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Hybrid Dimensional Darcy Flow in Fractured Porous Media with

discontinuous pressures at the matrix fracture interfaces

K. Brenner ∗, J. Hennicker ∗†, R. Masson ∗, P. Samier †

October 19, 2016

Abstract

In our work, we extend the monophasic model proposed in [17], [10] to diphasic flow. We thus
provide a model for two phase Darcy flow through fracture networks in porous media, in which
the d − 1 dimensional flow in the fractures is coupled with the d dimensional flow in the matrix,
leading to the so called hybrid dimensional Darcy flow model. It accounts for fractures acting
either as drains or as barriers, since it allows pressure jumps at the matrix-fracture interfaces. The
model also permits to treat gravity dominated flow as well as discontinuous capillary pressure at the
material interfaces. We adapt the Vertex Approximate Gradient (VAG) scheme to this problem,
in order to account for anisotropy and heterogeneity aspects as well as for applicability on general
meshes. Several test cases are presented to compare our hybrid dimensional model to the hybrid
dimensional, continuous pressure model (proposed in [7]) and to the generic equidimensional model,
in which fractures have the same dimension as the matrix. This does not only provide quantitative
evidence about computational gain, but also leads to deep insight about the quality of the proposed
reduced model.

1 Introduction

This work has two aims: Providing a reduced model for two phase flows in porous media with complex
Discrete Fracture Networks (DFN) and validating the reduced model by comparing numerically derived
solutions of different test cases with the solutions of the full (non reduced) model. More precisely, we
are concerned with the modelling and the discretization of two phase Darcy flows in fractured porous
media, for which the fractures are represented as interfaces of codimension one. In this framework,
the d−1 dimensional flow in the fractures is coupled with the d dimensional flow in the matrix leading
to the so called, hybrid dimensional Darcy flow model. These models are derived from the so called
equi-dimensional model, where fractures are represented as geological layers of equal dimension as the
matrix, by averaging fracture quantities over the fracture width. We consider the case for which the
pressure can be discontinuous at the matrix-fracture (mf) interfaces in order to account for fractures
acting either as drains or as barriers as described in [14], [17], [4], contrary to the continuous pressure
model described in [2] developed for highly conductive fractures. A hybrid dimensional discontinuous
pressure model for two phase flow in global pressure formulation has been derived in [18]. The model
presented in this work, in pressure-pressure formulation, provides features like an upwind coupling
condition for mf mass exchange fluxes and the incorporation of gravitational force in these fluxes,
which is a novelty. Subsequently, in this work, we use numerically derived solutions of different test
cases, to compare our model with the equi-dimensional model and with the hybrid dimensional model
for complex DFN, presented in [7], which assumes pressure continuity accross the fractures.

The discretization of such hybrid dimensional Darcy flow models has been the object of several
works. For monophasic Darcy flow, a cell-centered Finite Volume scheme using a Two Point Flux Ap-
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proximation (TPFA) is proposed in [14], [4] assuming the orthogonality of the mesh and isotropic per-
meability fields. Cell-centered Finite Volume schemes using MultiPoint Flux Approximations (MPFA)
have been studied in [21], [20] and [1]. In [17], a Mixed Finite Element (MFE) method is proposed
and a MFE discretization adapted to non-matching fracture and matrix meshes is studied in [3]. More
recently the Hybrid Finite Volume (HFV) scheme, introduced in [12], has been extended in [13] for
the non matching discretization of two reduced fault models. Also a Mimetic Finite Difference (MFD)
scheme is used in [5] in the matrix domain coupled with a TPFA scheme in the fracture network.
Discretizations of the related reduced model [2] assuming a continuous pressure at the matrix fracture
interfaces have been proposed in [2] using a MFE method and in [9] using the HFV scheme and an
extension of the Vertex Approximate Gradient (VAG) scheme introduced in [11]. Finally, in [10], the
VAG and HFV schemes have been extended to the monophasic counterpart of the model presented in
this work. For diphasic Darcy flow, a cell-centered Finite Volume scheme using a TPFA is proposed in
[16]. In [15], a mixed finite element method has been adapted to hybrid dim. two phase flow through
fractured pourous media. The hybrid dim. continuous pressure model for diphasic flow is discretized
in [6], [19] using a Control Volume Finite Element method (CVFE) and in [7] using the VAG scheme.
To the author’s knowledge, there has not yet appeared a comparison of different hybrid dimensional
models with the generic equi-dimensional model for two phase flow. This is one achievement of the
present paper.

In this work, we present an adaptation of the VAG scheme to the hybrid dim. discontinuous
pressure model, with supplementary unknowns at the mf interfaces, to capture the pressure jumps at
the fractures. We choose a vertex based scheme, since it is well adapted for symplectic meshes, which
is a necessary feature when dealing with complex geometries. Furthermore, the control volume version
of the VAG scheme, presented here, allows to take into account saturation jumps (due to capillary
pressure) at heterogeneous unknowns, including the unknowns located at the mf interfaces. This is
possible, because fluxes are local to each cell and fracture face, respectively. A third advantage of
this method becomes obvious in the test case section of this work. To capture gravitational effects in
normal direction within the fractures, the supplementary unknowns at the mf interfaces are needed,
which excludes purely cell-centered approaches, where face unknowns are eliminated.

The outline of this work is as follows. The hybrid dimensional two phase flow model is provided in
the first section. The second section is devoted to the VAG discretization and provides a finite volume
formulation of the model. In the third section, the model is compared to the equidim. model and to
the hybrid dim. model with continuous pressure at the mf interfaces, via numerical solutions derived
with the VAG scheme for different test cases.

2 Hybrid dimensional Model in Fractured Porous Media

2.1 Geometry and Function Spaces

Let Ω denote a bounded domain of Rd, d = 2, 3 assumed to be polyhedral for d = 3 and polygonal for
d = 2. To fix ideas the dimension will be fixed to d = 3 when it needs to be specified, for instance in the
naming of the geometrical objects or for the space discretization in the next section. The adaptations
to the case d = 2 are straightforward.

