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Abstract One of the critical points of the thermomechanical fatigue design process
is the correct description of the cyclic behavior of the material. This work focuses
on the material of automotive brake disks, namely, flake graphite cast iron. The
specificity of this material is its asymmetric behavior under tensile and compressive
loadings, which is due to the shape of graphite that acts as small cracks. Multi-
scale models inspired from the literature are first presented. They lead to a good
description of the material behavior under cyclic loadings. An elasto-viscoplastic
constitutive model is then proposed in a one dimensional setting in order to accu-
rately describe cyclic tests from room temperature up to 600◦C.

Keywords Flake Graphite Cast Iron · Multiscale model · Constitutive model

1 Introduction

The automotive industry is increasingly facing major challenges related to higher
standards decreasing the pollution caused by the emission of greenhouse gases, and
the resulting need for lighter structures. Optimal design implies having efficient
tools to accurately predict the life of structures under any load and especially
fatigue loadings. One possible strategy is based on the fundamental assumption
that it is possible to decouple the cyclic mechanical response of the material from
fatigue damage [12]. It is usually referred to as a locally coupled approach [6]. The
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latter requires a number of assumptions to be checked, which are mainly related
to the stabilization of the local mechanical variable histories under cyclic loadings.

This work focuses on the thermomechanical fatigue behavior of automotive
brake disks. One of the critical points of the design process, as part of the previ-
ously described approach, is the correct description of the anisothermal thermome-
chanical behavior of the material, namely, flake graphite cast iron (FGCI) in most
applications. The thermomechanical properties of FGCI depend on the quality
and the distribution of flakes and on the matrix composition. Although graphite
flakes, with a length ranging from 0.03 to 1 mm, have very little influence on the
compressive strength of the matrix, they considerably reduce its tensile strength.
Owing to the very low strength of graphite, the flakes behave like cracks [11]. This
phenomenon induces a notch sensitivity, causing FGCI to become more brittle
than spheroidal graphite cast irons [25]. When macrocracks initiate, they propa-
gate almost instantaneously. In FGCIs, flakes can be seen as microcracks leading to
tensile failure (without large elongations or necking) following the graphite flake
distribution. Flake debonding under tensile loadings is one of the causes of the
nonlinear stress-strain response for relatively low stress values [16], which induces
a strong asymmetry of the tension/compression behavior.

Several multiscale models of FGCIs, which are based on finite element simu-
lations, have been devised [30,13,17] to study the influence of the microstructure,
in particular the size of flakes, on the mechanical response. The authors were able
to simulate cyclic tests with good agreements. The major drawback of these mod-
els, which postulate an initially damaged condition, is that they do not allow the
simulation of a progressive debonding of graphite flakes; possibly, the modeling of
this phenomenon is very complex and cannot be easily parameterized.

Further, many models, either specific or not to FGCIs [26,14,29,19,20,2,8],
account for a dissymmetry between the behavior in tension and in compression
through the modification of the yield surface, by introducing stress invariants, such
as the hydrostatic pressure, in the formulation. The most commonly used model is
that proposed by Hejlm [19], which is implemented in the commercial finite element
code Abaqus. These models make it possible to represent the overall dissymmetry
but fail to account for either the loss of stiffness related to flake debonding, or
the stiffness recovery. As an illustration of this lack of precision, the simulation
of a symmetric strain controlled cyclic test was achieved using a two-kinematic
hardening elastoplastic model with a Drucker-Prager yield surface. Results of this
simulation are shown in Figure 1, where the limits of such models are exhibited.

In this paper, after a brief presentation of the experimental database, other
multiscale models are proposed leading to a precise description of FGCI behavior.
An energetic analysis of these models allows their thermodynamic accuracy to be
validated and leads to the formulation of a one dimensional rheological model,
which is able to describe precisely the material response under cyclic loading his-
tories.

2 Experimental database

In order to study the complex behavior of brake discs gray cast iron, a comprehen-
sive experimental campaign was conducted. The material used to make automo-
tive brakes is a pearlitic FGCI whose chemical composition is presented in Table 1.



Constitutive model for flake graphite cast iron automotive brake disks 3

Fig. 1: Simulation of a cyclic test with an elastoplastic model and Drucker-Prager
criterion

The flake distribution is uniform, with sizes ranging between 60 and 250 µm. It is
therefore of type IA4-5 [1]. Figure 2 shows a micrograph of the studied grade.

