), V n
)
/∈ A⋆n

ε (Q)

)]
≤ ε1. (49)

(47) comes from (42) and [39, pp. 208, Covering Lemma].

(48) comes from (43) and [39, pp. 46, Packing Lemma].

(49) comes from the properties of typical sequences, stated

in [39, pp. 27], and from (47) and (48).

This proves that for all ε1 > 0, there exists a n̄ ∈ N such

that for all n ≥ n̄, there exists a code c⋆ = (f⋆, g⋆) ∈ C(n)
such that:

Pc⋆

(∣∣∣
∣∣∣Qn(u,w, v)−Q(u,w, v)

∣∣∣
∣∣∣
1
≥ ε

)

= Pc⋆

((
Un,Wn(m), V n

)
/∈ A⋆n

ε (Q)

)
≤ ε1. (50)

We denote by (σ⋆, τ⋆), the strategies of P1 and P2 correspond-

ing to the coding scheme c⋆ = (f⋆, g⋆) ∈ C(n) and we denote
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by φ̄1 = maxu,v

∣∣∣φ1(u, v)
∣∣∣, the maximal utility of P1.

∣∣∣∣Φ
n
1 (σ

⋆, τ⋆)− Φ⋆
1

∣∣∣∣

=

∣∣∣∣∣
∑

u,v

φ1(u, v)×
(
E

[
Qn(u, v)

]
−Q(u, v)

)∣∣∣∣∣

≤ φ̄1 ·
∑

u,v

∣∣∣∣E
[
Qn(u, v)

]
−Q(u, v)

∣∣∣∣ ≤ φ̄1 · ε.

Hence the pair of utilities
(
Φn

1 (σ
⋆, τ⋆),Φn

2 (σ
⋆, τ⋆)

)
converges

to the utilities
(
Φ⋆

1,Φ
⋆
2

)
, as n −→ +∞.

B. Equality in the Information Constraint

We consider a target distribution Pu(u)×Q(w|u)×Q(v|w)
with equality in the information constraint:

max
P(x)

I(X ;Y )− I(W ;U) = 0. (51)

First case: the channel capacity is strictly positive.

max
P(x)

I(X ;Y ) > 0. (52)

We consider an auxiliary distribution Q̃(w|u) = Q̃(w) such

that W is independent of U and we denote by IQ̃(W ;U) = 0,

the corresponding mutual information. The information con-

straint for Pu(u)× Q̃(w|u) is strictly positive:

max
P(x)

I(X ;Y )− IQ̃(W ;U) = max
P(x)

I(X ;Y ) > 0. (53)

We construct a sequence
{
Qk(u,w, v)

}
k∈N∗

of convex com-

bination between Q(u,w, v) and Pu(u)× Q̃(w|u)×Q(v|w):

Qk(u,w, v) =
1

k

(
(k − 1) · Q(u,w, v)

+ Pu(u)× Q̃(w)×Q(v|w)
)
. (54)

The information constraint corresponding to Qk(u,w, v) is

strictly positive, for all k ∈ N∗:

max
P(x)

I(X ;Y )− IQk (W ;U)

≥ 1

n
·
(
(n− 1) ·

(
max
P(x)

I(X ;Y )− IQ(W ;U)
)

+
(
max
P(x)

I(X ;Y )− IQ̃(W ;U)
))

(55)

≥ 1

n
·
(
max
P(x)

I(X ;Y )− IQ̃(W ;U)
)
> 0. (56)

Then, for all k ∈ N∗ the distribution Qk(u,w, v) is achievable

by using the coding scheme stated in Sec.B-A and converges

to the target distribution Q(u,w, v), as k goes to +∞. This

proves that the limit distribution Q(u,w, v) is achievable.

Second case: the channel capacity is equal to zero. This

implies that the random variables U and W of the target

distribution Pu(u)×Q(w|u)×Q(v|w) are independent, hence

the target distribution Q(u,w, v) decomposes like:

Pu(u)×Q(w|u)×Q(v|w) = Pu(u)×Q(w)×Q(v|w). (57)

This target distribution (57) is achievable by the decoder gen-

erating (Wn, V n) with the i.i.d. distribution Q(w)×Q(v|w).