Let Γ =
⋃
i∈I Γi and its interior Γ = Γ \ ∂Γ denote the network of fractures Γi ⊂ Ω, i ∈ I, such

that each Γi is a planar polygonal simply connected open domain included in a plane Pi of Rd. It is
assumed that the angles of Γi are strictly smaller than 2π, and that Γi ∩ Γj = ∅ for all i 6= j . For
all i ∈ I, let us set Σi = ∂Γi, with nΣi as unit vector in Pi, normal to Σi and outward to Γi. Further
Σi,j = Σi∩Σj , j ∈ I\{i}, Σi,0 = Σi∩∂Ω, Σi,N = Σi\(

⋃
j∈I\{i}Σi,j∪Σi,0), Σ =

⋃
(i,j)∈I×I,i 6=j(Σi,j\Σi,0)

and Σ0 =
⋃
i∈I Σi,0. It is assumed that Σi,0 = Γi ∩ ∂Ω.

We will denote by dτ(x) the d− 1 dimensional Lebesgue measure on Γ. On the fracture network
Γ, we define the function space L2(Γ) = {v = (vi)i∈I , vi ∈ L2(Γi), i ∈ I}, and its subspace H1(Γ)
consisting of functions v = (vi)i∈I such that vi ∈ H1(Γi), i ∈ I with continuous traces at the fracture
intersections Σi,j , j ∈ I \ {i}. We also define it’s subspace with vanishing traces on Σ0, which we
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Figure 1: Example of a 2D domain Ω and 3 intersecting fractures Γi, i = 1, 2, 3. We define the fracture
plane orientations by a±(i) ∈ χ for Γi, i ∈ I.

denote by H1
Σ0

(Γ).

On Ω\Γ, the gradient operator from H1(Ω\Γ) to L2(Ω)d is denoted by ∇. On the fracture network
Γ, the tangential gradient, acting from H1(Γ) to L2(Γ)d−1, is denoted by ∇τ , and such that

∇τv = (∇τivi)i∈I ,
where, for each i ∈ I, the tangential gradient ∇τi is defined from H1(Γi) to L2(Γi)

d−1 by fixing a
reference Cartesian coordinate system of the plane Pi containing Γi. We also denote by divτi the
divergence operator from Hdiv(Γi) to L2(Γi) and by γτi the tangential trace operator from H1(Ω)d to
L2(Γi)

d−1, where we adapt the style of above and denote γτ for (γτi)i∈I .
We define the two unit normal vectors na±(i) at each planar fracture Γi, such that na+(i)+na−(i) = 0

(cf. figure 1). We define the set of indices χ = {a+(i), a−(i) | i ∈ I}, such that #χ = 2#I. For ease
of notation, we use the convention Γa+(i) = Γa+(i) = Γi. Then, for a = a±(i) ∈ χ, we can define the
trace operator on Γa:

γa : H1(Ω \ Γ)→ L2(Γa),

and the normal trace operator on Γa outward to the side a:

γn,a : Hdiv(Ω \ Γ)→ D′(Γa),

that satisfy γa(h) = γa(h�ωa
) and γn,a(p) = γn,a(p�ωa

), where ωa = {x ∈ Ω | (x−y) ·na < 0, ∀y ∈ Γi}.
We now define the hybrid dimensional function spaces that will be used as variational spaces for

the Darcy flow models in the next subsection:

V = H1(Ω \ Γ)×H1(Γ),

and its subspace
V 0 = H1

∂Ω(Ω \ Γ)×H1
Σ0

(Γ),

where (with γ∂Ω : H1(Ω\Γ)→ L2(∂Ω) denoting the trace operator on ∂Ω)

H1
∂Ω(Ω \ Γ) = {v ∈ H1(Ω\Γ) | γ∂Ωv = 0 on ∂Ω},

as well as
W = Wm ×Wf ,

where

Wm =
{
qm ∈ Hdiv(Ω \ Γ) | γn,aqm ∈ L2(Γa) for all a ∈ χ

}
and

Wf = {qf = (qf,i)i∈I | qf,i ∈ Hdiv(Γi) for all i ∈ I

and
∑
i∈Γ

∫
Γi

(
∇τv · qf,i + v · divτiqf,i

)
dτ(x) = 0 for all v ∈ H1

Σ0
(Γ)}.

In the following, we will use the notation divτpf = divτipf,i on Γi for all i ∈ I and pf = (pf,i)i∈I ∈
Wf .
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2.2 Hybrid Dimensional Two Phase Darcy Flow Model

In the matrix domain Ω \Γ, let us denote by Λm ∈ L∞(Ω)d×d the permeability tensor such that there
exist λm ≥ λm > 0 with

λm|ζ|2 ≤ (Λm(x)ζ, ζ) ≤ λm|ζ|2 for all ζ ∈ Rd,x ∈ Ω,

Analogously, in the fracture network Γ, we denote by Λf ∈ L∞(Γ)(d−1)×(d−1) the tangential perme-
ability tensor, and assume that there exist λf ≥ λf > 0, such that holds

λf |ζ|2 ≤ (Λf (x)ζ, ζ) ≤ λf |ζ|2 for all ζ ∈ Rd−1,x ∈ Γ.

At the fracture network Γ, we introduce the orthonormal system
(τ1(x), τ2(x),n(x)), defined a.e. on Γ. Inside the fractures, the normal direction is assumed to
be a permeability principal direction. The normal permeability λf,n ∈ L∞(Γ) is such that λf,n ≤
λf,n(x) ≤ λf,n for a.e. x ∈ Γ with 0 < λf,n ≤ λf,n. We also denote by df ∈ L∞(Γ) the width of the

fractures, assumed to be such that there exist df ≥ df > 0 with df ≤ df (x) ≤ df for a.e. x ∈ Γ. The
half normal transmissibility in the fracture network is denoted by

Tf =
2λf,n
df

.