Table 1: Chemical composition (wt.%) of the studied FGCI

C Si Mn S P Ni Cr Mo Cu Sn Ti Fe

3.4 2.45 0.40 0.15 0.15 0.25 0.20 0.10 0.60 0.10 0.03 Bal.

Fig. 2: Micrography of flake graphite cast iron

The experimental database includes monotonic tensile and compressive tests
(Figure 3), cyclic tests with dwell phases in tension and compression (Figure 4).
All the tests were performed from 20◦C up to 600◦C on cylindrical samples, which
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are machined from the ring of a brake disk, in order to be representative of actual
components. For the monotonic tests shown in Figure 3, Young’s moduli in tension
and compression are the same, but a nonlinear stress-strain relationship appears
in tension for low stress values (i.e. less than 100 MPa). Furthermore, stress lev-
els achieved in compression are much higher than those achieved in tension, for
symmetric strain levels.

Fig. 3: Monotonic tests performed at different temperatures for the considered
FGCI

Cyclic tests consist of a succession of cycles performed at a given strain level
ε1. This level varies during the test and its initial value is ε1 = 0.1%. A cycle is
composed of:

– a compressive phase from ε = 0 to ε = −ε1 of 2.5-s duration;
– a dwell phase in compression when ε = −ε1 of a temperature related duration;
– a compressive/tensile phase when ε = −ε1 to ε = ε1 of 5-s duration;
– a dwell phase in tension when ε = ε1 of a temperature related duration;
– an unloading phase back to zero strain of 2.5-s duration.

After six cycles at this strain level ε1 (leading to plastic shakedown), the next strain
level is considered. During the test, the following values are successively reached for
ε1: 0.1%, 0.2%, 0.3%, 0.4% and 0.5%. A strong dissymmetry is observed between
tensile and compressive phases (Figure 4), not only in terms of maximum stresses
but also in terms of observed elastic modulus. Another particularity is the form of
the hysteresis loop, which is characterized by the presence of an inflection point.

Some observations, which are summarized in Figure 5, are derived from the
study of the experimental results:

– a strong dissymmetry exists in terms of maximum stress level between tension
and compression;

– during loading phases, the current Young’s modulus is identical to the initial
modulus;

– Young’s moduli during the unloading phases are lower than the initial modulus;
– during unloading phases, there is an inflection point corresponding to the grad-

ual closure of cracks induced by matrix/graphite debonding during tensile
phases, which gives rise to an increased macroscopic stiffness.
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Fig. 4: Cyclic test at room temperature on the considered FGCI

Fig. 5: Schematic behavior of FGCI

3 Multiscale models

The detailed understanding of strain and damage mechanisms in FGCI is the key
step in the development of a constitutive model. As mentioned in the introduction,
multiscale approaches offer a number of answers but fail to simulate accurately the
behavior of the material. In this section, unit cells representative of the material
are introduced to quantify accurately the phenomena of debonding, opening and
closure of the graphite flakes. All the computations are conducted with a general
finite element solver (i.e. Abaqus) that uses an implicit integration scheme.

3.1 Constitutive model of the matrix

With the experimental database, a constitutive model for the matrix is defined.
Cyclic tests show that there is no cyclic softening nor hardening. This result sug-
gests that hardening is purely kinematic (i.e. no isotropic component). Monotonic
compressive tests exhibit a highly nonlinear portion in the stress-strain relation-
ship, which is followed by a linear response up to 2% strain (Figure 6). The choice
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Table 2: Matrix parameters - 20◦C

E (GPa) ν σy C1 (MPa) γ1 C2 (MPa)

119 0,28 181 230000 1634 17300

is made to use two kinematic hardening variables [10], one nonlinear X1 [4] and
another one X2, which is linear [28]. Since this section only deals with simulations
of the behavior at room temperature, an elastoplastic law (i.e. no viscoplasticity) is
considered. The representation of the behavior at higher temperatures is addressed
in Section 4. Table 2 presents the parameters identified at 20◦C. The simulation
shown in Figure 6 describes very well the experimental data and validates the
choice of a two-kinematic hardening model.

