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Abstract The present paper details an elasto-viscoplastic constitutive model for
automotive brake discs made of flake graphite cast iron. In a companion paper [2],
the authors proposed a one-dimensional setting appropriate for representing the
complex behavior of the material (i.e. asymmetry between tensile and compres-
sive loadings) under anisothermal conditions. The generalization of this 1D model
to 3D cases on a volume element and the associated challenges are addressed. A
direct transposition is not possible and an alternative solution without unilateral
conditions is first proposed. Induced anisotropic damage and associated consti-
tutive laws are then introduced. The transition from the volume element to the
real structure and the numerical implementation requires a specific basis change.
Brake disc simulations with this constitutive model show that unilateral conditions
are needed for the friction bands. A damage deactivation procedure is therefore
defined.

Keywords Flake graphite cast iron · Constitutive model · Brake discs ·
Anisotropic damage · Damage deactivation

1 Introduction

The present paper is the second part of a study devoted to the simulation of
the thermomechanical behavior of automotive brake discs made of flake graphite
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(grey) cast iron (i.e. FGCI). An overview of the industrial and scientific issues –
mainly related to the thermomechanical fatigue design of automotive brake discs
and to the correct description of the properties of their constitutive material – is
proposed in the first part [2].

The model developed earlier is based on an elasto-viscoplastic postulate with
the formalism proposed by Chaboche [7], and on a precise description of the
graphite flakes opening and closure phases, which are responsible for the strong
dissymmetry between tensile and compressive response of FGCI [21]. Such a model
allows for an accurate simulation of the cyclic behavior of FGCI in isothermal or
anisothermal conditions for a one-dimensional tension/compression loading.

Automotive brake discs are subjected to severe thermomechanical loadings [15,
1,39] leading to cyclic plasticity in the grooves and potential crack initiation [39,
16]. Three-dimensional finite element calculations are necessary to assess the phys-
ical quantities that control the fatigue life of such a structure. As a one-dimensional
description of the material was proposed [2], a 3D extension applicable under com-
plex loadings needs to be formulated.

In the present paper, the generalization of the 1D model to 3D cases on a
volume element is addressed as a first step. The transition from this volume element
to the real structure and the corresponding numerical implementation are then
described.

2 From a 1D description to a 3D constitutive model

2.1 Extension of the rheological model

A complete 3D braking simulation requires the 1D model proposed by the au-
thors [2] to be extended to 3D situations, which are valid under complex loading
histories. This generalization is not straight forward:

– Superposition of 1D models composed of two 1D branches (i.e. one for the damaged

matrix and one for the debonded flakes) in the three principal directions. When the
stress tensor has more than one component, reducing the three-dimensional
formulation to a one-dimensional expression proves impossible. Since there is
no reason for the stress tensor to have only one component in a 3D structure
subjected to complex loads, this option must be disregarded.

– Extension of the 1D model [2] to a constitutive law containing two 3D branches. The
objective of the present work is to implement the constitutive model in the finite
element solver Abaqus using a user material subroutine (UMAT [37]). The
input data to this type of routine are the total strain tensor increment, and the
internal variables at the beginning of the increment. If, for instance, a tensile
loading in direction 1 is considered, the global strain increments will have three
non zero terms, namely, ∆ε11, and ∆ε22 = ∆ε33 = −ν∆ε11. The Poisson’s ratio
ν is differently affected by damage in the two branches (D and (1 − D)). As
a consequence, there is an incompatibility between the transverse strains (ε22
and ε33) of the two branches. This option entails an over or underestimation
of the stresses in one of the branches.

It is therefore worth asking whether managing the opening/closure mechanisms
is crucial to a specific application on brake discs, and to what extent accurately
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simulating the behavior of the disc without this phenomenon is possible. To answer
this question, it is necessary to study the stress/strain paths in the critical areas of
the disc, and to understand the conditions under which the flakes open and close
within the structure. A 3D constitutive model that can take into account flake
debonding induced by loading and the associated anisotropic damage description
is required. This model will represent flake opening but not its closure, a pattern
that corresponds to the matrix branch in the 1D model [2], and will make it
possible to say whether debonded flakes fulfill the conditions under which they
will close on a real structure.

2.2 3D Constitutive model without flake closure

2.2.1 Anisotropic damage

Any damage orientation distribution can be theoretically considered, resulting in
an anisotropic damage description [25,31]. However, a preferred orientation of
microcracking, more or less perpendicular to the maximum principal stress, is
more often the case [28]. The simplest way to represent damage without referring
to a particular basis (i.e. intrinsic writing) is to resort to even order tensors [25].

