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We suggest indirect excitons in two-dimensional semiconductor heterostructures as a platform for the
realization of a bosonic analog of the Bardeen-Cooper-Schrieffer superconductor. The quantum phase transition
to a biexcitonic gapped state can be controlled in situ by tuning the electric field applied to the structure in the
growth direction. The proposed playground should allow one to go to strongly correlated and high-temperature
regimes, unattainable with Feshbach resonant atomic gases.

The phenomenon of pairing lies at the heart of super-
conductivity in metals. Here, Cooper pairs of fermionic
particles (electrons), can Bose-Einstein condense to carry
electric charge without dissipation. An in-depth study of this
scenario, commonly known as the Bardeen-Cooper-Schrieffer
(BCS) theory, has been performed by using the technique of
Feshbach resonances (FRs) in ultracold atomic gases [1]. In
Fermi gases this technique has allowed for the observation of a
crossover from a BCS-like state made of spatially overlapping
pairs of atoms to a Bose-Einstein condensate (BEC) of
tightly bound diatomic molecules [2,3]. This so-called BCS-
BEC crossover has become a paradigm of the many-body
physics, sharing important analogies with high-temperature
superconductivity [4] and neutron stars [5].

A natural idea expounded in a series of papers [6] has been
to apply the same FR technique to degenerate Bose gases. It has
been shown that in the case of bosons, the smooth crossover is
replaced by a thermodynamically sharp phase transition from
a coherent mixture of atoms and molecules to a pure molecular
superfluid [7]. The latter is distinguished by the absence
of atomic off-diagonal long-range order and gapped atomic
excitations. Though being of great fundamental interest in its
own right, until now this research has not met its application-
oriented counterpart in the physics of the solid state. Moreover,
experimental attempts to realize a unitary Bose gas of atoms
did not succeed. This is due to the coalescence of three and
more atoms (few-body recombination) [8] and mechanical
instability when approaching the resonance on the attractive
side [9].

In this Rapid Communication, we propose a solid-state
setting for the study and manipulation of resonantly paired
bosonic superfluids. Bosonic quasiparticles we consider are
indirect excitons in biased semiconductor heterostructures.
Our excitonic analog of BCS is expected to be stable across
the whole range of scattering lengths. The scattering length
of the excitons can be conveniently tuned by the bias electric
field. A distinct feature of an indirect exciton is a large dipole
moment oriented perpendicularly to the structure plane. In
the system under consideration, an interplay between the
long-range dipolar repulsion and the resonant interaction may
result in the formation of a fragmented biexcitonic supersolid.
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In order to better present our idea, we first recall the basic
phenomenology of the FR in atomic systems [Fig. 1(a)]. At low
energies the interaction of two atoms in the open channel (OC)
can be modeled as scattering via an ersatz two-body potential,
schematically shown in Fig. 1(b). At short distances this
potential has a minimum separated from the continuum by a
large barrier. A (quasi)bound state inside the well corresponds
to the closed molecular channel (CC), the outer continuum of
states to the OC, and the barrier emulates coupling of the two
channels due to hyperfine interactions [2]. The energy ε of the
discrete level is proportional to the magnetic field detuning of
the OC with respect to the CC. For a strictly two-dimensional
(2D) collision (relevant for our system) the scattering length
would be given by

a = r∗eα, (1)

where α = ε/β, the parameter β characterizes the barrier
transmission (for ε � β it gives the lifetime of a quasibound
state inside the well according to τ = �/πβ), and r∗ is the
microscopic range of the potential. By changing ε from
negative to positive values, one could realize the scattering
regimes where a � r∗ and a � r∗, respectively.

Our proposal of a tunable excitonic interaction is based on
the following observation. Consider excitons in their ground
state in a wide zinc-blende semiconductor quantum well (QW).
These are bosons composed of an electron with spin ± 1

2 and a
heavy hole with spin ± 3

2 . Depending on the mutual orientation
of the fermionic spins, the spin of an exciton can take four
possible values: ±1 (the so-called “bright” excitons) and ±2
(“dark” excitons) [10]. The interaction of two bright (dark)
excitons having the same spin, as well as the interaction of a
bright exciton with a dark one, is repulsive. At short distances
such excitons avoid each other due to the Pauli exclusion of
the constituent electrons and (or) holes. On the other hand, the
exchange of fermions in a pair of the bright (dark) excitons
with opposite spins can result in the binding of these excitons
into molecules (biexcitons) [11].