Fig. 6: Simulation of the compression test with the identified elastoplastic model

3.2 Axisymmetric crack model

The first model is inspired by that proposed by Russel [30] but displays significant
differences, notably in terms of the description of flake debonding. An axisymmet-
ric cell having a flat central crack is defined thereby allowing the three-dimensional
effects of stress concentrations at the crack tip to be accurately represented. This
crack is an idealization of the graphite flakes perpendicular to the loading direc-
tion. The crack surfaces are in contact accounting for closure during unloading
phases. The crack propagation is controlled by the applied stress or strain through
the use of the *Debond option in Abaqus, which allows the release of initially linked
nodes. Thus, the progressive debonding of the graphite flakes, depending upon the
applied load, is only parameterized by the crack size.

The boundary conditions applied to the cell are (Figure 7):

– the upper horizontal face remains horizontal during loading: yHF = yp1;
– the lateral vertical face remains vertical during loading xLF = xp2.



Constitutive model for flake graphite cast iron automotive brake disks 7

Fig. 7: Axisymmetric crack model

The cell mesh is fine enough to simulate accurately crack opening, namely,
elements near the crack tip are 50 µm in size for a maximum cell radius of 7
mm. An attempt is then made to identify the crack growth law as a function of
the applied stress, in order to obtain a simulated stress-strain curve as close as
possible to the stress-strain curve recorded during the monotonic tensile test. The
crack growth law is determined “manually” in this exploratory phase, namely, a
20 point tabular evolution of the crack length a as a function of the applied stress
is determined step by step from the monotonic tension test. The principle is to fit
the experimental tensile test with the appropriate crack size evolution. It is then
easy to simulate the cyclic test, incrementing the crack size to its corresponding
value, using the previously defined crack opening law, when switching to the new
strain level amplitude. The simulation of the cyclic test begins with a strain range
of 0.2% and a pre-existing crack. The response of the model is shown in Figure 8.

Fig. 8: Comparison of the axisymmetric crack model and the cyclic test
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It is found that the correlation between the model and the experimental data
is very good not only during loading phases but also during unloading (i.e. elastic)
phases, with a reduced stiffness very close to the measured one. Because the con-
stitutive law is only elastoplastic, the dwell phases with stress relaxation are not
simulated. The inflection point that corresponds to crack closure is represented
accurately. However, the model predicts that this point, which is experimentally
stationary, shifts slightly in the area of negative strains for each increment of the
strain amplitude. One hypothesis is to consider that this point is experimentally
stationary owing to a wide variety both in size and distribution of the flakes, al-
lowing a gradual closure. Another hypothesis is to consider that the single crack
model induces significant stress concentrations at the crack tip, most likely higher
than those present in the actual material. The tensile stress concentration gener-
ates compressive residual stresses and a large area of positive plastic strains, which
then “delay” the complete closure of the crack.

Damage identification The numerical model allows the concept of damage to be
addressed. The crack is related to a damage variable D through a decrease of the
effective section. The effective stress σ̃ introduced by Kachanov [21] is defined as

σ̃ =
σ

(1−D)
(1)

The damage variable then reads

D = 1− Ẽ

E
(2)

where Ẽ is the current Young’s modulus, calculated from an elastic simulation.
Knowing the crack size a as a function of the applied stress σ, it is possible

to directly link D to σ. The change of D with the applied stress is thus obtained
as shown in Figure 9. This result indicates that the flake debonding only occurs
after a threshold value and then follows a logarithmic evolution. The yield stress
in compression is about 180 MPa, which means that damage in tension occurs
during the elastic regime.

Fig. 9: Damage growth law
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3.3 Five-bar model

Along the same lines as the elastoplastic bar model of Downing [13], and given
the knowledge of the damage growth law as a function of the applied load, a
rheological model made of five bars (i.e. two-dimensional plane stress elements)
with different sections is considered to represent the cyclic test shown in Section 2,
to the exclusion of any other test. Figure 10 schematically shows the way the five-
bar system is working. Bar number 1 with the largest section accounts for the
uncracked ligament whose vertical displacements are forbidden on its lower side.
Its section S1 is directly linked to the maximum damage level corresponding to
the strain level of 0.5 %, denoted by D0.5 %. The section of bar 1 is defined as

