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Abstract

The present study unravels details of the micromechanical behavior of a micro-

specimen made of IF-steel. A triangular prism is machined via focused ion beam

(FIB) and contains two ferritic grains. Four experimental tools are integrated

to identify the material’s crystal parameters: i) an optical confocal microscope

captures height profile images, ii) an in-situ tensile stage prescribes the loading

history to the macro specimen, iii) a global Digital Image Correlation (DIC)

algorithm measures the 3D surface displacement fields, and iv) an extension

of Integrated-DIC for 3D displacement fields is implemented to assess the mi-

cromechanical behavior. It is demonstrated that with this methodology the

identification of the boundary conditions and crystal plasticity parameters is

successfully achieved.
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analysis; In-stu test; Optical microscopy

1. Introduction

The mechanical properties of materials often originate from physical and

multi-scale phenomena that are due to complex and heterogenous microstruc-

tures. One of the first method to consider heterogeneous media for computing

macromechanical responses is based on homogenization [1]. In order to solve

this problem micromechanical frameworks have been developed for elastic mate-

rials [2] and in elastoplasticity [3]. Due to complex behaviors and the difficulty

to observe and measure at the microscale the main difficulty remains the iden-

tification of the constitutive parameters.

The lattice structure (e.g., FCC, BCC) is considered to derive the consti-

tutive equations for single crystals [4, 5, 6]. The present study aims at cou-

pling experimental and numerical results and provides a compromise between

a reasonable computation time and a sufficiently small scale to achieve the

observation of the micromechanical behavior in a material with real engineer-

ing applications. Under the same assumptions, Raabe et al. [7] characterized

the micromechanical behavior in polycrystalline aluminum with the measure-

ment of the displacement on the observe surface. The authors demonstrated

by 2-dimensional Finite Element analyses that the micromechanical response

obtained from the crystal plasticity law was closer to the experimental obser-

vation and was able to predict the stress and strain heterogeneities. However,

the underlying microstructure is a key feature and 3D orientation mapping has
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been performed by Musienko et al. [8] to compare experimental and numerical

strains also on polycrystalline aluminum. Using a 3D analysis, Martins et al. [9]

focused on the residual strain measured in a weld zone of 316L stainless steel.

Digital Image Correlation enables full displacement and strain fields to be

measured and provides insight into the micromechanics of solids. Imaging sys-

tems capable of higher magnifications allow the heterogeneity of the microme-

chanical response to be evaluated. A first approach [10] using full field measure-

ments obtained from SEM acquisitions has led to the identification of a single

crystal plasticity law. Dmitrieva et al. [11] studied shear bands in a single cop-

per crystal and Tasan et al. [12] characterized micromechanical banding effects.

Other techniques may be used, e.g., Raabe et al. [13] acquired pictures with a

confocal microscope.

The combination of both experimental and numerical aspects has been in-

vestigated by Héripré et al. [14] while applying the Finite Element Method

Updating technique (FEMU [15]). Tasan et al. [16] proposed an integrated

experimental-numerical approach to investigate stress-strain partitioning in mul-

tiphase alloys, although, the mechanical properties of the material have been ob-

tained with a separated technique, i.e., nano indentation tests. Guery et al. [17]

have identified constitutive parameters of the law proposed by Méric and Cail-

letaud [18] using full field measurement, SEM acquisitions and FEMU-UF. The

results provide an internal check of the constitutive model with respect to the

experiment with the identified parameters. However, several difficulties remain

(e.g., unknown underlying microstructure) and the specimen design is still one
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of the biggest challenges because it is hard to build and to test mechanically.

The objective of this study is to perform an investigation at the microscale

and to identify the material parameters of a crystal plasticity model with In-

tegrated Digital Image Correlation (IDIC [19, 20, 21, 22]). Figure 1 shows

the designed identification procedure. Initially, the crystallographic features,

i.e., phase, grain (size, number and orientation) and the geometry of the stud-

ied volume are assessed and lead to the design of a representative 3D numerical

model. Secondly, the out-of-plane displacement holds essential information re-

garding the active slip systems. Therefore an experimental method is introduced

that utilizes confocal microscopy combined with a 3D surface global DIC formu-

lation to quantify full three-dimensional displacement field of the specimen sur-

face and use these 3D data to extract boundary conditions and identify crystal

plasticity parameters. Because of the relatively height noise level computations

are run with stabilized boundary conditions. Finally, the sought parameters

are identified with integrated-DIC that combines all experimental data, i.e., the

surface height profiles, constitutive model, and crystallographic features.