Suppose now that we apply an electric field in the direction
perpendicular to the QW plane. The excitons would become
polarized in the same direction. The pairwise interaction in all
channels would acquire a pronounced repulsive character at
the distances of the order of the dipolar length,

r∗ = me2d2/κ�
2, (2)
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FIG. 1. Basic idea of the excitonic Fano-Feshbach resonance
(FR). In the atomic FR (a), scattering of two atoms along the dashed
potential curve, called the open channel (OC), can be modified by
coupling to the closed molecular channel (CC) (solid curve). The
effect of CC on OC can be taken into account by replacing the actual
OC potential by the one schematically shown in (b). Remarkably, the
potential of the same type describes the interaction of two indirect
excitons in coupled semiconductor layers (c). The energy ε of the
(quasi)biexciton is proportional to the difference d − dc, where d is
the distance between the layers and dc is the critical separation at
which the true bound state disappears.

where κ is the dielectric constant of the semiconductor, m is
the exciton mass, and d is the effective distance between an
electron and a hole layer in a biased QW. In the channel where
the excitons have opposite spins, the dipolar repulsion would
introduce a potential barrier between the outer continuum of
states and the biexciton. With an increase of d the biexciton
binding energy |ε| would decrease, until, at some critical value
dc (to be specified below), the true bound state would disappear
and become replaced by a resonance (the state with ε > 0).
Close to dc,

ε ∝ d − dc, (3)

which holds both for d > dc and d < dc, providing that ε � β.
One can see that there is a one-to-one correspondence

between the interaction of excitons with opposite spins and the
generic potential introduced to model the FR in atomic systems
[Fig. 1(b)]. In particular, the result (1) with the substitution (2)
applies directly to give the low-energy excitonic scattering
length. The latter thus can be controlled by tuning the effective
distance in the vicinity of dc. The narrow interval

|d − dc| � �d ∝ β (4)

corresponds to the regime of vanishing interaction. Here, not
only does the proportionality law (3) not hold, but the very
meaning of the parameter ε as the energy of a (quasi)bound
state is no longer adequate. For d ≤ dc this energy is given
by ε̄ = −�

2/ma2, where the scattering length a diverges
according to the exponential law (1) with the power

α = α0 ∝ �d/(dc − d). (5)

The full evolution of the shape of the exciton interaction
potential as a function of d has been calculated numerically
for GaAs coupled quantum wells (CQWs) [12,13]. The
structure consists of two GaAs layers separated by a thin

AlGaAs barrier [Fig. 1(c)]. From these studies one can deduce
dc ≈ 7 nm. A straightforward dimensional analysis [13]
indicates that dc should scale as the effective electron Bohr
radius ae = �

2κ/mee
2 when changing the compound. Clearly,

these arguments can be adopted to a wide single QW as well.
The advantage of the single QW with respect to the CQW
configuration is that it offers a possibility to explore excitonic
interactions over a wider range of d, including the limit d → 0.

Crucially, the Fermi statistics of electrons and holes
prohibits bound states of more than two excitons. By virtue
of the Pauli principle, the interaction of the third exciton
with at least one exciton in the pair is always repulsive. The
absence of trimers and larger excitonic complexes in quantum
wells has been confirmed experimentally [14]. Hence, one may
think of using the proposed playground for the realization of a
stable bosonic analog of BCS. A distinct property of resonantly
paired excitons would be long-range dipolar repulsion. In what
follows, we shall discuss how it could manifest in the collective
behavior of the system.

We start with the dilute regime, where one can approach
the problem perturbatively. For simplicity, we shall consider
a binary mixture of bright (or dark) excitons only and
assume an equal population of up (“↑”) and down (“↓”) spin
branches. Spin-polarized configurations, relevant for possible
experiments in the magnetic field, will be studied elsewhere.
The Hamiltonian of the system reads

Ĥ =
∫ ∑

σ=↑,↓

̂†

σ (ρ)

(
− �

2

2m
� + Vext(ρ)

)

̂σ (ρ)dρ

+ 1

2

∫ ∑
σ,σ ′


̂†
σ (ρ)
̂†

σ ′(ρ ′)Vσσ ′(ρ−ρ ′)
̂σ (ρ)
̂σ ′(ρ ′)dρ ′dρ,

(6)

where integration is taken over the structure area, ρ = (x,y).
In the ultracold limit the microscopic two-body interaction
Vσσ ′(ρ − ρ ′) can be substituted by effective k-dependent
pseudopotentials, V 2D

σσ ′(k,k′) = gσσ ′ − 2π�
2/m|k − k′|r∗ for

a pure 2D [Vext(ρ) ≡ 0] [15] and

V 1D
σσ ′(kx,k

′
x) = gσσ ′√

2πay

+ �
2

mr∗
(|kx − k′

x |r∗)2 ln(|kx − k′
x |r∗)