S1 = ST (1−D0.5%)

where ST is the total section of the k bars, ST =
∑
k

Sk. The other four bars

correspond to the cracked area. They are in contact with a rigid support, and each
bar corresponds to a discretization of damage, which is linked to a strain level.
The contact can be open or fully bonded. For a strain level of 0.5 %, the contact
is open for all bars except bar number 1. For a strain level of 0.4 %, the contact
is open for bar number 5, 4 and 3 and closed elsewhere. Section S2 of bar 2 reads

S2 = ST (1−D0.4 %)− S1

For a strain level of 0.3%, the contact is open for bars number 5 and 4 and closed
elsewhere. Section S3 of bar 3 becomes

S3 = ST (1−D0.3 %)− S1 − S2

For a strain level of 0.2%, the contact is open for bar number 5 and closed elsewhere
so that section S4 reads

S4 = ST (1−D0.2 %)− S1 − S2 − S3

Last, the section of bar number 5 reads

S5 = ST − S1 − S2 − S3 − S4

Displacements of the upper faces of all the bars are kinematically connected to
a single master node that can be driven in a load or displacement controlled
mode. During the simulation of the cyclic test at 20◦C, the contact condition of
the cracked bars 2, 3, 4 and 5 changes from bonded to open, depending on the
simulated strain level. The displacement of the master node, as in the test, is
“strain” controlled.

The simulations of the rheological model are shown in Figure 11. The predic-
tions are very close to both the experimental data and the results obtained with
the axysimmetric crack model. There is still a slight shift of the inflection point
toward negative strains at each strain level increment, but the amplitude of the
shift is much smaller. This shift can be explained by the absence of effects related
to the high stress concentrations in the vicinity of the crack tips, a pattern that is
more representative of the actual microstructure characterized by a high density
of flakes isotropically distributed.
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Fig. 10: Five-bar rheological model

Fig. 11: Prediction of the 5-bar model and experimental data of the cyclic test at
20◦C

When the contact condition for a bar changes from bonded to open, it means
that the stress in the considered bar is equal to zero, as well as its elastic strain;
only an inelastic strain appeared during compressive phase remains, which means
that the bars will keep a constant length during the “open” phase. The consequence
is that the open bars (i.e. the open flakes) will close for a global strain level equal
to that reached at the time of opening.

3.4 Energy balance analysis

In order to compare the two previous models from an energetic point of view, an
energy balance analysis is performed on both models.

Thermodynamic framework

The thermodynamic framework defined below is that used for the undam-
aged matrix representation. For an elastoplastic model with one nonlinear and
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one linear kinematic hardening, state variables are ε, εp and α associated with
the thermodynamic forces σ, Λεp and X.

Von Mises’ yield surface is written as

f(σ,X) = (σ −X)eq − σ0 (3)

where X = X1 +X2, and σ0 the initial yield stress. The free energy is chosen as
the state potential [18]

ρω =
1

2
(ε− εp) : C : (ε− εp) + ωp(α1,α2) (4)

where ρ is the mass density, ω the specific free energy, C Hooke’s tensor and
ωp(αi) = 1

3

∑
i
Ciαi : αi, (i = 1, 2) the energy stored related to the hardenings.

The state laws become

σ = ρ
∂ω

∂ε
; Λεp = −ρ ∂ω

∂εp
= σ ; Xi = −ρ ∂ω

∂αi
, i = 1, 2 (5)

The dissipation potential F , is different from the yield criterion f (i.e. non-associated
plasticity [22])

F (σ,X) = (σ −X)eq − σ0 +
3γ

4C
X1 : X1 (6)

where C is the hardening modulus, and γ the inverse of a characteristic strain
associated with the nonlinearity of the hardening. The growth laws read

ε̇p = λ̇
∂F

∂σ
= λ̇

3

2

(s−X)

(σ −X)eq
(7)

α̇1 = λ̇
∂F

∂X1
= −ε̇p + λ̇

3γ

2C1
X1 ; α̇2 = λ̇

∂F

∂X2
= −ε̇p (8)

The cumulated plastic strain rate ṗ is deduced from energy equivalence

(σ −X)eq ṗ = (σ −X) : ε̇p (9)

and corresponds to the plasticity multiplier

ṗ = λ̇ =

√
2

3
ε̇p : ε̇p (10)