The paper is organized as follows. Section 2 introduces the experimental

and numerical tools utilized herein. Section 3 shows the experimental results

prior to the identification discussed in Section 4.

2. Coupled experimental/numerical procedure

The objectives are i) to observe a crystal-specific micromechanical behavior

under confocal microscopy, ii) to quantitatively measure the 3D surface dis-
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placement field at the grain scale with DIC, iii) to simulate the mechanical

response with a representative model of the microstructure and the chosen crys-

tal plasticity law, and iv) to couple experimental and numerical results in a

single numerical framework to identify (as much as possible) the material and

kinematic unknowns. The experimental methodology relies on the measurement

of surface height profiles of a micro-specimen (µ-specimen) within a macroscopic

sample that is mechanically loaded in tension.

2.1. Specimen

To demonstrate the potential of the proposed technique a relevant engineer-

ing material is chosen for this study, namely, 1-mm thick as-received IF-steel

sheet. The latter possesses a very low carbon content and Table 1 gathers its

chemical composition. IF steel is widely used, e.g., in the automotive industry,

for its deep drawability properties [23].

The desired mechanical properties of IF-steels are, a) low yield stress, b)

high hardening modulus resulting in stress levels after the material has been

plastically deformed, c) high Lankford coefficients to improve deep-drawability

capabilities and d) high fracture strain. The ferritic microstructure is body

center cubic (BCC). The average grain size is of the order of 10 µm.

The preparation of the specimen requires four steps:

i. From the 1-mm thick sheet, a large specimen is cut (50 mm × 10 mm)

and ground down to 0.3 mm thickness and polished on both sides, to yield

a very flat specimen with the two surfaces parallel to each other.

5



ii. A large surface area of the large specimen is investigated using Orientation

Imaging Microscopy (OIM, see Figure 2(a,b)). The location of the µ-

specimen is chosen to contain two grains that are larger than 15 µm having

a clean grain boundary and a misorientation angle less than 1◦ within the

grain so that both crystal and structure are relatively clean (Figure 2(c)).

iii. The µ-specimen is milled using Focused Ion Beam technique (Figure 2(d)).

The obtained µ-specimen is 12 µm long and 4 µm wide with an equilateral

triangular basis. Its length and depth are a compromise between a size

consistent with the resolution of confocal microscopy and the milling speed

of the FIB process.

iv. The last step is platinum deposition to create a random pattern for DIC

purposes. The latter is obtained by depositing 20 nm high and 0.8 µm

in diameter semi-spherical dots at specific locations. Their size has been

adapted with respect to the confocal microscope features.

Figure 2 shows secondary electron images related to steps (iii) and (iv).

Figure 2(d) shows the underlying microstructure and the grain boundary by

observation from the side. Furthermore, it validates the assumption that the

apex line of the µ-specimen is entirely free. Figure 2(e) shows the pattern

obtained after platinum deposition. The latter has also been deposited on the

border of the µ-specimen to perform DIC on a larger area.

Table 2 gathers the lattice orientations of the two grains identified from the

OIM analysis.
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2.2. Experimental protocol

Figure 3 shows the experimental apparatus within the confocal microscope,

i.e., the large specimen clamped in the tensile stage. Before starting the experi-

ment, the µ-specimen is successively, i) positioned and aligned inside the tensile

stage, ii) aligned with the translation and rotation stage, and iii) positioned in

the center of the field of view of the sensor. During the experiment the large

specimen is subjected to a velocity equal to 0.5 µm.s−1 and at approximatively

every 5 µm stopped while the image acquisition procedure is performed. Be-

cause the early stage of plastic strain and its corresponding kinematic hardening

behavior are being sought, three cycles corresponding to 1 %, 2 % and 3 % global

strain are applied without compression.