The most general form that allows the basis change invariance for any damage
distribution to be satisfied requires the use of an eighth order tensor [7]. Many
authors prefer simpler models and favor fourth order [8,34,24] or second order [33,
23,10,9,22,14] tensors, by which complex anisotropy problems and simple damage
symmetries such as orthotropy are described.

In this study, damage is induced by the loading and corresponds to graphite
flakes debonding, which is mostly oriented perpendicular to the loading direction.
Figure 1 illustrates this effect by showing an idealized distribution composed of
planar flakes. Given that the loading on a brake disc is known, the selected op-
tion is to represent damage by a second order tensor via the introduction of the
degradation of the elastic behavior [10].

Fig. 1: Schematic drawing of induced damage

The form of the damaged material compliance tensor S̃ is derived from Refs. [13,
18], itself derived from Fabrikant’s work [17]. The authors studied unidirectional
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crack distributions perpendicular to the eigen directions in an isotropic elastic ma-
trix. If only the distribution perpendicular to the 1-axis is activated, the following
results are obtained

E1

E0
= (1−D) ,

E2

E0
=
E3

E0
=
ν23
ν0

= 1 (1)

ν12
ν0

=
ν13
ν0

=
E1

E0
,

G12

G0
=
G13

G0
= (1−D)α (2)

where subscripts 0 correspond to the initial isotropic matrix, E, G and ν to Young’s
modulus, shear modulus and Poisson’s ratio, and D to the damage variable. In
Equation (2), a power α is introduced and is equal to 0.5 [36]. The superposition
principle then makes it possible to define a compliance tensor for the damaged
material involving three scalar damage variables associated with three crack dis-
tributions

S̃ = C̃−1 =
1

E



1
1−D1

−ν −ν 0 0 0
1

1−D2
−ν 0 0 0
1

1−D3
0 0 0

sym. 1+ν√
(1−D1)(1−D2)

0 0

1+ν√
(1−D2)(1−D3)

0

1+ν√
(1−D1)(1−D3)


(3)

where C̃ is Hooke’s tensor of the damaged material. In the sequel, the notation C
refers to a fourth-order tensor. This relationship is written in the eigen stress basis,
which corresponds to the damage basis. As shown in the sequel, this setting proves
sufficient for brake discs because damage anisotropy is induced by loading whose
eigen directions do not change with time. This result is true in the specific problem
discussed in the present work because of several features. In the most general
case of a disc subjected to acceleration/breaking cycles, body forces induce shear
stresses. The friction between the pad and the disc also results in a shear stress on
the friction band. Models were proposed to solve such cases with an orthotropic
damage growth rule applied to variable principal directions [38]. However, in the
case of automotive grey cast iron brake discs, the stress levels generated by the
heat flux on the friction band are significantly higher than the aforementioned
stresses that are neglected herein.

2.2.2 Effective stress, yield criterion

The effective stress tensor σ̃ is defined by the strain equivalence principle [6,27] and
corresponds to the stress that must be applied on an undamaged elastic volume
element to obtain the same strain as that of a damaged element. This definition
makes explicit the effective stress versus stress tensor σ

σ̃ = C : S̃ : σ (4)

where C is Hooke’s tensor for the undamaged material.
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The equivalent Von Mises stress, for the undamaged material, is then defined
by

σeq =

√
3

2
s : s (5)

where s is the deviatoric stress tensor

s = K : σ (6)

where K is the projector operator onto the deviatoric space

K = I− 1

3
1⊗ 1 (7)

1 and I the second and fourth order identity tensors, respectively.
The equivalent stress of the damaged material is defined on the assumption

that the first yielding state of the damaged material under a stress σ is equivalent
to that of the undamaged material under a stress σ̃

σ̃eq =

√
3

2
s̃ : s̃ =

√
3

2
(K : σ̃) : (K : σ̃) (8)

with M = K : C : S̃ and given Equation (4), it leads to

σ̃eq =

√
3

2
(M : σ) : (M : σ) (9)

2.2.3 Thermodynamic framework

In this section, the thermodynamic framework for the undamaged material is de-
fined within the generalized standard material setting [20] with a unified viscoplas-
ticity model [7]. The state potential is defined by the free energy density

ρω =
1

2
(ε− εth − εvp) : C : (ε− εth − εvp) + ωp(α) (10)

where ωp(α) = 1
3Cα : α is the energy stored in hardenings. The dual dissipation

potential is chosen as

φ? =
K

m+ 1

〈
f

K

〉m+1

(11)

where K and m are Norton’s viscous parameters, and f the yield surface.
In order to simplify these equations, only one nonlinear kinematic hardening

term is considered in the present section. This hypothesis implies a flow potential
different from f (i.e. non-associated plasticity [28])

F = f +
3γ

4C
X : X (12)

with

f = (σ −X)eq − σ0 (13)
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where C is the hardening modulus, and γ the inverse of a characteristic strain
associated with the nonlinearity of the hardening. Applying the normality rule,
the growth laws read

ε̇vp =
∂φ?