(7)

for a quasi-1D geometry [16]. The latter is realized by
introducing the external potential Vext(y) = mω2

yy
2/2 tightly

confining the system in one direction, and models a waveguide
of the half width ay = √

�/mωy in the structure plane. The
momentum-dependent terms in the above formulas describe
the long-range dipolar repulsion (a common feature for all
channels). The contact parts will be taken as positive constants
for the interaction of excitons having the same spin, g↑↑ =
g↓↓ ≡ gbg > 0, and of the resonant type

g↑↓ = gbg + �
2

m

2π

ln(1/ka) + �2k2/mβ
(8)

for the channel where a biexciton can be formed. Here, a is the
2D scattering length given by Eq. (1) and in the condensate one
should let �

2k2/m = 2μ for the energy of colliding excitons,
with μ being the chemical potential. Formula (8) is only
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meaningful if ε � β. In the interval (4), where the bound
state disappears, one should subtract gbg from (8) and use the
result (5) for the power of the exponent in (1).

Having in mind a possible application of our theory to the
investigation of exciton superconductivity in 2D wires, we
shall focus on the quasi-1D geometry. The main conclusions
drawn here hold for the 2D case as well. Let us assume
ε � μ > 0, so that the situation schematically illustrated in the
bottom of Fig. 1(b) is realized, with the energy of the resonance
greatly exceeding the exciton energy. In this case, the ground
state (GS) of (6) corresponds to the true kinetic equilibrium of
the system with respect to the binary collisions. The GS wave
function is the excitonic order parameter with the components

↑,↓(x,y) = (n1/2

√
πay)1/2

e−y2/2a2
y , having Gaussian pro-

files across the waveguide and uniform 1D densities n1(x) ≡
n1 in the longitudinal direction. The chemical potential reads
μ = n1g/

√
2πay + �ωy/2. The effective coupling constant

g ≡ (g↑↑ + g↑↓)/2 is governed by ε, according to Eq. (8).
The standard Bogoliubov approach [17] yields the elementary
excitation spectrum of the form

εm(k) = Ek ≡ �
2k2/2m,

εr(k) =
√

E2
k + 2n1Ek[g/

√
2πay + r∗ ln(kr∗)�2k2/m].

The first branch, having the form of a free-particle dispersion,
describes the excitation of magnons (spin waves) [18]. The
interactions manifest in the second branch. At small k it
has the typical linear form with the slope c = √

ng/m (n ≡
n1/

√
2πay). Away from the resonance, where g ≈ gbg, the

linear dispersion law monotonously turns to a quadratic one at
higher momenta. By ramping ε down to μ, however, one can
make g to be anomalously small [see Eq. (9) below], so that
εr(k) develops a roton-maxon structure.

Rotonization of the spectrum implies a dynamical insta-
bility [15,19,20]. In the frame of the model (6) the system
would collapse . Such pathological behavior can be regularized
by introducing three-body repulsive forces [21]. In our case

these can enter the game on the attractive side of the resonance
due to the formation of weakly bound excitonic pairs. The pair
effectively behaves as a single body in collisions with the third
particle, which can give rise to the three-body term

g3/2
∫

(
̂†
↑
̂

†
↑
̂

†
↓
̂↑
̂↑
̂↓ + 
̂

†
↑
̂

†
↓
̂

†
↓
̂↑
̂↓
̂↓)dρ

at the two-body approximation level [22]. The three-body
repulsion prevents the collapse. Instead, at the point

g = gc ≡ π

2

ay

r∗

�
2

m
e−1/2n1r∗−1 − 3

32π

n1g3

ay

, (9)

the GS undergoes a first-order quantum phase transition to
a supersolid—a condensate with a periodical modulation of
density [19,21,23].

Physically, the onset of the roton instability reflects the
tendency for the system to crystallize. It is well known that
for particles interacting via long-range repulsive forces it may
be profitable to arrange into a periodic structure at sufficiently
high pressure and low temperature [24]. The effect of resonant
attraction in a dipolar BEC consists in the possibility of
building up a lattice potential already in the dilute limit.
The lattice constant is of the order of the healing length
ξ =

√
�2/mng, i.e., in contrast to usual crystals it spans a

macroscopically large amount of particles.
By increasing the pressure one can bring the system to the

dense and, generally speaking, strongly correlated regime. The
perturbative theory fails to predict properties of the GS there.
Instead, some phenomenological arguments can be applied.
Thus, it can be postulated [16,25,26] that the equilibrium
state of a strongly coupled excitonic BCS still manifests
macroscopic long-range order, though the healing length is
now much less than the lattice constant. Each unit cell of
this state may be regarded as a trapped 2D BEC in the
Thomas-Fermi limit. Possible quantum phases and transition
between them within a condensate can be examined by using
the Hamiltonian [16]