Since the µ-specimen can never be perfectly centered on the microscale it

moves in the field of view when strained. Therefore, an in-house routine was

written to maintain the µ-sample inside the field of view by correcting the rigid

body motions using DIC and controlling the motorized (x, y)-sample accord-

ingly.

The first image of the experiment corresponds to the reference, then for

each load step, a first image is captured to evaluate the rigid body motions.

The latter ones are applied as a correction by moving the motorized (x, y)-stage

and finally a second image is captured. In the z-direction, the contraction of the

large specimen will move the µ-sample out of the depth of field. An auto-frontal

procedure is used to address this issue.

Height profile images are captured in confocal profilometry mode by a Sen-

7



sofar Plµ2300 Optical Confocal Microscope using a CCD camera (definition:

557 × 557 pixels) with a Nikon EPI 150× objective lens, resulting in a square

field of view of 61 × 61 µm2. This technique allows for a very high resolu-

tion in height (estimated to be 9 nm for this particular specimen configuration)

whereas the in-plane resolution is limited by the diffraction limit of the blue

light wavelength. However, a careful inspection of the height profiles revealed

some artifacts caused by, i) the lens defects and dust particles, and ii) the CCD

pixel positions. Both errors were identified to be systematic because they re-

main at the same location on the images as long as the imaging parameters are

fixed and the same lens is used.

Figure 4(a) shows an image with the systematic errors previously listed. The

correction method consists of an acquisition under the identical parameters of

400 images at 400 random locations on a flat reference surface. All images are

averaged, i.e., added and normalized by the total number of images, and a plane

is fitted and subtracted to this average profile to obtain a mean height level of

zero mean with the corresponding root mean square error in the height level

as small as possible. This process allows only the systematic error to be kept

(Figure 4(b)) and by subtraction from all the experimental images the biases

are almost completely removed without corrupting the experimental data. This

procedure helps the DIC computation that needs reliable height levels over

time. The loads are also measured and the standard resolution is evaluated as

γF = 1 N.
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2.3. 3D Digital Image Correlation

Global DIC [24] relies on the registration of an image f in the reference

configuration and a series of pictures g in the deformed configurations. The

specific approach followed herein adds to the conventional 2D approach the

out-of-plane displacement as an offset to the height conservation [25, 26, 27].

The registration problem consists of minimizing the sum of squared differ-

ences between the deformed image corrected by the measured 3D displacements

u(x, t) = u(x, t)ex + v(x, t)ey + w(x, t)ez and the reference image (written for

each time t independently) over the Region of Interest

χ2
f (t) =

1

2γ2
fNΩ

∑
Ω

g (x+ u(x, t)ex + v(x, t)ey, t)− f(x, t)− w(x, t)ez)
2

(2.1)

with respect to the parameterization of the sought displacement fields u(x, t),

where x = xex + yey is any considered pixel, Ω the Region of Interest (ROI),

NΩ its area in terms of number of pixels. The term γf represents the standard

deviation (expressed in height level) of noise (assumed additive white Gaussian)

that affects each image independently (including the reference one, which is

responsible for the factor of 2). Ten images have been acquired initially and the

standard deviation is evaluated to be γf = 9 nm. The minimization of χ2
f is

achieved by successive linearizations and corrections, using a modified Newton

Raphson scheme

[M ]{δu} = {b(i)} (2.2)

where [M ] is the DIC matrix, {δu} the vector gathering all increments of mea-

sured displacement amplitudes, and {b(i)} the residual column vector at itera-
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tion i. The DIC matrix reads

Mij =
∑
Ω

(∇f(x) ·ψi(x)) (∇f(x) ·ψj(x)) (2.3)

and the right hand side term

bi =
∑
Ω

(∇f(x) ·ψi(x)) (f(x)− g(x+ ũ(x))) (2.4)

where ũ(x) is the current estimate of the displacement field and the image

gradient is enriched with the variations of height levels, namely, ∇f = ∂f
∂xex +

∂f
∂yey − ez. A consequence of the addition of the out-of-plane displacement in

the functional is that the problem has more degrees of freedom that might affect

the minimization.