∂σ
= λ̇

∂F

∂σ
=

〈
f

K

〉m
3

2

(s−X)

(σ −X)eq
(14)

α̇ =
∂φ?

∂X
= λ̇

∂F

∂X
= −ε̇vp − ṗγα (15)

The cumulated plastic strain rate ṗ is deduced from energy equivalence

(s−X) : ε̇vp = (σ −X)eq ṗ (16)

and corresponds to the viscoplastic multiplier

ṗ = λ̇ =

〈
f

K

〉m
=

√
2

3
ε̇vp : ε̇vp (17)

2.2.4 State and growth laws

In this subsection, state and growth laws are introduced for the damaged material
on the assumption of a state decoupling between plasticity and damage [32]. The
thermodynamic potential is written in an analogous way as Equation (10), with

the difference that C̃ is substituted for C

ρω =
1

2
(ε− εth − εvp) : C̃ : (ε− εth − εvp) + ωp(αi) (18)

where the viscoplasticity related terms remain unchanged. The state laws then
read

σ = ρ
∂ω

∂ε
(19)

Xi = −ρ ∂ω
∂αi

(20)

The first back-stress X1 is nonlinear and the second one X2 is linear. The ther-
modynamic force Y associated with D is defined as

Y = −ρ ∂ω
∂D

(21)

It should be emphasized that the damage variable is introduced in the model to
simulate the stabilized behavior of the material and not to calculate continuous
damage right up to material failure. The growth of D must therefore be bounded
by a maximum value – potentially reached after a first tensile phase – associated
with the volume fraction of debonded graphite flakes. Under these conditions, in
order to have more freedom in the definition of the damage growth law, the latter
is written in a non standard form detailed in Ref. [2]. The flow potential F now
reads

F =

(
σ̃ −

∑
i

Xi

)
eq

− σ0 +
3γ

4C1

(
X1 : X1 −

4

9
C2
1α1 : α1

)
(22)
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with (
σ̃ −

∑
i

Xi

)
eq

=

√√√√3

2

(
M : σ −

∑
i

Xi

)
:

(
M : σ −

∑
i

Xi

)
= J (23)

and Xi = −2
3Cαi.

The growth laws for the damaged material become

ε̇vp =
∂φ?

∂σ
= λ̇

∂F

∂σ
=

〈
f

K

〉m
3

2

(
MT : M : σ −MT :

∑
i
Xi

)
(
σ̃ −

∑
i
Xi

)
eq

=

〈
f

K

〉m
n (24)

with

n =
3

2

(
MT : M : σ −MT :

∑
i
Xi

)
(
σ̃ −

∑
i
Xi

)
eq

α̇1 =
∂φ?

∂X1
= λ̇

∂F

∂X1
= −

〈
f

K

〉m3

2

(
M : σ −

∑
i
Xi

)
(
σ̃ −

∑
i
Xi

)
eq

+ γα1

 =

〈
f

K

〉m
(nX − γα1)

(25)
and

nX = −3

2

(
M : σ −

∑
i
Xi

)
(
σ̃ −

∑
i
Xi

)
eq

α̇2 =
∂φ?

∂X2
= λ̇

∂F

∂X2
= −

〈
f

K

〉m3

2

(
M : σ −

∑
i
Xi

)
(
σ̃ −

∑
i
Xi

)
eq

 =

〈
f

K

〉m
nX (26)

“Auxiliary” variables are introduced via the use of “effective” viscoplastic
strain and cumulated viscoplastic strain rate that help, in the anisotropic case,
to significantly simplify the numerical implementation of the model. The “effec-
tive” viscoplastic strain is defined as

˙̃εvp =
∂φ?

∂σ̃
= λ̇

∂F

∂σ̃
=

〈
f

K

〉m
3

2

(
s̃−

∑
i
Xi

)
(
σ̃ −

∑
i
Xi

)
eq

(27)

The “effective” cumulated viscoplastic strain rate ˙̃p is deduced from energy equiv-
alence (

s̃−
∑
i

Xi

)
: ˙̃εvp =

(
σ̃ −

∑
i

Xi

)
eq

˙̃p (28)
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such that

˙̃p = λ̇ =

〈
f

K

〉m
=

√
2

3
˙̃εvp : ˙̃εvp (29)

Equation (29) shows that the viscous stress is a function of the “effective” cumu-
lated viscoplastic strain rate rather than the cumulated viscoplastic strain rate.