C. Unilateral Deviation of the Second Player

The target joint distribution Q(u,w, v) = Pu(u)×Q(w|u)×
Q(v|w) of Definition II.7, satisfies the information constraint

of Q0 and the strategic compatibility condition of Q2. We

consider the coding and decoding functions c⋆ = (f⋆, g⋆)
presented in App. B-A, for distribution Q(u,w, v). In this

section, we prove that the decoding function g⋆ combined

with a symbol-best-reply Q(v|w) is ε−optimal for P2. We

introduce the random event of error E ∈ {0, 1} defined by:

E =

{
0 if (Un,Wn, V n) ∈ A⋆n

ε (Q) and M̂ = M,

1 if (Un,Wn, V n) /∈ A⋆n
ε (Q) or M̂ 6= M.

The pair of strategies c⋆ = (f⋆, g⋆) ∈ C(n), stated in App.

B-A, induces a small error probability P(E = 1|c⋆) ≤ ε. The

expected utility of P2 is upper bounded by:

∑

un,xn,yn,vn

wn,E

P(un, xn, yn, wn, vn, E|c⋆) · 1
n

n∑

i=1

φ2(ui, vi)

= P(E = 0|c⋆)
∑

un,xn,yn,

vn,wn

P(un, xn, yn, wn, vn|c⋆, E = 0)

× 1

n

n∑

i=1

φ2(ui, vi)

+ P(E = 1|c⋆)
∑

un,xn,yn,

vn,wn

P(un, xn, yn, wn, vn|c⋆, E = 1)

× 1

n

n∑

i=1

φ2(ui, vi) (65)

≤
∑

un,xn,yn,

vn,wn

P(un, xn, yn, wn, vn|c⋆, E = 0)

× 1

n

n∑

i=1

φ2(ui, vi) + P(E = 1|c⋆)× φ̄2. (66)

We denote by φ̄2 = maxu,v

∣∣∣φ2(u, v)
∣∣∣, the maximal utility of

P2. In the following, we assume that P2 chooses the optimal

sequence V n based on her observation Y n, on the knowledge

of the code c⋆, on the hypothesis that there is no errors E = 0
and on the decoded sequence Wn. We prove that the decoding

function g⋆ presented in App. B-A, is an ε−best-reply for P2.

Equation (58) comes from the hypothesis E = 0 of correct

decoding of the sequence Wn. The decoder maximizes over

P(vn|wn, yn, c⋆, E = 0) instead of P(vn|yn, c⋆, E = 0).
Equation (59) comes from the Markov chain Un −
−Wn −

−Xn −
− Y n of the coding process c⋆ stated in App. B-A,

that induces the following equality P(un|wn, xn, yn, c⋆, E =
0) = P(un|wn, c⋆, E = 0).
Equation (60) comes from taking the sum over (xn, yn) and

removing the sequence yn from P(vn|wn, c⋆, E = 0), since

yn is not involved in the criteria
∑n

i=1 φ2(ui, vi).
Equation (61) is due to Lemmas 2 and 4, stated in App. B-D.

Equation (62) comes from Lemma 3, stated in App. B-D.

Equation (63) comes from the hypothesis E = 0 that implies

the empirical distribution Qn(w) of sequences wn is close to

the target Q(w).
Equation (64) comes from the definition of the set
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max
P(vn|yn,c⋆,E=0)

∑

un,xn,yn,
vn,wn

P(un
, x

n
, y

n
, w

n|c⋆, E = 0) ×P(vn|yn
, c

⋆
, E = 0) · 1

n

n
∑

i=1

φ2(ui, vi)

≤ max
P(vn|wn,yn,c⋆,E=0)