The intrinsic dissipation is then expressed as

Di = σ : ε̇− ρ ∂ω
∂Ai

: Ȧi

where Ai are all the internal variables except the plastic strain tensor so that

Di = (σ0 +
3γ

2C
X1 : X1)ṗ (11)

Under isothermal conditions, the supplied mechanical work is decomposed into

• the free energy: ρω = ωe + ωs, itself made of:

– the recoverable elastic energy: ωe = 1
2εe : C : εe

– and the stored energy: ωs(α) = 1
3 (C1α1 : α1 + C2α2 : α2)

• and the dissipated energyD1, which is obtained by integrating

(
σ0 +

3γ

2C1
X1 : X1

)
ṗ

over the load history.
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Energetic calculations

The analysis of energy balance is carried out on a tensile loading. When a
cyclic test is simulated on the axisymmetric crack model, Abaqus straightforwardly
delivers a series of data:

– the so-called plastic work ψp through ELPD output variable [31], which gives
access to the total plastic work, integrated over the whole model,

– the total strain energy ωeT through ELSE output variable [31], which is also
integrated over the whole model.

Consequently, other data have to be determined:

– the stored energy ψs, including the part stored by hardening ωh and the energy
related to the residual stresses ωs.

– The dissipated energy D1.

The energy ωh is obtained from an Abaqus UVARM user subroutine allowing
to integrate over the entire model the energy stored by the hardenings

ωh = 2π
n∑
i=1

[(
3

4C1
Xi

1 : Xi
1 +

3

4C2
Xi

2 : Xi
2

)
riSi

]
(12)

where Si is the area of an element, ri the radius of its centroid, and n the to-
tal number of elements in the model. The dissipated energy D1 is obtained by
subtracting ωh from the plastic work ψp: D1 = ψp − ωh.

To determine the stored energy associated with the presence of residual stresses
ωs, an elastic unloading must be performed at each increment [3]; the stored en-
ergy (i.e. residual part of ωeT ) is that associated with the residual stresses. The
recoverable elastic energy ωe is then equal to ωeT - ωs. The free energy ρω is finally
equal to ψs + ωe.

Working along similar lines, it is possible to conduct an energetic analysis of the
5-bar model. A Finite Element calculation is carried out for each level of damage
(i.e. for strains ranging from 0.2% to 0.5%). The energy stored in hardenings is
then calculated as

ωh =
n∑
i=1

[(
3

4C1
Xi

1 : Xi
1 +

3

4C2
Xi

2 : Xi
2

)
Si

]
(13)

It is worth noting that there is no energy related to residual stresses in this
model. Since the different bars are independent of each other and the stress field
in each bar is homogeneous, no residual stresses are generated in the case of a
tensile loading followed by an elastic unloading. For the axisymmetric crack model,
residual stresses are related to the plastic zone surrounding the crack tip.

The energy balance, per unit area, is shown in Figure 12. An equivalence
between the two models is observed, thus allowing a constitutive model based on
the 5-bar model to be developed.



Constitutive model for flake graphite cast iron automotive brake disks 13

(a) Axisymmetric crack model (b) 5-bar model

Fig. 12: Various energetic contributions in a tensile test when two different models
are considered

4 One dimensional rheological model

4.1 Theory

The 5-bar model introduced in Section 3.3 helped us understand the strain mech-
anisms of FGCI as well as the flake graphite opening and closure conditions from
a macroscopic point of view. Based on this model, a one-dimensional two-branch
rheological model displayed in Figure 13 is proposed in this section.

Fig. 13: Rheological model consisting of two branches: the left part is related to
the flakes and the right part defines the matrix

The model consists of one branch that describes the matrix, i.e. the undamaged
part of the material (the right branch, called the matrix branch) and a second
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branch corresponds to the areas surrounding the debonded graphite flakes (the left
branch, called the crack branch), such that the latter, depending on the loading
conditions may or may not transmit a load. When the flakes are open, the crack
branch must remain inactive and the entire load is carried by the matrix branch.
Conversely, when the flakes are closed, the load is carried by both branches.

The case considered hereafter is that of a non-constrained medium, with a pre-
existing crack, whose length corresponds to a specific level of damage D. During a
tensile loading, applying a weight (1−D) to several coefficients of the constitutive
model is sufficient to bring about the damaged material behavior. During a com-
pressive loading, the behavior is that of the undamaged material since the crack
is closed. A weight D is then applied to the same coefficients in the crack branch
in order to equate the sum of the stresses in the two branches and the stress of
the undamaged material.