2.2.5 Numerical integration

The constitutive model was implemented using an implicit integration scheme [35]
in an Abaqus UMAT routine [37]. It is a generalized middle point θ-method [29]
with θ = 1 (i.e. fully implicit Euler method). The solution to the numerical problem
in structural mechanics consists of calculating the stress increment ∆σ induced by
a total strain increment ∆ε prescribed during ∆t.

Newton’s method numerically minimizes the local residual defined as

{R} = {∆vi} −∆t{v̇i(t+ θ∆t)} (30)

The chosen integration variables are {εe,α1,α2, p̃} so that the residual vector
components are expressed as

Rεe = ∆εe − (∆ε−∆p̃n) (31)

Rp̃ = ∆p̃−∆t
〈
J − σ0
K

〉m
(32)

Rα1 = ∆α1 −∆p̃ (nX − γα1) (33)

Rα2 = ∆α2 −∆p̃nX (34)

The nonlinear problem to be solved is a 19×19 dimension system. The solution
using Newton’s method requires knowing the Jacobian matrix J of the system,
which is determined analytically and defined by components such that

Jij =
∂Ri
∂∆vj

(35)

It is written as

J =


∂Rεe
∂∆εe

∂Rεe
∂∆α1

∂Rεe
∂∆α2

∂Rεe
∂∆p̃

∂Rα1

∂∆εe

∂Rα1

∂∆α1

∂Rα1

∂∆α2

∂Rα1

∂∆p̃
∂Rα2

∂∆εe

∂Rα2

∂∆α1

∂Rα2

∂∆α2

∂Rα2

∂∆p̃
∂Rp̃
∂∆εe

∂Rp̃
∂∆α1

∂Rp̃
∂∆α2

∂Rp̃
∂∆p̃

 (36)

In order to express each term of the matrix, several quantities are defined

N =
∂n

∂σ
=

1

J

(
3

2
MT : M− n⊗ n

)
(37)

S =
∂n

∂X
= − 1

J

(
3

2
MT + n⊗ nX

)
(38)

NX =
∂nX
∂σ

= − 1

J

(
3

2
M− nX ⊗ n

)
(39)
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SX =
∂nX
∂X

=
1

J

(
3

2
K− nX ⊗ nX

)
(40)

The terms derived from Equation (31) read

∂Rεe
∂∆εe

= I + θ∆p̃N : C̃ (41)

∂Rεe
∂∆p̃

= n (42)

∂Rεe
∂∆α1

= −2

3
C1θ∆p̃S (43)

∂Rεe
∂∆α2

= −2

3
C2θ∆p̃S (44)

When the viscoplastic flow is activated (J > σ0), the terms derived from Equa-
tion (32) become

∂Rp̃
∂∆εe

= −m
K
θ∆p̃

〈
J − σ0
K

〉m−1

n : C̃ (45)

∂Rp̃
∂∆p̃

= 1 (46)

∂Rp̃
∂∆α1

=
m

K
θ∆p̃

〈
J − σ0
K

〉m−1
2C1

3
nX (47)

∂Rp̃
∂∆α2

=
m

K
θ∆p̃

〈
J − σ0
K

〉m−1
2C2

3
nX (48)

and for hardening variables (see Equations. (33) and (34))

∂Rα1

∂∆εe
= −θ∆p̃NX : C̃ (49)

∂Rα1

∂∆p̃
= −nX + γα1 (50)

∂Rα1

∂∆α1
= I + θ∆p̃

(
2C1

3
SX + γI

)
(51)

∂Rα1

∂∆α2
=

2

3
C2θ∆p̃SX (52)

and
∂Rα2

∂∆εe
= −θ∆p̃NX : C̃ (53)

∂Rα2

∂∆p̃
= −nX (54)

∂Rα2

∂∆α1
=

2

3
C1θ∆p̃SX (55)

∂Rα2

∂∆α2
= I +

2

3
C2θ∆p̃SX (56)
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The stress increment ∆σ is calculated from the elastic strain increment ∆εe
when Newton’s method has converged. The variation of the damaged Hooke’s
tensor C̃ must also be considered. The implicit integration scheme leads to

∆σ = σ̇ (t+ θ∆t)∆t (57)

which is developed as

∆σ = C̃ : ∆εe +∆C̃ : εe (58)

It is useful to define the consistent tangent matrix linked to the integration scheme
in order to optimize the global convergence and avoid too small time increments.
This operator is defined by

L =
∂∆σ

∂∆ε
(59)

It can be shown that [5]

L = C̃ : J∗
ee (60)

where J∗
ee is defined from the inverse of the Jacobian J−1. It is the block that

corresponds to the subscripts linked to the elastic strain εe tensor.
Although the application of non-associated plasticity (f 6= F ) results in a

lack of symmetry of the tangent operator, no particular problems of convergence
were observed on the complex 3D FE problems considered herein. Furthermore,
convergence with the calculated elastoplastic tangent matrix is far better than
that observed with a simple elastic one.