The integration of mechanical and kinematic constraints into the 3D-DIC

problem, namely Integrated-DIC (IDIC), is performed by choosing as unknowns

the sought parameters associated with a constitutive law or boundary condi-

tions. The sensitivity fields SU (x) [28] are chosen as a basis of functions for the

displacement field

[SU ] =
∂{u}
∂{p}

(2.5)

where {u} is the computed nodal displacement field, {p} is the vector gath-

ering the unknown parameters, i.e., sought material parameters or boundary

conditions. Furthermore, specific features of the loading history may or may

not be sensitive. Treating an image series is equivalent to summing over the

corresponding contributions at each time step: χ̄2
f = 1/Nt

∑Nt

t=1 χ
2
f (t) to probe

the sensitivities over the whole time domain. The solution at convergence gives

an evaluation of the model error compared to the noise level. This indicator is
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useful because it allows the user to validate or not the investigated constitutive

law(s) [21].

Last, if the same mesh is used, and the DIC matrix has been computed IDIC

simply consists of projecting the nodal displacement field onto the sensitivity

fields [29]. Thus, the sought parameters are identified by iteratively solving the

linear system until convergence

{δp} =
1

2γ2
f

[M ]−1
IDIC [SU ]t{b} (2.6)

where [M ]IDIC = 1/(2γ2
f )[SU ]t[M ][SU ] is the kinematic Hessian. The covari-

ance matrix of the identified parameters is written as [30, 21]

[CI
p ] = 〈{δp} ⊗ {δp}〉 = [M ]−1

IDIC (2.7)

where 〈•〉 is the mean value of •. Another useful indicator is the correlation

matrix (no index summation used), where i refers to the row number and j the

column number of the sought parameter

(Corp)ij =
(Cp)ij√

(Cp)ii(Cp)jj
(2.8)

2.3.1. Crystal plasticity model

To demonstrate the potential of the proposed technique to identify parame-

ters of a crystal plasticity model, the Méric and Cailletaud [18] model is chosen.

It is based on the decomposition of the total strain into an elastic and plastic

strain. The elastic behavior assumes cubic symmetry in agreement with the

BCC lattice. Using the Kelvin-Voigt notations, Hooke’s fourth-order tensor [C]
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depends on three elastic constants of the material, namely C11, C12 and C44.

The plastic deformation initiates from crystallographic slip in the crystal lattice

and satisfies incompressibility. A slip system (θ) is defined by a slip plane nθ0

and a slip direction on the plane sθ0 in the initial configuration of the lattice

(•0). In the case of a BCC crystallographic lattice, 24 slip systems are con-

sidered, namely 12 principal slip systems from 〈110〉 and 12 secondary systems

from 〈112〉. The gradient tensor F θ = ∇t
0 ⊗ x, where ⊗ is the dyadic product,

corresponds to the lattice strain

F θ = I + γθsθ0 ⊗ nθ0 (2.9)

where γθ is the applied shear on the θth slip system, I is the second order identity

tensor. The linear elasticity law relates the second Piola-Kirchhoff stress tensor

S = JeF
−1
e σ (F te )

−1
where σ is the stress tensor and the Green-Lagrange strain

tensor Ee = 1/2(F teFe−I); S = C : Ee, where • : • is the double inner product.

Since an elastoviscoplastic framework is assumed, the plastic strain rate is driven

by the resolved shear stress on each slip system θ. The velocity gradient tensor

reads

Lθ = Ḟ θF θ−1 = γ̇θsθ0 ⊗ nθ0 (2.10)

where γ̇θ the resolved shear stress rate on the θth slip system. The orientation

of the lattice is important with respect to the loading direction. Thus, for Θ

slip systems the velocity gradient tensor reads

L =

Θ∑
θ=1

γ̇θsθ0 ⊗ nθ0 =

Θ∑
θ=1

γ̇θP θ
0 (2.11)
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where P θ
0 = sθ0⊗nθ0 is the so-called non-symmetric Schmid tensor. The decom-

position of the deformation gradient rate tensor becomes

L = Le + FeLpF
−1
e (2.12)

where Le and Lp are the elastic and plastic gradient rate tensors. To com-

plete the constitutive description of the crystalline material, the plastic slip

rates (2.10) rely on the resolved shear stress. The relationship between the

resolved shear stress τθ and the shear rate γ̇θ reads

γ̇θ =

〈
|τθ − cxθ| − τ0

K

〉n
ηθ (2.13)