Under cyclic loadings, the flakes opening and closure conditions need to be
defined. They are schematically shown in Figure 13 by the element with two hor-
izontal bars on the crack branch. The deactivation condition is the same as that
described in Section 3.2, namely, the crack closes at the same strain level as that for
which it had opened. The opening condition remains to be defined. In the present
rheological model, this condition is quite simple. No tensile stresses can be carried
by the crack branch. The opening (and therefore deactivation) condition of the
crack branch corresponds to the instant when the stress becomes positive. During
this period of deactivation, the state variables do not change and the elastic strain
is equal to zero.

In order to demonstrate which coefficients should be multiplied by D and
(1−D), the same case is studied, namely, that of an unconstrained medium with
a pre-existing crack submitted to a monotonic compressive loading. The overall
stress is equal to the sum of the stresses in the crack branch, denoted by σc, and
that of the matrix branch, denoted by σm. In the elastic case, the Young’s modulus
is affected by damage and the overall stress reads

σ = σc + σm = EDε+ E(1−D)ε = Eε (14)

In the viscous-elastic case, only Norton’s law K parameter is affected, thereby
leading to the overall viscous stress

σv = σvc + σvm = KDε
1/m
v +K(1−D)ε

1/m
v = Kε

1/m
v (15)

Last, for the elastoplastic case with nonlinear kinematic hardening, only the hard-
ening modulus C is influenced by damage, leading to the overall plastic stress

σ = σc + σm =
CD

γ

(
1− e−γεp

)
+
C(1−D)

γ

(
1− e−γεp

)
=
C

γ

(
1− e−γεp

)
(16)

The thermodynamic framework chosen to describe in one dimension the un-
damaged material is defined below. This framework is that of generalized standard
materials [15], with the unified elastoviscoplastic model proposed by Chaboche [9],
which takes into account viscous effects present at high temperatures. The state
potential is the free energy density

ρω =
1

2
(ε− εth − εvp)E(ε− εth − εvp) +

∑
i

1

2
Ciα

2
i (17)
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where εth is the thermal strain and εvp the viscoplastic strain. The state laws are
defined as

σ = ρ
∂ω

∂ε
= Eεe ; Xi = −ρ ∂ω

∂αi
= −Ciαi (18)

The first kinematic hardening X1 is assumed to be nonlinear, the second, X2,
being linear. The function F is here defined by

F = σ −
∑
i

Xi − σ0 +
γX2

1

2C1
= f +

γX2
1

2C1
(19)

In viscoplasticity, the viscoplastic multiplier λ̇ is obtained via Norton’s law

λ̇ =
〈
f
K

〉m
. The growth laws are determined by applying the generalized normality

rule

ε̇vp = λ̇
∂F

∂σ
=

〈
f

K

〉m
; α̇1 = λ̇

∂F

∂X1
= −ε̇vp(1 + γ) ; α̇2 = λ̇

∂F

∂X2
= −ε̇vp (20)

Finally, the cumulative viscoplastic strain rate is deduced from the energy
equivalence (Equation (9))

ṗ = λ̇ =

〈
f

K

〉m
= ε̇vp (21)

4.2 Numerical integration of the constitutive equations

The 1D two-branch constitutive model introduced in Section 4 was implemented
using an implicit integration scheme [27] in ZeBuLoN [32]. The implicit scheme
is a generalized middle point θ-method [23]. It consists of assessing the rate of
change of variables vi at time t+∆t such that

v̇i (t+ θ∆t) =
vi (t+∆t)− vi(t)

∆t
=
∆vi
∆t

(22)

The quantities v̇i are estimated from the growth laws with physical quantities
expressed at time t + θ∆t. This scheme is a generalization of the explicit scheme
(i.e. θ = 0) and the fully implicit Euler method (i.e. θ = 1). In the present case,
choosing θ = 1 is sufficient. The solution of the numerical problem in structural
mechanics consists of calculating the stress increment ∆σ induced by a total strain
increment ∆ε prescribed during ∆t.