3 From a volume element to a structure

The constitutive model presented in Section 2.2, which is valid for monotonic
loading histories (i.e. without flake closure) on a volume element, must now be
extended to complex loadings in a structure. The main challenge is to deal with
the damage directions, namely, the description of the damaged compliance tensor
S̃ defined in Equation (3) implies that the constitutive equations be written in the
damage basis, which corresponds to the eigen basis assumed to remain unchanged
with time.

In this section, the architecture of a brake disc system and the damage mech-
anisms on critical areas are briefly described. Then, following a presentation of
the heat flux modeling, the implementation of the model is described taking into
account the previous challenges. Brake disc simulations, on which the flake closure
conditions are studied, are then carried out. Model parameters are those identified
in Ref. [2]. A solution is finally proposed to deal with flake opening and closure in
specific areas of the disc.

3.1 Architecture of a brake disc system

Brake disc systems appeared in the 1950s to overcome the drawbacks of drum
brakes. Such systems are now widely used in the automotive as well as in the rail
and aeronautical industries. The system, which is shown in Figure 2, includes the
following elements:
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– A plain or ventilated disc, generally made of cast iron, connected to the rim
by means of the hub. As a rotating part, its role is to absorb and dissipate the
mechanical energy transformed into heat during braking.

– Two brake pads, made of frictional material (the friction lining) mounted on
a metallic support. The pads are brought into contact with the disc during
braking.

– A caliper, a motionless part generally connected to the steering knuckle, on
which the pads are attached. Yoke shaped, it covers an angular sector of the
disc. Its role is to press the pads against the disc to slow it down. The caliper
is equipped with one or more hydraulic pistons.

(a) Full view (b) Plain brake disc

Fig. 2: Brake disc system

3.2 Damage mechanisms

Damage inducing fatigue cracks on a brake disc is mainly due to the presence of
high thermal gradients that occur during braking. As a consequence, the disc tends
to expand in the hot zones, but neighboring cold zones prevent free expansion.
There are two main types of thermal gradients:

– the gradient between the friction ring, which is directly affected by the heat
flux, and the bowl;

– the gradient between the friction bands.

The gradient between the friction ring and the bowl (see Figure 3) gives rise
to “coning” [26], namely, an axial distortion of the brake disc planar geometry,
which results in the disc becoming conical in shape, owing to the different thermal
expansions. The groove is thus subjected to high tensile stresses during braking
leading to local plastic strains. Upon cooling, the friction ring straightens without
returning to its original position in conjunction with the occurrence of compressive
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plasticity in the same zone. The area is thus subjected to cyclic plasticity and can
lead, on severe bench tests, to circumferential cracks revealed in Figure 4(a) with
dye penetrant.

Fig. 3: Temperature field at maximum temperature time of the friction bands

The gradient between the friction bands (see Figure 3) is explained by the fol-
lowing sequence. As breaking generally lasts only a few seconds, the friction bands
are heated very quickly. The surface temperature can reach up to 600 ◦C in 4 or
5 s, while the center of the friction ring only reaches about 200 or 300 ◦C during
the same time. This difference in temperature with depth induces high levels of
radial and hoop compressive stresses. Upon cooling, residual tensile stresses fol-
lowing plastic compressive strains appear. On severe bench tests, this phenomenon
leads to thermal striping [12,4] in the form of radial cracks on friction bands (Fig-
ure 4(b)).

(a) Circumferential crack in a groove (b) Radial cracks in a friction band

Fig. 4: Cracked areas on a brake disc subjected to severe bench test

3.3 External load description

As a first approximation, the intensity of the heat flux experienced by the disc
directly depends on the lining pressure field P , the friction coefficient µ between
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the disc and the linings, the wheel angular velocity ω and r the radius on which the
pressure is applied: φ = µrωP . However, this heat flux is very unstationary on a
brake disc due to thermoelastic instabilities (TEI) [11] and fading phenomenon [30]
(i.e. drop of the friction coefficient for high temperatures) so that a more global
definition of the heat flux derived from an energetic framework is preferred.