where τ0 is the critical resolved shear stress, c is the hardening coefficient, (K,n)

are material constants related to Norton law, ηθ = sign(τθ − cxθ) and 〈•〉 are

Macauley brackets. Furthermore, the isotropic hardening behavior is not inves-

tigated, i.e., only the kinematic hardening behavior is considered while assuming

an exponential behavior

ẋθ = γ̇θ − d|γ̇θ|xθ (2.14)

where d is a material parameter. Several slip systems may lead to the same

plastic strain rate, thus the growth of the resolved shear stresses τθ is governed

by a phenomenological hardening law. From Equations (2.13), and (2.14), and

by applying the consistency condition

ẋθ =
1

c

∑
κ

Hθκ|γ̇κ| (2.15)

where [Hθκ] is the interaction matrix, δθκ is the Kronecher operator and Hθκ =

c(ηκ− dxκ)δθκ the hardening moduli of the interaction matrix. Table 3 gathers
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all model parameters and their initial values chosen based on the IF litera-

ture [31, 32].

2.3.2. C++ implementation

One of the main challenges is the coupling between experimental and numer-

ical data in a single framework. An in-house C++ code dealing with all the facets

of the problem from the acquired height profile images to the identification of

parameters while computing the mechanical responses has been designed. Re-

garding the FE computations (performed in Code Aster [33]), a C++ routine

has been written to automatically generate the input files with all the neces-

sary data, i.e., the microstructure, the boundary conditions, the mesh, and the

constitutive parameters. Simulations are automatically started and the results

are sent back to the main code to solve the identification problem iteratively.

This main code deals, with i) the surface profile images in height levels, ii) the

2D mesh (in pixels) related to the global DIC formulation, iii) the 3D mesh (in

mm) used to solve the finite element problem, and iv) the 2D mesh (in pixels)

where the sensitivity fields are projected on the DIC matrix to solve the Inte-

grated DIC problem. As proposed in Ref. [21], the parameterization is based

on a log scale of the ratio between the current value of the parameter and its

initial guess. It is defined such that the sought parameters in the new setting

{q} are expressed from the initial basis as {q} = log{p/p0}, where {p} is the

vector gathering the values of the parameters and {p0} their initial values.

As a key feature, the measurement, the computation, and the identification

steps rely on a 3D surface formulation where the out-of-plane displacements are
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also used to identify the micromechanical behavior of crystals. The simulations

are performed on the measured 3D microstructures with their lattice orientation.

Figure 5(a) shows the finite element model of the microstructure where the two

grains are modeled with their lattice orientations (with the corresponding colors

in the {001} pole figure shown in Figure 2).

Furthermore, the applied boundary conditions are obtained from the dis-

placements measured via DIC. The numerical simulations being 3D, the dis-

placement of the triangular boundaries are obtained assuming a linear inter-

polation between the edge L+ and L− (i.e., intersection between the measured

surface (S+ and S−) and the triangular boundary surface) and the apex (P+

and P−) where its displacement is equal to the mean value of the corresponding

edge (respectively L+ and L−).

To conclude, a regularization method [34] is implemented to prevent mean-

ingless identification when the influences of material parameters on the observ-

ables are weak. Therefore, a functional (χR) is associated with the identification

functional (χ̄f ) to enable for the changes of the sought parameters only if their

corresponding sensitivities are higher than a specific bound. χ2
R is a convex

function reaching its minimum equal to zero and reads

χ2
R = {p}[CR

p ]−1{p} (2.16)

where [CR
p ] is the covariance matrix of the material parameters. The regularized

functional is written as χ2
f = χ̄2

f+χ2
R because both functionals are dimensionless
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and normalized to one. Finally, the regularization of the linear system reads

([M ]IDIC + λ∗[I]) {δp} = {b}+ λ∗({p0} − {p}) (2.17)

where λ∗ is the regularization parameter whose choice is performed to cancel

out the influence of noise [34].