∑

un,xn,yn,
vn,wn

P(un
, x

n
, y

n
, w

n|c⋆, E = 0)× P(vn|wn
, y

n
, c

⋆
, E = 0) · 1

n

n
∑

i=1

φ2(ui, vi) (58)

= max
P(vn|wn,yn,c⋆,E=0)

∑

un,xn,yn,
vn,wn

P(xn
, y

n
, w

n|c⋆, E = 0)× P(un|wn
, c

⋆
, E = 0)× P(vn|wn

, y
n
, c

⋆
, E = 0) · 1

n

n
∑

i=1

φ2(ui, vi)

(59)

=
∑

wn

P(wn|c⋆, E = 0)× max
P(vn|wn,c⋆,E=0)

∑

vn

P(vn|wn
, c

⋆
, E = 0)×

∑

un

P(un|wn
, c

⋆
, E = 0) · 1

n

n
∑

i=1

φ2(ui, vi) (60)

≤
∑

wn

P(wn|c⋆, E = 0)× max
P(vn|wn,c⋆,E=0)

∑

vn

P(vn|wn
, c

⋆
, E = 0)×

∑

un

( n
∏

i=1

Q(ui|wi)

)

· 1
n

n
∑

i=1

φ2(ui, vi) + 2
√
ln 2ε · φ̄2(61)

=
∑

wn

P(wn|c⋆, E = 0)
∑

w

Q
n(w) max

P(v|w)

∑

v

P(v|w)
∑

u∈U

Q(u|w) · φ2(u, v) + 2
√
ln 2ε · φ̄2 (62)

≤
∑

w

Q(w) max
P(v|w)

∑

v

P(v|w)
∑

u∈U

Q(u|w) · φ2(u, v) + (2
√
ln 2ε + ε) · φ̄2 (63)

=
∑

u,w,v

Q(u,w) · Q(v|w) · φ2(u, v) + (2
√
ln 2ε+ ε) · φ̄2. (64)

Q2 that requires the distribution Q(v|w) maximizes

maxP(v|w)

∑
v P(v|w)∑u∈U Q(u|w) · φ2(u, v).

We proved that the equilibrium condition is satisfied:

Φn
2

(
σ⋆, τ⋆(σ⋆)

)
≥ max

τ̃
Φn

2

(
σ⋆, τ̃

)
− ε. (67)

D. Lemmas

To simplify the notations of Lemma 2 and 3, we remove

the conditioning over the code c⋆ and the event E = 0 in the

probabilities.

Lemma 2 The following expression satisfies:
∣

∣

∣

∣

∣

∑

wn,vn

P(wn
, v

n)
∑

un

P(un|wn) · 1
n

n
∑

i=1

φ2(ui, vi)

−
∑

wn,vn

P(wn
, v

n)
∑

un

( n
∏

i=1

Q(ui|wi)

)

· 1
n

n
∑

i=1

φ2(ui, vi)

∣

∣

∣

∣

∣

≤ φ̄2 · 2
√
ln 2ε. (68)

Lemma 3 For all sequence wn ∈ Wn, we have this equality:

max
P(vn|wn)

∑

vn

P(vn|wn)
∑

un

( n
∏

i=1

Q(ui|wi)

)

· 1
n

n
∑

i=1

φ2(ui, vi)

=
∑

w

Q
n(w) max

P(v|w)

∑

v

P(v|w)
∑

u∈U

Q(u|w) · φ2(u, v).

The proof of Lemma 2 is based on Lemma 4 and the proof of

Lemma 3 comes from the hypothesis E = 0, of jointly typical

sequences (un, wn, vn) ∈ A⋆n
ε (Q).

Lemma 4 (Posteriors beliefs) The coding scheme c⋆ =
(f⋆, g⋆) ∈ C(n) described in App. B-A satisfies:

EWn

[
1

n
·

n∑

i=1

∣∣∣
∣∣∣P(Ui|Wn, c⋆, E = 0)−Q(Ui|Wi)

∣∣∣
∣∣∣
1

]

≤ 2
√
ln 2ε. (69)

Lemma 4 corresponds to the notion of “Strategic Distance”

introduced in [5] and in the proof of [3, Lemma 36] that

implies the main result of [2] and [4].