Mechanical stresses due to the caliper are deemed negligible with respect to
the thermal stresses, namely, the pressure of the pads on the disc results from the
hydraulic actuator, which rarely exceeds 80 bar, leading to compressive stresses of
about a few MPa. As a consequence, the model used for braking simulations is an
angular sector (Figure 2(b)) on which an axisymmetric flux is applied.

A test bench with inertia J spinning with an initial velocity ω0 is considered on
which braking with constant deceleration (i.e. the speed decreases linearly during
braking) can be carried out several times. Thus, if ∆t is the braking duration, the
angular velocity ω at time t reads

ω(t) = ω0

(
1− t

∆t

)
(61)

The kinetic energy is then deduced at time t

Ek(t) =
1

2
Jω(t)2 =

1

2
Jω2

0

(
1− t

∆t

)2
(62)

It is considered that all the kinetic energy is converted into heat and that 95
% of the latter is transmitted to the disc, while the remaining 5% is transmitted
to the linings. The heat flux transmitted to the disc is then equal to the derivative
of the kinetic energy with respect to time, weighted by a factor ρ = 0.95. On the
contact area with each pad, the expression of heat flux per unit area as a function
of time t then reads

φ(t) = −ρ 1

Sp

dEk
dt

= ρ
Jω0ω(t)

Sp∆t
(63)

where Sp is the contact surface between the pad and the disc. For an axisymmetric
flux modeling, Sp corresponds to the whole frictional surface

Sp = π(R2
out −R2

in) (64)

where Rin et Rout are the inner and outer friction surface radii.

3.4 Implementation strategy

An implementation strategy of the three-dimensional model presented in Section 2
is proposed. As already mentioned, the main difficulties pertain to the management
of the damage directions when solving the problem through a UMAT routine.

3.4.1 Principal directions and damage basis

The prerequisite is that the damage directions do not change with time. As damage
occurs in planes normal to the eigen directions, it requires that the eigen direc-
tions must also remain unchanged. In order to check that hypothesis, a braking
simulation was carried out with the proposed constitutive model without damage.
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The eigenvector associated with time t corresponding to the maximum eigen stress
is calculated. This vector n corresponds to the normal to the plane that will expe-
rience the most part of induced damage. The traction T = σ ·n is then calculated
for all times. If the 1-component of T is always equal to the maximum eigen stress,
it means that the eigen directions do not change with time.

Figure 5 shows for an element in the groove the eigen stresses σI , σII and
σIII as functions of the 1-component of T . The latter exactly corresponds to σI
for positive values, then is successively equal to σII and σIII . This means that
the eigen directions do not change, but the magnitude of the eigen stresses does
change for negative values. The choice made in Section 2.2.1 for the representation
of anisotropic damage is therefore validated.

Fig. 5: Eigen stresses versus 1-component of the traction on the critical plane

3.4.2 Damage direction management in Abaqus

From a numerical point of view, a major difficulty arises from the fact that the
UMAT input data ∆ε are defined in the global basis. The latter is necessarily dif-
ferent from the eigen (or damage) basis of each element. As the numerical solution
must take place in the stationary damage basis, a specific procedure was developed
in the UMAT routine (Figure 6):

– During the first increment, the eigen basis ei ⊗ ej is defined once and for all.
The transformation matrix Pij = ei · Ej is also defined, where Ej corresponds
to the global basis.

– The first increment is treated in the global basis, which is of no consequence
as the damage is initialized to zero in all directions.

– During the second increment, the strain tensor increment ∆εD and the stress
tensor σD are defined in the damage basis ei ⊗ ej such that ∆εDkl = PTki∆εijPjl
and σklD = PTkiσijPjl.
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– The problem is solved in the damage basis.
– After convergence of Newton’s scheme and updating of the stress and internal

variables, an inverse basis change is carried out, from σD toward σ, in order to
enable Abaqus to reach global equilibrium. The internal variables are stored
in the damage basis in the UMAT routine.

– From the third increment onward, the steps are those described for the second
one.

Fig. 6: Block diagram of the basis change procedure in the UMAT routine

As shown in Equation (60), the tangent operator L is calculated as L = C̃ : J∗
ee,

such that it is defined in the damage basis, and denoted by LD. In order to ensure
global convergence, this matrix must be defined in the global basis of the finite
element model. It is therefore necessary to operate a basis change, from the damage
basis toward the structure basis. On a fourth order tensor, this operation is time
consuming and Bond matrices [3] are preferred.