3. Experimental results

320 profile images are acquired and 8-bit encoded such that the total range

is used over the entire images set. The ratio between mm and pixels is equal

to 110 nm/pixel, and the ratio between mm and height levels is constant and

equal to 6.5 nm/(digital level). Figure 6 shows the reference image and the last

image of the experiment after the application of the bias correction.

Figure 7 shows a Backscattered Electron (BSE) image of the µ-specimen

and its surrounding area where slip bands are revealed due to Electron Chan-

nelling Contrast. Furthermore plasticity has occurred during the experiment,

as expected.

3.1. 3D-DIC measurements

Figure 8(a) shows the uY component of the displacement field obtained with

the 3D-DIC algorithm at the last time step. The corresponding mesh is also

shown. Because the displacements are very small and the specimen area contains

only a limited amount of pixels (120× 40 pixels), the accuracy of the measured

displacements over time is limited. Therefore, a coarse mesh is used to increase
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the robustness of the DIC procedure. Figure 8(b) shows the displacement am-

plitude (u+
Y (t) − u−Y (t)) between the upper constrained surface (S+) and the

lower one (S−) where γu = 26 nm is the standard displacement uncertainty.

The signal possesses a notable amount of noise, which is challenging for further

investigations. Figure 8(b) also shows the prescribed displacement at the bound-

ary of the macroscopic specimen. The ratio between the two displacements (of

the order of 5,000) is constant, as expected. The distance between the two grips

is 32 mm and the µ-specimen length 12 µm is equal to 3.8 × 10−4. However,

the ratio experimentally observed is equal to 2 × 10−4 and corresponds to a

strain of the µ-specimen of 1.6%. This results shows that the microscopic strain

is not equal to the global macroscopic strain. It originates from microscopic

heterogeneities or small discontinuities of the macroscopic geometry.

Figure 9 shows the digital level residual fields reconstructed at the last time

step of the experiment and the last iteration of the DIC procedure. The latter is

obtained by computing the difference between each pixel of the reference image

and the corrected deformed image [29] and decreases by about 16 %. The gain

originates from the vertical displacement determination that affects the entire

ROI.

The main issue (see Figure 9) is that the signal to noise ratio is very small. To

overcome this challenge a new strategy is proposed, i) piecewise-linear time steps

are assumed for each loading phase and for each considered surfaces (S+ and

S−) for the components uY and uZ (see Figure 10 in red), ii) the displacements

of the apex (lines L+ and L−) of both boundary surfaces are identified with
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integrated 3D-DIC, and iii) the measured macroscopic loads are adapted to

fit the section of the microscopic specimen and some material parameters are

identified based on the minimization of the combination of the loads and image

residuals. The uX component is not considered because of its larger noise level.

With this pre-processing strategy, two objectives have already been fulfilled,

namely, i) the displacement fields have been measured over time and ii) the

micromechanical plastic behavior and its evolution have been observed. The

remaining objectives to achieve are i) the coupling between experimental and

numerical solutions (with the selected crystal plasticity law), ii) the identifi-

cation of the displacement of the apex of the boundary triangles and iii) the

identification of the constitutive parameters.

4. Boundary conditions and material parameter identification

The identification is investigated with the 3D model and the measured mi-

crostructure. First, the in-depth displacements at the constrained boundaries

are assessed. Four unknowns, namely λ+
Y , and λ+

Z , λ−Y , and λ−Z are applied as

an amplitude correction to u+
Y and u+

Z at point P+ (apex of S+), and to u−Y

and u−Z at point P− (apex of S−, see Figure 11).

4.1. Sensitivity analysis

A sensitivity analysis is carried out and the uncertainty is evaluated with

the covariance matrix [Cp]IDIC of the unknowns [22]. A 2% perturbation on

each parameter is applied to compute the sensitivity fields. The vector of kine-

matic and material parameters reads {p} = {λ+
Y , λ

+
Z , λ

−
Y , λ

−
Z , τ0, c, d}. Figure
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12(a) shows the kinematic Hessian for the entire loading history. The most

influent parameters are λ+
Y and λ−Y whereas the material parameters exhibit

the smallest influences. This result shows that accurate identification of the

boundary conditions is of paramount importance prior to any analysis of the

material parameters. Figure 12(b) shows the corresponding correlation matrix.