Furthermore, φm and φf are the matrix and fracture porosities, respectively, ρα denotes the density
of phase α (with α = 1 the non-wetting and α = 2 the wetting phase) and g ∈ Rd is the gravitational
vector field. (kαm, k

α
f ) and (Sαm, S

α
f ) are the matrix and fracture phase mobilities and saturations,

respectively. We suppose that the matrix and the fracture network consist of a finite number of
geological layers, that define finite partitions of Ω \ Γ and Γ. To identify the geological layers math-
ematically, we attribute a proper rocktype rt to each open set ωrt of these partitions. Then, we
assume that on each ωrt, (kαm, k

α
f ) and (Sαm, S

α
f ) are not explicitly space dependent. Moreover, on

ωrt, (S1
m(qm), S1

f (qf )) ∈ [0, 1]2 for all (qm, qf ) ∈ R2 and S1
m, S

1
f are non-decreasing lipschitz continuous

functions on R, and kαm, k
α
f are continuous, non-negative valued functions on [0, 1], for α = 1, 2. To

simplify, we consider no sources or sinks.
The PDEs model writes: find (uαm, u

α
f ) ∈ L2(0, T ;V 0

m) × L2(0, T ;V 0
f ), (qαm,q

α
f ) ∈ L2(0, T ;Wm) ×

L2(0, T ;Wf ), α = 1, 2, such that:
φm∂tS

α
m(x, pm) + div(qαm) = 0 on Ω \ Γ

qαm = −kαm(x, Sαm(x, pm)) Λm(∇uαm − ραg) on Ω \ Γ
φfdf∂tS

α
f (x, pf ) + divτ (qαf )−∑a∈χ γn,aq

α
m = 0 on Γ

qαf = −dfkαf (x, Sαf (x, pf )) Λf (∇τuf − ραγτg) on Γ

(1)

together with the coupling condition on Γa, a ∈ χ

γn,aq
α
m = kαf (x, Sαf (x, γapm))Tf (γau

α
m − uαf −

ραdf
2

γn,ag)+ + kαf (x, Sαf (x, pf ))Tf (γau
α
m − uαf −

ραdf
2

γn,ag)−

(2)

where h+ = max{0, h} and h− = −(−h)+ (for any h), and initial values

(pm, pf )|t=0 = (p0
m, p

0
f ) ∈ V 0 on (Ω \ Γ)× Γ.

Moreover, the saturations of both phases are coupled by the equation

(S2
m, S

2
f ) = 1− (S1

m, S
1
f )

and the capillary pressure satisfies

(pm, pf ) = (u1
m − u2

m, u
1
f − u2

f ).
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Figure 2: Illustration of the coupling
condition. It can be seen as an up-
wind two point approximation of qαf,na

together with the flux conservation con-
dition qαf,na

= γn,aq
α
m. The upwinding

takes into account the saturation jumps
due to discontinuous capillary pressure
rules at the matrix-fracture interfaces.

Up to now, the only existing, comparable hybrid dimensional two-phase flow model is [18], which
is presented in global pressure formulation and for only one fracture dividing the matrix domain. We
adapted here a pressure-pressure formulation, accounting for complex fracture networks and general
invertible capillary pressure functions. Another difference is, that the model presented here uses an
upwind coupling condition for the matrix-fracture normal fluxes (see (2)). This upwinding is necessary
to transport the saturations from the matrix to the fractures. The coupling condition (2) also takes
into account gravitational force inside the fractures for the matrix-fracture mass exchange. In the test
cases below, we see that this is an important feature for the simulation of gravity dominant flow.

3 Vertex Approximate Gradient Scheme

In this section, the VAG scheme introduced in [11] for diffusive problems on heterogeneous anisotropic
media is extended to the hybrid dimensional model. We consider a finite volume version using lumping
both for the source terms and the matrix fracture fluxes. Hence, the underlying discretization is non
conforming w.r.t. the function space V 0.

3.1 VAG Discretization

Generalized polyhedral meshes: Following [11], we consider generalized polyhedral meshes of Ω.
LetM be the set of cells that are disjoint open subsets of Ω such that

⋃
K∈MK = Ω. For all K ∈M,

xK denotes the so-called “center” of the cell K under the assumption that K is star-shaped with
respect to xK . Let F denote the set of (not necessarily planar) faces of the mesh. We denote by V
the set of vertices of the mesh. Let VK , FK , Vσ respectively denote the set of the vertices of K ∈M,
faces of K, and vertices of σ ∈ F . For any face σ ∈ FK , we have Vσ ⊂ VK . LetMs (resp. Fs) denote
the set of the cells (resp. faces) sharing the vertex s ∈ V. The set of edges of the mesh is denoted by
E and Eσ denotes the set of edges of the face σ ∈ F . Let Mσ denote the set of cells sharing the face
σ ∈ F . We denote by Fext the subset of faces σ ∈ F such that Mσ has only one element, and we
set Vext =

⋃
σ∈Fext Vσ. The mesh is assumed to be conforming in the sense that for all σ ∈ F \ Fext,

the set Mσ contains exactly two cells. It is assumed that for each face σ ∈ F , there exists a so-called
“center” of the face xσ such that

xσ =
∑
s∈Vσ

βσ,s xs, with
∑
s∈Vσ

βσ,s = 1,

where βσ,s ≥ 0 for all s ∈ Vσ. The face σ is assumed to match with the union of the triangles Tσ,e
defined by the face center xσ and each of its edges e ∈ Eσ. The mesh is assumed to be conforming
w.r.t. the fracture network Γ in the sense that there exist subsets FΓi , i ∈ I of F such that

Γi =
⋃

σ∈FΓi

σ̄.
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We will denote by FΓ the set of fracture faces
⋃
i∈I FΓi . Similarly, we will denote by VΓ the set of

fracture vertices
⋃
σ∈FΓ

Vσ. We also define a submesh T of tetrahedra, where each tetrahedron DK,σ,e

is the convex hull of the cell center xK of K, the face center xσ of σ ∈ FK and the edge e ∈ Eσ.
Similarly we define a triangulation ∆ of Γ, such that we have:

T =
⋃

K∈F ,σ∈FK ,e∈Eσ
{DK,σ,e} and ∆ =

⋃
σ∈FΓ,e∈Eσ

{Tσ,e}.