Ĥ ′ =
∫ ∑

σ=↑,↓,B


̂†
σ (ρ)

(
− �

2

2mσ

� − μ̄σ

)

̂σ (ρ)dρ + 1

2

∫ ∑
σ,σ ′


̂†
σ (ρ)
̂†

σ ′(ρ ′)Vσσ ′(ρ − ρ ′)
̂σ (ρ)
̂σ ′(ρ ′)dρ ′dρ

+ ε

∫

̂

†
B
̂Bdρ − �2β

2πm

∫
(
̂†

↑
̂
†
↓
̂B + 
̂↑
̂↓
̂

†
B)dρ, (10)

with μ̄↑ = μ̄↓ = μ̄B/2 ≡ μ̄ being the local chemical poten-
tials and m↑ = m↓ = mB/2 ≡ m. The two-body potentials can
be taken in the form Vσσ ′(ρ − ρ ′) = gσσ ′δ(ρ − ρ ′) with some
parameters gσσ ′ > 0 to be defined from the experiment. The
resonant interaction in (10) appears explicitly as the last term
which converts two excitons with opposite spins to a biexciton
(the corresponding field operator is labeled by B) and vice
versa.

By adjusting the external bias voltage such that μ � ε

one can completely eliminate the excitonic component and
obtain a purely molecular (biexcitonic) BEC. The elementary
excitation spectrum of this phase is shown in Fig. 2. In addition
to the usual sound mode, it has a gapped branch corresponding

to the pair-breaking excitations. The gap can be controlled by
the applied electric field (via the parameter ε). Both branches
satisfy the Landau criterion for superfluidity. For μ � ε the
gapped mode lies above the phonon one and the critical
velocity is given by the velocity of sound cB = √

ngBB/m.
For sufficiently large values of gσσ ′’s, quantum fluctuations

of the relative phases arising from depleted regions in between
the condensates drive the supersolid to a number-squeezed
configuration [25,27], akin to the fragmented BEC in optical
lattices [28]. In this regime the tunneling between the adjacent
lattice sites is frozen and the condensates do not talk with
each other. The system resembles more a crystal than a
quantum liquid. The size of a cell is governed by the balance
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FIG. 2. Fragmented biexcitonic supersolid. Fine tuning of the
contact part of the exciton interaction by means of the electric
field yields a roton instability (upper spectrum on the right) of
a uniform density distribution (light gray color on the left). The
instability drives the condensate to a supersolid state, characterized by
periodical modulation of the density (gray, on the left). Stability of this
state is guaranteed by a three-body repulsive interaction of excitons
(single arrows) with their biexcitonic molecules (paired arrows).
Upon a density increase, the supersolid fragments into a periodical
chain of molecular condensates (dark gray), characterized by strong
repulsion and a gapped elementary excitation spectrum (bottom, on
the right). We take the parameters typical for the experiments on
GaAs CQWs [29,30].

between the kinetic and entropy terms in the free energy of
the fragmented supersolid [25]. At typical exciton densities in

GaAs QWs a cell would be about 10 μm large and contain 104

particles.
As we have seen above, by going deep into the molecular

regime (μ � ε), the cells of the supersolid can be made
superfluid. The characteristic temperature of biexciton su-
perfluidity would be on the order of the Kosterlitz-Thouless
(KT) transition point kBTKT ∼ �

2n/m. The upper limit on
the density n is imposed by quantum dissociation of excitons
that occurs when the mean interexciton distance becomes
comparable to the exciton size. The latter can be significantly
reduced by using the so-called van der Waals heterostructures
based on transition metal dichalcogenides (TMDs) [31]. A
general strategy for achieving record-high values of TKT with
TMDs has been worked out in Ref. [32]. By using the results
of that work, we estimate TKT ∼ 20 K and cB ∼ 5 cm/μs
for the largest values of the superfluid temperature and
velocity which one may expect in a prototype MoS2/h-BN
structure.

In conclusion, we have shown that dipolar excitons in
coupled 2D films can be used for the realization of a stable
bosonic analog of the BCS superconductor. The state of
a resonantly paired excitonic gas can be controlled by the
electric field applied perpendicularly to the structure plane.
The proposed setting should allow one to create novel dense
and strongly correlated quantum phases of bosons. As an
illustration, we predict a fragmented biexcitonic supersolid.
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