The high level of anti-correlation between the parameters (c, d) will impact their

identifications.

4.2. Identification

The underlying boundary conditions are now determined with Integrated-

DIC by solving iteratively Equation (2.17). Figure 13(a) shows the change of

the four kinematic parameters and Figure 13(b) shows that of the functional

χf . The converged solution is reached in 10 iterations. Furthermore, three

kinematic parameters, namely λ−Y , λ+
Z , and λ−Z converged to a close solution

with respect to their initial values. However, λ+
Y varies by about 20 %, which

means that a significant shear strain occurs on the subsurface of the µ-specimen

during the experiment.

Table 4 gathers the measured values and compares the dimensionless resid-

uals between the initial 3D-DIC solution, with more kinematic freedom and

the integrated DIC solution, with only few degrees of freedom associated with

boundary conditions. Therefore, the small residual increase is regarded as a

validation of the integrated approach.

The monitored macroscopic loads are scaled to the specimen section and a

combined image and load identification scheme is used, namely IF-DIC. The
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global cost function reads

χ̄2 =
Nf

1 +Nf
χ̄2
f +

1

1 +Nf
χ2
F (4.1)

where the weight of the two functionals originates from a Bayesian founda-

tion [21] to account in a fair manner for both sources of information. χ2
F is the

load residual

χ2
F =

1

γ2
FNt
{Fm − Fc}t{Fm − Fc} (4.2)

where Nt is the number of time step, {Fm} and {Fc} the vectors gathering

the measured and computed loads, respectively, and γF = 5.97 × 10−6 N is

the standard load uncertainty [27]. The same choice of regularization method-

ology is made and the global functional reads χ2 = χ̄2 + χ2
R. As a first step,

only the material parameters are sought, while the boundary conditions are the

previously assessed ones. Figures 14(a) and 14(b) show the changes of the ma-

terial parameters and residuals. The global residual (χ) decreases by about 1 %

and stabilizes after 4 iterations. Furthermore, while the load residual (χF ) is

significantly minimized the kinematic residual remains approximately constant.

Figure 14(c) shows the experimental, initial, and final computed load histories.

Table 5 gathers the constitutive parameters at convergence. Up to 50 %

changes are observed with respect to the initial guess. The load residual has

been decreased by 25 %, which proves that it is sensitive to the sought param-

eters. However, its final value is still large, which is an indication of a model

error associated with the constitutive law. Last, no changes in the kinematic pa-

rameters are obtained when a new identification is performed with the assessed
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material parameters. Reflecting on the influence of the unknown boundary con-

ditions on the crystal plasticity parameter identification, one may consider a

direct tensile test of a micro-specimen, e.g., by employing the nano-force tensile

stage proposed by Bergers et al. [27] to provide relevant data to perform a pre-

cise identification with accurate measurements of the load history at the scale

of the µ-specimen. Such a change of the methodology would, however, come at

the expense of a more complex experimental procedure.

5. Conclusion

The investigation and the characterization of the micromechanical behavior

of a micro-beam made of two grains have been achieved. On the experimental

side, two new procedures have been proposed, i) the design of a triangular

prism shape micro-specimen with a known microstructure embedded in a macro-

specimen and ii) the use of a global DIC algorithm to measure the 3D surface

displacement field. On the identification side, a novel strategy has been designed

to overcome the encountered high noise level on the height profile images. The

latter has prevented direct approaches such as Finite Element Method Updating

to succeed because the initial 3D global DIC measurement is too noisy. The

choice was made to use an integrated approach to work directly on the images

but the scatter on the boundary conditions prevented a direct evaluation of the

sensitivity fields.

Based on this limitation, a two-step identification strategy was adapted, i)

estimation of the boundary conditions and ii) determination of the constitu-
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tive parameters. The boundary conditions were assumed to be piece-wise linear

with time. First, the identification via integrated-DIC was performed only with

the height profile images to assess the underlying boundary conditions. Subse-

quently, the macroscopic loads were adapted to the specimen section and both

sources of information were combined to assess the sought constitutive parame-

ters, which describe the kinematic hardening relationship in the crystal plasticity

material model.