The mesh is also assumed to be conforming w.r.t. the partitions {ωrt}rt of Ω\Γ and Γ, defined by the
homogeneous geological layers covering the matrix and fracture domains, respectively (as described in
the previous section). We therefore have a well defined rocktype rt for each cell and for each fracture
face.

Degrees of freedom: The set of matrix × fracture degrees of freedom is denoted by dof Dm×dof Df .
The real vector spaces XDm and XDf of discrete unknowns in the matrix and in the fracture network
respectively are then defined by

XDm = span{eν | ν ∈ dof Dm}
XDf = span{eν | ν ∈ dof Df },

where

eν =

{
(δνµ)µ∈dofDm for ν ∈ dof Dm
(δνµ)µ∈dofDf for ν ∈ dof Df .

For uDm ∈ XDm and ν ∈ dof Dm we denote by uν the νth component of uDm and likewise for uDf ∈ XDf
and ν ∈ dof Df . We also introduce the product of these vector spaces

XD = XDm ×XDf ,
for which we have dimXD = #dof Dm + #dof Df . To account for zero boundary conditions on ∂Ω
and Σ0 we introduce the subsets dof Dirm ⊂ dof Dm , and dof Dirf ⊂ dof Df , and we set dof Dir =
dof Dirm × dof Dirf , and

X0
D = {u ∈ XD |uν = 0 for all ν ∈ dof Dir}.

Concretely, we consider the set of d.o.f. as illustrated in figure 3. Formally, for the matrix nodal
unknowns, we first establish an equivalence relation on each Ms, s ∈ V, by

K ≡Ms L ⇐⇒ there exists n ∈ N and a sequence (σi)i=1,...,n in Fs\FΓ,

such that K ∈Mσ1 , L ∈Mσn and Mσi+1 ∩Mσi 6= ∅
for i = 1, . . . , n− 1.

Let us then denote by Ms the set of all classes of equivalence of Ms and by Ks the element of Ms

containing K ∈M. ObviouslyMs might have more than one element only if s ∈ VΓ. Then we define
(cf. figure 3)

dof Dm =M∪
{
Kσ

∣∣ σ ∈ FΓ,K ∈Mσ

}
∪
{
Ks

∣∣ s ∈ V,Ks ∈Ms

}
,

dof Df = FΓ ∪ VΓ,

dof Dirm :=
{
Ks

∣∣ s ∈ Vext,Ks ∈Ms

}
,

dof Dirf = VΓ ∩ Vext.

Discrete gradients: The matrix discrete gradient ∇Dm is defined on XDm as the V 0
m conforming P1

Finite Element gradient reconstruction on the tetrahedral submesh T , using barycentric interpolation
to eliminate the d.o.f. at the non-fracture faces σ ∈ F\FΓ. The fracture discrete gradient ∇Df is
defined on XDf as the V 0

f conforming P1 Finite Element gradient reconstruction on the triangulation
∆ of the DFN.

6
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Figure 3: Left: Illustration of d.o.f. in 2D for four cells intersected by three fractures (thick lines).
Right: 3D cellK touching a fracture face σ. Illustration of the simplices on which∇Dm is constant (red)
and ∇Df is constant (grey). The facial d.o.f. in light grey is eliminated by barycentric interpolation.

Function reconstructions: For the family of VAG-CV schemes, reconstruction operators are
piecewise constant. For K ∈ M let dofK = {Ks, s ∈ VK} ∪ {Kσ, σ ∈ FK ∩ FΓ}. Analogously,
in the fracture domain, for σ ∈ FΓ let dofσ = Vσ. We introduce, for any given K ∈ M, a partition
{ωνK}ν∈{K}∪dofK\dofDir ofK. Similarly, we define for any given σ ∈ FΓ a partition {ωνσ}ν∈{σ}∪dofσ\dofDir
of σ. For each ν ∈ dof Dm , we define the open set ων = int

(⋃
K∈M ωνK

)
, with the convention ωνK = ∅,

if ν 6∈ dofK . For each ν ∈ dof Df , we define the open set ων = int
(⋃

σ∈F ω
ν
σ

)
, where ωνσ = ∅, if

ν 6∈ dofσ. We thus obtain the partitions {ων}ν∈dofDm\dofDirm of Ω and {ων}ν∈dofDf \dofDirf of Γ. We

also introduce for each T = Tσ,s,s′ ∈ ∆ a partition {Ti}i=1,...,3 of T , which we need for the definition of
the VAG-CV matrix-fracture interaction operators. We assume that holds |T1| = |T2| = |T3| = 1

3 |T |
in order to preserve the first order accuracy of the scheme. Note that porosity is constant per cell
and per fracture face, since we have a well defined value for the porosity for each rocktype and since
the mesh is assumed to be conform with the partition in rocktypes (as described above). Therefore,
in the numerical scheme, we do not need to reconstruct the just introduced partitions explicitly, but
only have to define their corresponding volumes. Finally, we need a mapping between the degrees of
freedom of the matrix domain, which are situated on one side of the fracture network, and the set of
indices χ. For Kσ ∈ dof Dm we have the one-element set χ(Kσ) = {a ∈ χ | (xK − xσ) · na < 0} and
therefore the notation a(Kσ) = a ∈ χ(Kσ).

The VAG-CV scheme’s reconstruction operators are

• A function reconstruction operator on the matrix domain:
ΠDmuDm =

∑
ν∈dofDm\dofDirm

uν1ων

• A function reconstruction operator on the fracture network:
ΠDfuDf =

∑
ν∈dofDf \dofDirf

uν1ων

• Reconstruction operators of the jump at the matrix fracture intersections on Γa for a ∈ χ:
JuDKa,D =

∑
Tσ,s,s′∈∆

∑
K∈Mσ

((uKσ − uσ)1T1 + (uKs
− us)1T2 + (uKs′

− us′)1T3)δa(Kσ)a1Γa

• Reconstruction operators of the trace on Γa for a ∈ χ:
Ta
DmuDm =

∑
Tσ,s,s′∈∆

∑
K∈Mσ

(uKσ1T1 + uKs
1T2 + uKs′

1T3)δa(Kσ)a1Γa .