Hereafter and unless explicitly stated, variables vi are always expressed at
time t+ θ∆t, all parameters of the material being measured at temperature T (t+
θ∆t) and ∆vi is the increment of vi between times t and t + ∆t. The first order
approximation vi ≡ vi (t+ θ∆t) = vi(t)+θ∆vi is used, where vi(t) is assumed to be
known. To further simplify the notations, in what follows the integration scheme
is described on the undamaged material.
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Residual vector

Newton’s method numerically minimizes the local residual defined as

{R} = {∆vi} −∆t{v̇i(t+ θ∆t)} (23)

The chosen integration variables are {εe,α1,α2, p}, so that the residual vector
components are expressed as

Rεe = ∆εe − (∆ε−∆p) (24)

Rp = ∆p−∆t
〈
f

K

〉m
(25)

Rα1 = ∆α1 +∆p (1 + γα1) (26)

Rα2 = ∆α2 +∆p (27)

Jacobian matrix

The nonlinear problem to be solved is a 4× 4 dimension system. The solution
using Newton’s method requires knowing the Jacobian matrix J of the system,
determined here analytically, and defined by components such that

Jij =
∂Ri
∂∆vj

(28)

It is written as

J =


∂Rεe
∂∆εe

∂Rεe
∂∆α1

∂Rεe
∂∆α2

∂Rεe
∂∆p̃

∂Rα1

∂∆εe

∂Rα1

∂∆α1

∂Rα1

∂∆α2

∂Rα1

∂∆p̃
∂Rα2

∂∆εe

∂Rα2

∂∆α1

∂Rα2

∂∆α2

∂Rα2

∂∆p̃
∂Rp̃
∂∆εe

∂Rp̃
∂∆α1

∂Rp̃
∂∆α2

∂Rp̃
∂∆p̃

 (29)

Stress increment

The stress increment ∆σ is calculated from the elastic strain ∆εe when New-
ton’s method has converged. The variation of the elastic modulus E must also be
taken into account. The implicit integration scheme leads to

∆σ = σ̇ (t+ θ∆t)∆t (30)

which is developed as

∆σ = ˙(Eεe)∆t

= E∆εe +∆Eεe (31)
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Consistent tangent operator

It is useful to define the consistent tangent matrix (here a scalar) related to the
integration scheme to optimize the global convergence and avoid too small time
increments. This operator is defined by

L =
∂∆σ

∂∆ε
(32)

It can be shown that [7]
L = EJ∗

ee (33)

where J∗
ee is defined from the inverse of the Jacobian J−1. It is the block that

corresponds to the subscripts related to the elastic strain εe.

4.3 Specific implementation in ZeBuLoN

The solution of the two branches of the rheological model is sought in parallel
with a unique total strain increment ∆εe, and by assigning factors D or (1 −D),
as previously defined, to the model parameters. The principle of the algorithm,
schematically shown in Figure 14, is the following (subscripts c correspond to the
crack branch and subscripts m to the matrix branch):

– The crack branch is deactivated if the stress is greater than or equal to zero.
This deactivation occurs at a strain level εt called transition strain. The crack
branch is activated when the total strain reaches εt.

– When the branch is deactivated, the internal variables do not change and the
elastic strain increment and stress increment, respectively denoted by ∆εec and
∆σc, are equal to zero. The total stress increment ∆σ is then equal to the stress
increment in the matrix branch ∆σm.

– When the crack branch is activated, the total stress is the sum of the contri-
butions of the two branches: ∆σ=∆σm+∆σc.

4.4 Parameter identification

To identify the parameters of the model, two steps are needed. First, the growth
of the damage variable is determined from the monotonic tests. Then, for a set
evolution, the other parameters are tuned. In both cases, ZeBuLoN software with
a Levenberg-Marquardt algorithm [24] is used. The identification method thus
involves the optimization of a cost function that evaluates, for a given set of pa-
rameters, the correlation between the simulation and the experiment. The error is
then expressed in terms of stresses.