The concept proposed herein is very general and can be applied to any micro-

mechanical experiment aiming to characterize a constitutive law describing a

micro-mechanical behavior. While optical profilometry brings the advantage of

3D displacement fields, other imaging systems can also be use such as scan-

ning electron microscopy or regular optical microscopy depending on the sought

models and the observation scale. The technique gives new insights into the

micro-mechanical behavior with the combination of images and loads based on

a methodology that can cope with high noise levels.
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Figures

Figure 1: Schematic view of the methods used herein to extract boundary condi-

tions and crystal plasticity parameters. The different steps of this methodology

are explain in Section 2
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Figure 2: Image Quality (IQ) map (a) and Inverse Pole Figure (IPF) maps (a,b),

resulting from the OIM measurement of the studied IF-steel. The longitudinal

direction of the sample is the horizontal direction in all the figures. (b) Chosen

location for the µ-specimen and (c) µ-specimen after the FIB process. (d) µ-

specimen observed with a tilt of 52◦. The underlying microstructure and the

grain boundary are observed. (e) µ-specimen after platinum deposition. The

arrows depict the location of the grain boundary
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Figure 3: Experimental apparatus with the tensile stage on motorized (x, y)-

sample positioning stage within a Sensofar optical profiler (150× magnification

lens)
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(a) (b) (c)

Figure 4: (a) Systematic errors on a profile image generated by the confocal

microscope. Fringes and dust particles are present that are detrimental for the

DIC computations. (b) Image correction obtained from the random acquisition

of 400 images of a reference surface, and (c) profile image corrected from the

systematic bias
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Figure 5: (a) 3D mesh of the µ-specimen with the two grains visible (two dif-

ferent colors). (b) 2D mesh on the top surface used for IDIC, shown together

with the sides where the boundary conditions are interpolated from the initial

DIC computation
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Figure 6: (a) Reference image and (b) image at the last time step of the exper-

iment after application of the systematic error correction
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Figure 7: Backscattered electron (BSE) image of a larger view at the end of the

experiment. The slip bands are observable around the µ-specimen inside the

grains
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Figure 8: (a) Component uY of the displacement field at the last time step of

the experiment evaluated via DIC. (b) Displacement amplitude (u+
Y (t)−u−Y (t))

in the longitudinal direction and prescribed displacement with an adapted scale

(see left size of the graph)
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Figure 9: (a) Residual field at the last time step of the experiment for the first

iteration and (b) at convergence. The fields are expressed in digital levels (i.e., 1

digital level = 6.5 nm)
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Figure 12: (a) Kinematic Hessian [M ]IDIC and (b) correlation matrix of the

kinematic Hessian [M ]IDIC , both for the entire loading history
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Figure 14: (a) Material parameters and (b) residuals as functions of iteration

number. (c) Reaction forces on the µ-specimen boundaries
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Tables

Table 1: Chemical composition of the studied IF-steel

Composition C Mn Al Ti Nb Si S P N(ppm) Fe

(wt %) 0.0022 0.09 0.015 0.033 0.008 0.003 0.007 0.012 28 bal.

Table 2: Euler angles of the two grains measured via OIM and maximum mis-

orientation angle (δ) within each grain

Euler angle (◦) misorientation (◦)

Denomination ψ θ φ δ

Grain 1 (red) 281 8 47 0.70

Grain 2 (blue) 211 45 150 0.76

Table 3: All parameters of the Meric and Cailletaud crystal plasticity model

and their initial values chosen based on the IF literature [31, 32]

Mechanism Elasticity Viscosity Plasticity

Model parameter C11 C12 C44 K n τ0 c d

Unit GPa GPa GPa MPa (-) MPa GPa (-)

Initial value 233.5 135.5 118 12 10 40 40 1500
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Table 4: Identified values of the kinematic parameters

Name χf λ+
Y λ+

Z λ−
Y λ−

Z

DIC 3.7 – – – –

IDIC 4.5 0.81 1.02 0.98 1.02

Table 5: Identified parameters of the crystal plasticity model

Name χ χf χF τ0 (MPa) c (GPa) d (-)

Initial value 4.64 4.46 78 40 40 1600

IF-DIC 4.52 4.47 58 21 44 1140
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