7



3.2 Finite Volume Formulation

Recall the definitions dofK = {Ks, s ∈ VK} ∪ {Kσ, σ ∈ FK ∩ FΓ} for K ∈ M and dofσ = Vσ for
σ ∈ FΓ. We introduce the family of rocktypes (rtν)ν∈M∪dofDf . Then, for any ν ∈ dofK the discrete

matrix-matrix -fluxes are defined as

FαKν(u1
Dm , u

2
Dm) = kαm(rtK , S

α
m(rtK , pK)) · fαKν(uαDm)+ + kαm(rtK , S

α
m(rtK , pν)) · fαKν(uαDm)−,

where
fαKν(uαDm) =

∑
ν′∈dofK

T νν
′

K (uαK − uαν′ − ρα(xK − xν′) · g),

with transmissivities

T νν
′

K =

∫
K

Λm∇Dmeν∇Dmeν′dx.

It holds
∫

Ω Λm(∇DmuαDm −ραg)∇DmvDmdx =
∑

K∈M
∑

ν∈dofK f
α
Kν(uαDm)(vK − vν), and where For all

ν ∈ dofσ the discrete fracture-fracture-fluxes are defined as

Fασν(u1
Df , u

2
Df ) = kαf (rtσ, S

α
f (rtσ, pσ)) · fασ,ν(uαDf )+ + kαf (rtσ, S

α
f (rtσ, pν)) · fασ,ν(uαDf )−,

where
fασν(uαDf ) =

∑
ν′∈dofσ

T νν
′

σ (uασ − uαν′ − ρα(xσ − xν′) · g),

with transmissivities

T νν
′

σ =

∫
σ

Λf∇Df eν∇Df eν′dτf (x).

It holds
∫

Γ Λf (∇DfuαDf − ρ
αγτg)∇Df vDfdτf (x) =

∑
σ∈FΓ

∑
ν∈dofσ f

α
σν(uαDf )(vσ − vν). Let us further

introduce the set of matrix-fracture (mf ) connectivities

C = {(νm, νf ) | νm ∈ dof Γ
Dm , νf ∈ dof Df s.t. xνm = xνf }

with dof Γ
Dm = {ν ∈ dof Dm |xν ∈ Γ}. The mf -fluxes are defined as

Fανmνf (u1
D, u

2
D) = kαf (rtνf , S

α
f (rtνf , pνm)) · fανmνf (uαDm , u

α
Df )+

+ kαf (rtνf , S
α
f (rtνf , pνf )) · fανmνf (uαDm , u

α
Df )−,

where

fανmνf (uαDm , u
α
Df ) = Tνmνf (uανm − uανf −

ραdf
2

γn,ag),

with transmissivities

Tνmνf =
∑
a∈χ

∫
Γa

Tf (Ta
Dmeνm)2dτ(x).

It holds
∑

(νm,νf )∈C f
α
νmνf

(uαDm , u
α
Df )(vνm − vνf ) =

∑
a∈χ
∫

Γa
Tf (JuαDKa,D − ραdf

2 γn,ag)JvDKa,Ddτ(x), for

all (vDm , vDf ) ∈ XD. We observe that for the VAG-CV scheme, the fluxes Fνmνf are two point flux
approximations.

Let 0 = t0 < t1 < · · · < tN = T , with ∆tn = tn − tn−1 be a time discretization. Given p0
D ∈ XD,

the Finite Volume formulation of (1) reads as follows: Find {uαD}α=1,2 ∈ (X0
D)2N such that for all

n ∈ {1, . . . , N}
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Figure 4: VAG mm-fluxes (red), mf -fluxes (dark red) and ff -fluxes (black) on a 3D cell touching a
fracture
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for all K ∈M :

|ωK |φK Sαm(rtK ,p
n
K)−Sαm(rtK ,p

n−1
K )

∆tn +
∑

ν∈dofK
FαKν(u1,n

Dm , u
2,n
Dm) = 0

for all νm ∈ dofDm \ (M∪ dofΓ
Dm ∪ dof Dirm) :

∑
K∈Mνm

(
|ωK,νm |φK

Sαm(rtK ,p
n
νm )−Sαm(rtK ,p

n−1
νm )

∆tn − FαKνm(u1,n
Dm , u

2,n
Dm)

)
= 0

for all νm ∈ dofΓ
Dm \ dof Dirm :

∑
νf∈dofDf

s.t. (νm,νf )∈C

(
Fανmνf (u1,n

D , u2,n
D ) +

∑
K∈Mνm

(
|ωK,νm |φK

Sαm(rtK ,p
n
νm

)−Sαm(rtK ,p
n−1
νm )

∆tn

−FαKνm(u1,n
Dm , u

2,n
Dm)

) )
= 0

for all σ ∈ FΓ :

|ωσ|φσ
Sαf (rtσ ,pnσ)−Sαf (rtσ ,p

n−1
σ )

∆tn +
∑

ν∈dofσ
Fασν(u1,n

Df , u
2,n
Df )− ∑

νm∈dofDm
s.t. (νm,σ)∈C

Fανmσ(u1,n
D , u2,n

D ) = Hα
σ

for all νf ∈ dofDf \ (FΓ ∪ dof Dirf ) :

∑
σ∈FΓ,νf

(
|ωσ,νf |φσ

Sαf (rtσ ,pnνf
)−Sαf (rtσ ,p

n−1
νf

)

∆tn − Fασνf (u1,n
Df , u

2,n
Df )
)
− ∑

νm∈dofDm
s.t. (νm,νf )∈C

Fανmνf (u1,n
D , u2,n

D ) = 0.