Damage growth

Using the monotonic compressive test for each temperature, a first set of pa-
rameters related to the undamaged material is tuned. The damage growth as a
function of the applied stress is then approximated by a second order polynomial
whose coefficients become the parameters of a new identification problem. The
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Fig. 14: Algorithmic implementation of the rheological model

latter involves simulating a monotonic tensile test using the previously identified
parameters and acting only on the damage variable. The procedure is shown in
Figure 15 at room temperature. The damage growth law is easy to use in non-
isothermal conditions as it assumes a linear interpolation between two tempera-
tures. For instance, if the damage growth law is defined for 300◦C and 400◦C, for
a given stress, the damage at 350◦C is a linear interpolation of the damage value
at 300◦C and 400◦C. The resulting polynomial coefficient values as a function of
the temperature are summarized in Table 3.

(a) Identification on monotonic tests (b) Damage growth law

Fig. 15: Damage identification procedure based upon monotonic tests

Other parameters

The calibration of a new set of parameters based on cyclic tests is then per-
formed, for which the previously obtained growth law of the damage variable
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Table 3: Polynomial coefficients

Température (◦C) a0 a1 a2

20◦C -1.15E-05 6.23E-03 4.46E-01
200◦C -1.18E-05 5.25E-03 1.95E-01
400◦C -1.18E-05 5.25E-03 1.95E-01
500◦C -2.20E-05 7.55E-03 2.70E-01
600◦C -4.52E-05 1.19E-02 3.88E-01
800◦C -1.39E-04 2.07E-02 3.63E-01

Table 4: Model parameters

Température (◦C) E (GPa) σy (MPa) K m C1(MPa) γ C2(MPa)

20◦C 119 158 8.5 110 151300 1010 11000
200◦C 119 145 9.5 110 127900 1140 11000
400◦C 110 61 9 306 124400 1210 9000
500◦C 110 10 6 652 86000 2940 8500
600◦C 87 1 3.7 1295 10000 5000 7800
800◦C 62 1 4.7 304 500 3940 100

must be set. This new identification is necessary because the previous one was
conducted on monotonic tests with a poor description of the viscous behavior.
The dwell phases of the cyclic tests enable for a robust identification of the vis-
cous parameters. Elastic modulus and hardening modulus of the linear hardening
X2 are identified “manually” on the linear parts of the monotonic tension tests
and the five other parameters (Yield stress, two non linear kinematic hardening
terms, two viscosity terms) are identified all together on the cyclic test. The same
procedure is carried out for the different temperatures. Results are presented in
Table 4.

4.5 Results and discussion

The simulations of the cyclic tests with the tuned parameters are shown in Fig-
ure 16 for four different temperatures. Simulations between 20◦C and 400◦C are
not presented because the behavior of the considered cast iron is very similar for
temperatures up to 300◦C [Unpublished test report, Exova, 2011].

There is a good description of the behavior under different loading conditions.
The loss of stiffness due to tensile loadings and stiffness recovery due to com-
pressive loadings are accurately represented for all the investigated temperatures.
The stress relaxation is also very well described, even at high temperatures. For
such temperatures (i.e. over 500◦C) the description of the inelastic behavior is less
accurate than for lower temperatures. This effect is probably due to the use of a
relatively simple viscous (i.e. Norton) potential in the constitutive model.

The shift of the inflexion point in the negative strain area is also exacerbated
at high temperatures. This phenomenon highlights the limitations of the proposed
rheological model and the associated flake opening/closure conditions.
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(a) 20◦C (b) 400◦C

(c) 500◦C (d) 600◦C

Fig. 16: Comparison of the model predictions and the cyclic tests at four different
temperatures

5 Conclusion

Owing to the presence of graphite flakes, the behavior of FGCI strongly differs un-
der tensile and compressive loadings. This asymmetry makes the development of a
constitutive model very challenging. The simplest approaches based on the modifi-
cation of the yield surface do not account for complex phenomena involved during
the debonding and closure of the flake/matrix interfaces during cyclic loadings.

A rheological model composed of two-dimensional elements with varying sec-
tions has helped us define the basis of a constitutive model, which is established for
the time being in one dimension, under tensile/compressive loadings. This model
accurately represents the principal mechanisms of FGCI. A comparison of this
model and the cyclic tests at temperatures ranging from 20◦C and 600◦C shows
that it is able to describe cyclic loadings at different strain rates, with dwell phases
under both tensile and compressive loadings.

It now remains to extend the model proposed to a three-dimensional repre-
sentation in order to simulate the behavior of brake disks subjected to complex
loadings. This issue is addressed in a companion paper [5].
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