Matrix P defined above reads

P =

 a11 a12 a12
a21 a22 a23
a31 a32 a33

 (65)
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Similarly, M and N matrices are defined as

M =


a211 a212 a213 2a12a13 2a13a11 2a11a12
a221 a222 a223 2a22a23 2a23a21 2a21a22
a231 a232 a233 2a32a33 2a33a31 2a31a32

a21a31 a22a32 a23a33 a22a33 + a23a32 a21a33 + a23a31 a22a31 + a21a32
a31a11 a32a12 a33a13 a12a33 + a13a32 a13a31 + a11a33 a11a32 + a12a31
a11a21 a12a22 a13a23 a12a23 + a13a22 a13a21 + a11a23 a11a22 + a12a21


(66)

and

N =


a211 a212 a213 a12a13 a13a11 a11a12
a221 a222 a223 a22a23 a23a21 a21a22
a231 a232 a233 a32a33 a33a31 a31a32

2a21a31 2a22a32 2a23a33 a22a33 + a23a32 a21a33 + a23a31 a22a31 + a21a32
2a31a11 2a32a12 2a33a13 a12a33 + a13a32 a13a31 + a11a33 a11a32 + a12a31
2a11a21 2a12a22 2a13a23 a12a23 + a13a22 a13a21 + a11a23 a11a22 + a12a21


(67)

Definitions (66) and (67) imply that N−1 = MT , which helps defining the tangent
matrix L in the global basis

L = MLDNT (68)

3.5 Stress/strain paths in the structure

With the constitutive model previously described it is possible to carry out braking
simulations in which stress/strain paths in critical areas (i.e. the groove and the
friction bands) are studied. Two configurations were tested, namely, the first one is
a small plain brake disc 266-mm in diameter (denoted D266) mounted on a light
vehicle; the second one is a large ventilated disc 330-mm in diameter (denoted
D330) mounted on a much heavier vehicle.

A series of severe brakings (i.e. deceleration from 80% Vmax to 40% Vmax at
0.5g) was simulated for the two configurations. The constitutive model accounts
for anisotropic damage but without flake closure. Stress/strain paths in the radial
and hoop directions in the groove are shown in Figure 7(a). The response is quickly
characterized by plastic shakedown. The “coning” of the disc during the first brak-
ing induces a global deformation of the friction ring and permanent strains in the
groove. As a result, even at the end of the cooling phase, there is still a positive
residual strain. Under these conditions, flake closure will never occur in the groove
and the present constitutive model is sufficient to describe the actual behavior of
that area.

The strong thermal gradient on the friction bands gives rise to compressive
stresses and plasticity during braking, and residual tensile stresses after cooling
(Figure 7(b)). The latter ones are below the threshold (about 90 MPa) at which
damage occurs [2]. This result means that in the friction bands graphite flakes
do not debond, and damage is equal to zero in all directions. Again, the present
constitutive model is sufficient to describe the actual behavior of the studied area.

Outside these critical areas, no other part of the disc requires flake closure
be taken into account; the flakes are either debonded or closed, and remain in
that state. For this disc configuration and the considered braking conditions, the
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(a) Groove (b) Friction band

Fig. 7: Stress/strain paths on the D266 disc without damage

present constitutive model is therefore sufficient to describe the actual behavior of
the entire structure.

Conclusions are rather different for D330 brake disc, for which the applied
thermal flux is more important, owing to the higher inertia of the corresponding
vehicle. The stress/strain path on the friction bands shown in Figure 8 with the
current constitutive model shows a non-physical drift of the mechanical response
toward positive stresses. This phenomenon is explained by the following reasons:

– the tensile residual stress after the first cooling is greater than 90 MPa, damage
is therefore activated in this direction;

– as a consequence, Hooke’s tensor is affected by damage;
– given that no closure condition or damage deactivation is considered, compo-

nents of Hooke’s tensor remain underestimated, resulting in an overestimation
of the minimum compressive stress reached at the end of the braking phase;

– the subsequent tensile stress is thus overestimated, damage increases and com-
ponents of Hooke’s tensor decrease;

– the process intensifies for each braking and results in a totally non physical
response.

Fig. 8: Stress/strain path on the D330 friction band without closure condition
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The solution chosen to counteract this phenomenon consists of a damage deac-
tivation strategy. The procedure described in Section 3.6 is applied on elements for
which a mechanical strain value of -0.2% is observed. This choice is made because
the friction bands alone are concerned, namely, the only area where this value is
reached. Moreover it is assumed that only severe brakings will cause damage in
tension, resulting in large negative mechanical strains.