(3)

Here, Mνm stands for the set of indices {K ∈ M | νm ∈ dofK} and FΓ,νf stands for the set
{σ ∈ FΓ | νf ∈ dofσ}.
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4 Two Phase Flow Test Cases

We present in this section a series of test cases for diphasic flow through a fractured 2 dimensional
reservoir of geometry as shown in figure 5. The domain Ω is of extension (0, 400)m × (0, 800)m and
the fracture width is assumed to be constantly df = 4m. This choice for the width is motivated by the
robustness of the equidimensional scheme (see below) and rather corresponds to the width of a fault
(although we will keep the terminology fracture in the following). We consider isotropic permeability in
the matrix and in the fractures. All tests have in common that initially, the reservoir is saturated with
water (density 1000 kg

m3 , viscosity 0.001Pa.s) and oil (density 700 kg
m3 , viscosity 0.005Pa.s) is injected

in the bottom fracture, which is managed by imposing non-homogeneous Neumann conditions at the
injection location. The oil then rises by gravity, thanks to it’s lower density compared to water and
by the overpressure induced by the imposed injection rate. Also, Dirichlet boundary conditions are
imposed at the upper boundary of the domain. Elsewhere, we have homogeneous Neumann conditions.
The following test cases present a variety of geological and physical configurations in regard to matrix
and fracture permeabilities and capillary pressure curves.

Figure 5: Geometry
of the reservoir un-
der consideration.
DFN in red and ma-
trix domain in blue.
Ω = (0, 400)m ×
(0, 800)m and
df = 4m.

We use the VAG discretization to obtain solutions for three different models for this two phase
flow process. In the first model, fractures are represented as geological layers of equal dimension as
the matrix and therefore, we refer to this model as the equi-dimensional model. The second model is
the model we presented in the first part of this paper, refered to as discontinuous hybrid dimensional
model, since pressure jumps at the matrix-fracture interfaces are allowed. The third model is the
continuous hybrid dimensional model, presented in [7], which assumes pressure continuity accross the
fractures.

The tests are driven on triangular meshes, extended to 3D prismatic meshes by adding a second
layer of nodes as a translation of the original nodes in normal direction to the plane of the original 2D
domain. Hence, we double the number of nodal unknowns, while keeping the number of cell and face
unknowns constant (cf. table 1). This has to be kept in mind, when interpreting the computational
cost. In order to account for the stratification of saturation in normal direction inside the fractures,
which can play a major role in the flow process (see below), we need at least two layers of cells in the
fractures for the equidim. model, to obtain valid reference solutions. Obviously, the larger number of
cells for the equi-dimensional mesh is due to the need of tiny cells inside the DFN. In this regard, it is
worth to mention that, with the hybrid dimensional model, the scale of fracture faces does not have a
maximum constraint, other than with the equidimensional model, where the fracture width imposes
an upper bound for the scale of faces between the matrix and the fracture, due to mesh regularity.
However, all meshes are at fracture scale, here. The mesh for the two hybrid dimensional models
is the same, but the number of degrees of freedom differs. The supplementary degrees of freedom
for the discontinuous model are located at the matrix-fracture intersections and capture the pressure
discontinuities, as described in the previous section.
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The discrete problem is solved implicitly, where the non-linear system of equations occurring at
each time step is solved via the Newton algorithm with relaxation. The stopping criterion is critrelNewton
on the (L1) relative residual. To ensure well defined values for the capillary pressure, after each Newton
iteration, we project the (oil) saturation on the intervall [0, 1− ε], with ε > 0 as small as desired. The
resolution of the linear systems is performed by the GMRes solver (with stopping criterion critrelGMRes

on the relative residual), preconditioned by CPR-AMG. The time loop uses adaptive time stepping,
i.e. the objective for the (max per d.o.f.) change in saturation per time step, ∆τobj , is given and from
this the time step is deduced under the condition that it does neither exceed a given maximal time
step ∆tmax nor 1.2 times the time step of the previous iteration. Also, if at a given time iteration the
Newton algorithm does not converge after 35 iterations, then the actual time step is divided by 2 and
the time iteration is repeated. The number of time step failures at the end of a simulation is indicated
by NChop.

Model Nb Cells Nb dof Nb dof el.

equi dim. 22477 45315 22838

disc. hybrid 16889 35355 18466

cont. hybrid 16889 34291 17402

Table 1: Nb Cells is the number of cells of the mesh; Nb dof is the number of discrete unknowns;
Nb dof el. is the number of discrete unknowns after elimination of cell unknowns without fill-in.

The numerical parameters are chosen as follows:

Model critrelNewton critrelGMRes ∆τobj ∆tmax
equi dim. 1.E−5 1.E−6 0.5 10d

disc. hybrid 1.E−6 1.E−6 0.5 10d

cont. hybrid 1.E−6 1.E−6 0.5 60d

Table 2: Numerical parameters.

4.1 Comparisons between the equi and hybrid dimensional solutions for gravity
dominated flow with zero capillary pressure

In this test case, we neglect capillary effects by setting the capillary pressure to zero. The following
geological configuration is considered. In the matrix domain, permeability is isotropic of 0.1 Darcy
and porosity is 0.2. In the DFN, permeability is isotropic of 100.0 Darcy and porosity is 0.4.
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Figure 6: Comparison of the equi dimensional (first line), discontinuous hybrid dimensional (mid
line) and continuous hybrid dimensional (last line) numerical solutions for oil saturation at times
t = 360, 1800, 3600, 5400 days (from left to right).
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Figure 7: Comparison of the equi dimensional and hybrid dimensional matrix and fracture volumes
occupied by oil as a function of time.

12



Model N∆t NNewton NGMRes NChop CPU

equi dim. 1270 8927 225596 71 9024

disc. hybrid 907 5023 52637 48 2951

cont. hybrid 149 1356 23293 0 960

Table 3: N∆t is the number of successful time steps; NNewton is the total number of Newton iterations
(for successful time steps); NGMRes is the total number of GMRes iterations (for successful time
steps); NChop is the number of time step chops; CPU denotes the total cpu time in seconds.