Proof. [Lemma 4] We consider the code c⋆ = (f⋆, g⋆) ∈
C(n), stated in App. B-A and we assume that the sequences
(Un,Wn, V n) ∈ A⋆n

ε (Q) are jointly typical, i.e. the error
event is E = 0. We provide an upper bound on the L1 distance
based on Pinsker’s and Jensen’s inequalities. We denote by
D(P||Q) the K-L divergence between distributions P and Q.

EWn

[

1

n
·

n
∑

i=1

∣

∣

∣

∣

∣

∣
P(Ui|W

n, c⋆, E = 0) −Q(Ui|Wi)
∣

∣

∣

∣

∣

∣

1

]

=
∑

wn

P(wn|c⋆, E = 0)

×
1

n

n
∑

i=1

∣

∣

∣

∣

∣

∣P(Ui|w
n, c⋆, E = 0)−Q(Ui|wi)

∣

∣

∣

∣

∣

∣

1
(70)

≤
∑

wn

P(wn|c⋆, E = 0)

×
1

n

n
∑

i=1

√

2 ln 2 ·D

(

P(Ui|wn, c⋆, E = 0)

∣

∣

∣

∣

∣

∣

∣

∣

Q(Ui|wi)

)

(71)

≤

√

2 ln 2
∑

wn

P(wn|c⋆, E = 0)

×

√

√

√

√

1

n

n
∑

i=1

D

(

P(Ui|wn, c⋆, E = 0)

∣

∣

∣

∣

∣

∣

∣

∣

Q(Ui|wi)

)

(72)

≤

√

√

√

√2 ln 2 ·
1

n

n
∑

i=1

EWn

[

D

(

P(Ui|Wn, c⋆, E = 0)

∣

∣

∣

∣

∣

∣

∣

∣

Q(Ui|Wi)

)

]

.

(73)

In equation (70), the L1 distance regards Ui.

Equation (71) comes from Pinsker’s inequality, [40, pp. 370].

Equation (72) comes from Jensen’s inequality for x 7→ √
x.
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1

n

n∑

i=1

EWn

[
D

(
P(Ui|Wn, c⋆, E = 0)

∣∣∣∣
∣∣∣∣Q(Ui|Wi)

)]

=
1

n

∑

(un,wn)∈A⋆n
ε (Q)

P(un, wn|c⋆, E = 0)

× log2
1∏n

i=1 Q(ui|wi)
− 1

n

n∑

i=1

H(Ui|Wn, c⋆, E = 0)

(74)

≤ 1

n

∑

(un,wn)∈A⋆n
ε (Q)

P(un, wn|c⋆, E = 0)

× n ·
(
H(U |W ) + ε

)
− 1

n
H(Un|Wn, c⋆, E = 0) (75)

=
1

n
I(Un;Wn|c⋆, E = 0)− I(U ;W ) + ε (76)

≤ log |M| − I(U ;W ) + ε (77)

≤ I(U ;W ) + ε− I(U ;W ) + ε (78)

≤ 2ε. (79)

Equation (74) is the definition of the K-L divergence.

Equation (75) comes from the property of typical sequences

(Un,Wn) ∈ A⋆n
ε (Q) in [39, pp. 26] and of the entropy.

Equation (76) comes from the i.i.d. property of the source U .

Equations (77) and (78) come from the cardinality of the

codebook |M|, introduced in App. B-A.

Equation (76) involves the information leakage
1
n
I(Un;Wn|c⋆, E = 0) corresponding to the amount of

information received by P2, regarding the source Un. The

information leakage induced by the coding scheme for

empirical coordination, is investigated in [22].
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[36] E. Akyol, C. Langbort, and T. Başar, “On the role of side information

in strategic communication,” in 2016 IEEE International Symposium on

Information Theory (ISIT), pp. 1626–1630, July 2016.
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