3.6 Damage deactivation

The damage deactivation process consists of deactivating damage instantaneously
when flakes close. Consequently, it must be treated direction by direction. As shown
in Ref. [2], flake closure occurs approximately at the strain level at which the flakes
opened. The strain level is easy to define with the 1D two-branch model, but there
is no direct way to define it with the above 3D model. However, for the loading
considered in the friction bands, initial flake debonding (i.e. for the first braking)
and subsequent flake openings (i.e. for subsequent brakings) are most likely to
occur when the stress shifts from negative to positive levels, at a corresponding
strain level εt. This condition defines activation and the deactivation condition can
therefore be defined as the shift from ε > εt to ε < εt.

Such activation and deactivation conditions were tested with unsatisfactory
results (Figure 9). Simple damage deactivation does not physically represent the
mechanisms involved, namely, the material actually includes two separate phases
represented by the two-branch rheological model [2]. Deactivating damage instan-
taneously upon unloading thus results in non-smooth paths and non physical be-
haviors with a drift even more pronounced than in the undamaged case. This bilin-
ear path is a typical inconsistency associated with damage activation/deactivation
conditions. More realistic models based on continuous damage deactivation are
proposed, in which microcracks close gradually [19]. Yet the specific conditions
under which flakes open and close on a 3D structure make the application of such
approaches quite complex in the present case.

Fig. 9: Stress/strain path in the D330 friction band with damage deactivation at
σ = 0
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The solution finally adopted to counteract this phenomenon is to enforce dam-
age deactivation always at the same strain level, thereby avoiding drift. The sim-
plest and most pragmatic choice is to deactivate damage as early as the first un-
loading increment. This condition makes no sense on fully reversed cyclic tests and
will result in a very bad description of the overall unloading behavior. Conversely,
the error is minimal on the friction band (i.e. the only area where this condition is
in fact activated), because subsequent closure occurs very quickly after unloading.
The corresponding stress path is shown in Figure 10 where a stabilized behav-
ior is observed, a reasonable maximum stress estimation and a low error during
unloading.

Fig. 10: Stress/strain path in the D330 friction band with damage deactivation
upon early unloading

4 Conclusions

The present paper describes an attempt to generalize a one-dimensional setting [2]
to describe the thermomechanical behavior of flake graphite cast iron to a three
dimensional constitutive law valid for complex loadings on a brake disc. Directly
transposing the 1D model to a 3D model was examined but proved to be incon-
sistent. Consequently, a pragmatic solution was proposed (Section 2.2), which is
based on the following points:

– No area other than the friction bands experiences flake opening/closure.
– Damage deactivation is introduced on the friction bands.
– The opening condition is defined by σ ≥ 0 in the considered direction.
– Flake closure is enforced at the very beginning of the unloading phase.

The model allows an accurate simulation of the mechanical behavior in the
groove. In the friction bands, the asymptotic global behavior is also well described.
However, a small error during the unloading phase, which is inherent to the damage
deactivation procedure, still exists. This error gives rise to a small overestimation
of the mechanical energy dissipated during a braking cycle.

This model must now be tested on a large number of brake discs with varied
designs to be completely validated. Low cycle fatigue criteria, based on quantities
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such as mechanical dissipated energy will also be evaluated, in order to work out
a complete brake disc fatigue design framework.
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20. Germain, P.: Cours de mécanique des milieux continus. Masson, Paris (1973)
21. Gilbert, G.: An evaluation of the stress-strain properties of flake graphite cast iron in

tension and compression. J Br. Cast Iron Res. Assoc. 7, 745–789 (1959)

http://mms2.ensmp.fr/msi_paris/nlfe/transparents/paris_tech2005b.pdf


Constitutive model for flake graphite cast iron automotive brake discs 21

22. Halm, D., Dragon, A.: A model of anisotropic damage by mesocrack growth; unilateral
effect. Int. J. Damage Mech. 5, 384–402 (1996)

23. Kachanov, L.M.: Continuum model of medium with cracks. J. Eng. Mech. Divis. 106,
1039–1051 (1980)

24. Krajcinovic, D.: Damage Mechanics. North Holland (1996)
25. Leckie, F.A., Onat, E.T.: Tensorial nature of damage measuring internal variables. Int.

Union of Theor. and Appl. Mech. Symp., Phys. Nonlinearities in Struct. Anal. pp. 140–155
(1981)

26. Lee, S., Yeo, T.: Temperature and coning analysis of brake rotor using axisymmetric finite
element technique. Sci. Technol. 3, 17–22 (2000)

27. Lemaitre, J., Chaboche, J.L.: Aspect phénoménologique de la rupture par endommage-
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