This test case shows impressively, how the incorporation of normal fluxes at the mf intersections
of the disc. hybrid dim. model allows to get much closer to the equidimensional reference solution
than the cont. hybrid dimensional model does. The supplementary unknowns at the mf interfaces
enables us to capture the segregation of saturation inside the DFN (due to gravity, here). In this view,
the supplementary d.o.f. appear as a mesh refinement at the mf interfaces, that allows to reproduce
the transport in normal direction to the DFN. In the gravity dominated test case shown in figure 6,
this becomes particularly important, when gravitational acceleration is in a steep angle to the fracture
network, which can be observed at the upper fracture. The drawback of this feature is that we have to
deal with small volumes at the mf intesections, which is reflected in terms of computational cost, but
the hybrid dim. model is still much cheaper than the full equidim. model. The absence of capillarity,
of course, emphasisis this gap between the two hybrid dim. models, since at the mf interfaces, the
matrix does not behave as a capillary barrier (saturation does not jump) and nothing holds back the oil
from leaving the DFN. Also no capillary diffusion inside the fracture prevents the gravity segregation
effect in the normal direction of the fracture. Therefore, in the next series of tests with capillary
pressure, we might expect better match of the cont. hybrid dim. solution.

4.2 Comparisons between the equi and hybrid dimensional solutions for gravity
dominated flow with discontinuous capillary pressure

The tests presented here account for capillarity. Inside the matrix domain the capillary pressure
function is given by Corey’s law pm = −am logS1

m. Inside the fracture network, we suppose pf =
−af logS1

f . The hybrid dimensional model presented in the previous part of this paper is build to
account for saturation jumps at the matrix-fracture interfaces (cf. figure 2). To treat the degenerated
case of af = 0, we adapt a novel variable switch technique presented in [8]. This consists of introducing
generalized variables as primary unknowns, that are used to parametrize the saturation and capillary
pressure curves in order to avoid singularities at the matrix-fracture interfaces. As a counterpart, we
had to regularize the accumulation terms at the mf interfaces, by adding small accumulation terms,
driven by the fracture saturation

∑
νf∈dofDf

s.t. (νm,νf )∈C

∑
K∈Mνm

θ|ωK,νm |φK
Sαf (rtνf , p

n
νm)− Sαf (rtνf , p

n−1
νm )

∆tn
,

θ ∈ R+, to the equations for νm ∈ dof Γ
Dm in (3), while keeping the conservation of volume.

4.2.1 drain-matrix permeability ratio of 1000

The geological setting is as follows. In the matrix domain, permeability is isotropic of 0.1 Darcy and
porosity is 0.2. In the DFN, permeability is isotropic of 100.0 Darcy and porosity is 0.4. The Corey
parameters are am = 105 and af = 0.
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Figure 8: Comparison of the equi dimensional (first line), discontinuous hybrid dimensional (mid
line) and continuous hybrid dimensional (last line) numerical solutions for oil saturation at times
t = 360, 1800, 3600, 5400 days (from left to right).
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Figure 9: Comparison of the equi dimensional and hybrid dimensional matrix and fracture volumes
occupied by oil as a function of time.

Model N∆t NNewton NGMRes NChop CPU

equi dim. 3054 18993 425182 406 30697

disc. hybrid 1530 7839 75220 20 4123

cont. hybrid 149 1477 23687 0 1022

Table 4: N∆t is the number of successful time steps; NNewton is the total number of Newton iterations
(for successful time steps); NGMRes is the total number of GMRes iterations (for successful time
steps); NChop is the number of time step chops; CPU denotes the total cpu time in seconds.

4.2.2 drain-matrix permeability ratio of 100

The geological setting is as follows. In the matrix domain, permeability is isotropic of 0.1 Darcy and
porosity is 0.2. In the DFN, permeability is isotropic of 10.0 Darcy and porosity is 0.4.
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Figure 10: Comparison of the equi dimensional (first line), discontinuous hybrid dimensional (mid
line) and continuous hybrid dimensional (last line) numerical solutions for oil saturation at times
t = 360, 1800, 4320, 5400 days (from left to right).

zero capillary pressure in the DFN: The Corey parameters are am = 105 and af = 0.
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Figure 11: Comparison of the equi dimensional and hybrid dimensional matrix and fracture volumes
occupied by oil as a function of time.
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Model N∆t NNewton NGMRes NChop CPU

equi dim. 933 6552 82477 30 5048

disc. hybrid 1182 5619 47697 19 3244

cont. hybrid 149 1082 12559 0 553

Table 5: N∆t is the number of successful time steps; NNewton is the total number of Newton iterations
(for successful time steps); NGMRes is the total number of GMRes iterations (for successful time
steps); NChop is the number of time step chops; CPU denotes the total cpu time in seconds.

non-zero capillary pressure in the DFN: The Corey parameters are am = 105 and af = 104.
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Figure 12: Comparison of the equi dimensional and hybrid dimensional matrix and fracture volumes
occupied by oil as a function of time.

Model N∆t NNewton NGMRes NChop CPU

equi dim. 610 2697 32391 6 2213

disc. hybrid 188 1243 18506 5 876

cont. hybrid 192 1222 13616 0 602

Table 6: N∆t is the number of successful time steps; NNewton is the total number of Newton iterations
(for successful time steps); NGMRes is the total number of GMRes iterations (for successful time
steps); NChop is the number of time step chops; CPU denotes the total cpu time in seconds.

Figure 13: Zoom on bottom DFN. Comparison of the equi dimensional oil saturation stratification in
the fractures for Corey parameters af = 0 (left) and af = 1.E4 (right) at time t = 360 days.
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We observe a degradation of the hybrid dimensional solutions w.r.t. the equidim. solution, when
the mf permeability ratio decreases. This can be explained by the importance of fracture conductivity
w.r.t. the diffusion in normal direction inside the fracture network, added artificially by the averaging
procedure in the derivation of the reduced models. The more conductive the fractures, the more
dominant the convective ff and mf fluxes and the less important the artificial diffusion. Figures 11
and 12 reveil that the matching of equi- and hybrid dimensional solutions can be enhanced by adding
capillarity in the DFN. More precisely, we note that the hybrid dim. solutions change insignificantly,
but the equidim. solution changes towards the hybrid dim. solutions. Capillarity has a diffusive effect
and smoothens out the stratification in the DFN, as shown in figure 13, which agrees better with
the hybrid dimensional approach of averaging physical quantities over the fracture width. We also
observe that the cont. hybrid dim. model simulates the global behaviour of the flow process quite well
and is very competitive in view of cputime and robustness. However, compared to the disc. hybrid
dim. model, the resolution at the DFN neighbourhood is much lower and local patterns can not be
reproduced. It has been checked, that this is not an issue of mesh refinement. Rather, the adapted
manner to approximate normal fluxes through the DFN of the disc. hybrid dim. model (as discussed
in the previous test case) might play a role, here.

4.3 Comparisons between the equi and hybrid dimensional solutions for grav-
ity dominated flow with discontinuous capillary pressure at the matrix-drain
interfaces and an upper barrier of matrix rocktype

In the matrix domain, permeability is isotropic of 0.1 Darcy and porosity is 0.2. The two lower fractures
are drains of isotropic permeability 100.0 Darcy and porosity 0.4. In the upper fracture, permeability
is isotropic of 0.001 Darcy and porosity is 0.2. Note that the continuous hybrid dimensional model
does not incorporate a normal permeability in the DFN. We conducted the test case also for this model
and observed, as expected, the unability to reproduce the barrier behaviour of the upper fracture. The
Corey parameters are am = abarrier = 105 and adrain = 0.
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Figure 14: Comparison of the equi dimensional (first line) and discontinuous hybrid dimensional
(second line) numerical solutions for oil saturation at times t = 360, 1800, 3600, 5400 days (from left
to right).

Figure 15: Comparison of the equi dimensional and discontinuous hybrid dimensional numerical liquid
pressure at time t = 5400 days (from left to right).
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Figure 16: Comparison of the equi dimensional and hybrid dimensional matrix and fracture volumes
occupied by oil as a function of time.

Model N∆t NNewton NGMRes NChop CPU

equi dim. 2777 15518 227961 376 24199

disc. hybrid 1305 6444 63022 9 3546

Table 7: N∆t is the number of successful time steps; NNewton is the total number of Newton iterations
(for successful time steps); NGMRes is the total number of GMRes iterations (for successful time
steps); NChop is the number of time step chops; CPU denotes the total cpu time in seconds.

5 Conclusion

The hybrid dimensional model for two phase flow through fractured porous media with pressure dis-
continuities at the mf intersecions presented here completes the literature by a pressure-pressure
formulation of the problem with upwind mf fluxes - to account at the continuous model level for the
transport from the matrix to the fracture - that integrate gravitational force inside the fractures - to
account for gravity dominated flow. The only comparable predecessor [18] (in global pressure formu-
lation with only one fracture dividing the matrix domain) has thus been extended to complex DFN
and by the aforementioned features of mf fluxes. The Vertex Aproximate Gradient (VAG) scheme,
as introduced in [10] for the monophasic stationary hybrid dimensional model, has been presented in
a finite volume formulation for the two phase flow model. The VAG scheme is used to compare the
numerically derived solutions of three different models for a 2D flow process through a fractured reser-
voir. More precisely, the discontinuous hybrid dimensional solution (model presented in this paper)
has been compared to the continuous hybrid dimensional solution (cf. [7]) w.r.t. a reference solution
given by the equidimensional model (full model with fractures represented as heterogeneous layers),
for a variety of geological and physical configurations in regard to matrix and fracture permeabilities
and capillary pressure curves. Since the stratification in normal direction inside the fractures can play
a major role, it is worth to mention that more than one layer of fracture cells is necessary in order to
get valid reference solutions. The test cases show, that in terms of cpu time and robustness, the cont.
hybrid dim. model has an advantage. Yet, the disc. hybrid dim. model still is much cheaper and more
robust than the equidim. model. Moreover, for fracture apertures less than df = 4m and fracture
tangential permeabilities higher than λf = 100.0 Darcy, the equidim. model is unpracticable. We
observed that for high ratios of fracture and matrix permeabilities, the equi- and hybrid dimensional
solutions match quite well and that for lower ratios, they differ more. This can be explained by the
importance of fracture conductivity w.r.t. the diffusion in normal direction inside the fracture net-
work, added artificially by the averaging procedure in the derivation of the reduced models. The more
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conductive the fractures, the more dominant the convective ff and mf fluxes and the less important
the artificial diffusion. On the other hand, by adding capillarity in the DFN, the hybrid dimensional
solutions fit much more to the equidim. solution. In fact, the equidim. solution moves towards
the hybrid dim. solutions. In the first test case, gravitational segregation has a major influence on
the global flow behaviour. This effect cannot be reproduced by the cont. hybrid dim. model, with
single unknowns at the DFN. This remark applies to any cell centered scheme. The supplementary
unknowns at the mf interfaces of the disc. hybrid dim. model enables us to capture gravitational
segregation inside the DFN, which allows to be much more precise on the transport accross the DFN.
This advantage becomes most striking, when acceleration acts in normal direction to fractures. Due
to the assumption of pressure continuity at the mf interfaces (and the induced absence of λf,n as
a model parameter), the cont. hybrid dim. model is unusable, when it comes to the simulation of
barriers. In the barrier test case presented here, we see that the disc. hybrid dim. model performs
well, both, in terms of accuracy and computational cost. In any case, we observed a significant gain
in precision for the disc. hybrid dim. solution w.r.t. the equidim. reference solution, compared to the
cont. hybrid dim solution.
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[18] Jaffré, J., Mnejja, M., Roberts, J. E., A discrete fracture model for two-phase flow with matrix-
fracture interaction, Procedia Computer Science 4, pp. 967-973 (2011)

[19] Reichenberger, V., Jakobs, H., Bastian, P., Helmig, R.: A mixed-dimensional finite volume
method for multiphase flow in fractured porous media. Adv. Water Resources 29, 7, 1020-1036
(2006).

[20] Sandve, T.H., Berre, I., Nordbotten, J.M. An efficient multi-point flux approximation method for
Discrete Fracture-Matrix simulations, JCP 231 pp. 3784-3800, 2012.
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