
HAL Id: hal-01383860
https://hal.science/hal-01383860

Submitted on 21 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

In Situ Statistical Analysis for Parametric Studies
Théophile Terraz, Bruno Raffin, Alejandro Ribes, Yvan Fournier

To cite this version:
Théophile Terraz, Bruno Raffin, Alejandro Ribes, Yvan Fournier. In Situ Statistical Analysis for
Parametric Studies. In Situ Infrastructures for Enabling Extreme-scale Analysis and Visualization
(ISAV2016), Nov 2016, Salt Lake City, United States. �hal-01383860�

https://hal.science/hal-01383860
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

In Situ Statistical Analysis for Parametric Studies
Théophile Terraz ∗, Bruno Raffin∗, Alejandro Ribes † and Yvan Fournier ‡

∗Univ. Grenoble Alpes, Inria, CNRS, LIG, France
†EDF Lab Paris-Saclay, France
‡EDF Lab Paris-Chatou, France

Abstract—In situ processing proposes to reduce storage needs
and I/O traffic by processing results of parallel simulations
as soon as they are available in the memory of the compute
processes. We focus here on computing in situ statistics on the
results of N simulations from a parametric study. The classical
approach consists in running various instances of the same
simulation with different values of input parameters. Results are
then saved to disks and statistics are computed post mortem,
leading to very I/O intensive applications. Our solution is to
develop Melissa, an in situ library running on staging nodes as a
parallel server. When starting, simulations connect to Melissa
and send the results of each time step to Melissa as soon
as they are available. Melissa implements iterative versions of
classical statistical operations, enabling to update results as soon
as a new time step from a simulation is available. Once all
statistics ar updated, the time step can be discarded. We also
discuss two different approaches for scheduling simulation runs:
the jobs-in-job and the multi-jobs approaches. Experiments run
instances of the Computational Fluid Dynamics Open Source
solver Code_Saturne. They confirm that our approach enables
one to avoid storing simulation results to disk or in memory.

I. INTRODUCTION

Large scale simulations are producing an ever growing
amount of data that are overloading the machine I/Os, im-
pacting the performance of both the simulation when saving
the data, and the post hoc analysis when reading them. In situ
processing proposes to move away from the standard approach
that consists in saving raw data to disks and then perform
result analysis post mortem. In situ aims at reducing data
traffic and speeding-up result analysis by performing result
processing (compression, indexation, analysis, visualization,
etc.) as closely as possible to the locus and time of data
generation [15]. Research to make in situ processing efficient
often focuses on how to perform analytic on the data produced
by a single large parallel simulation [6]. Investigated issues
include the development of various frameworks for easing
coupling the simulation and the analysis [5], [7], [4], advanced
strategies for resource sharing between the simulation and the
analysis [16], as well as new algorithms taking into account
the specific balance of the in situ processing context (need to
save on data movements) [1].

In this paper we consider a different context where we
compute statistics combining the results of N simulations to
perform a parametric study. The result of such a family of runs
is called ensemble data set, and each individual run is called
a member. Ensembles are also multidimensional, multivariate
and multivalue [13]. Challenges in analysing and visualizing
ensembles stem from the size and complexity of the data [14].

Te
m
pe
ra
tu
re

Time

Figure 1: Visualization of 600 Monte Carlo simulations of
thermo-hydraulical transients.

The classical approach consists in running various instances
of the same simulation with different values for some input
parameters. Results are saved to disks and statistics computed
post mortem. The base scenario is to compute statistics, an
average for instance, over the various values that take a given
parameter for a given mesh element at a given time (x, y, z, t)
through the N simulations. To avoid being overwhelmed with
data, often the simulation outputs the data for a sub-sample of
all the computed (x, y, z, t) points.

Parametric studies are becoming increasingly popular in
industrial environments. For instance a consortium of compa-
nies, including EDF, one of the biggest electricity producer in
the world, has developed specific software infrastructures for
parametric studies like OpenTurns [8]. But such environments
are working with data stored in files and cannot cope with
very large amount of data. A solver like Code_Saturne, a
CFD code developed at EDF, can run large scale numerical
simulations [10], dealing with meshes from several million up
to a few billion million cells. Code_Saturne already supports
in-situ visualisation based on Catalyst [12], but for a single
run. Performing analysis on several runs requires to an amont
of data that is several order of magnitude larger. With the
hypothesis that the solver is (using the nomenclature of [13]):

• multidimensional: we consider a 3D mesh with 1,000
million cells and 200 time steps,

• multivariate: we consider calculating 10 result vector
fields (with 3 components per field element),

• multivalued: we consider a simple parametric study with
N=100 runs,

the ensemble size would reach 1,200 TB (109 × 200 × 10 ×

3× 100× 2 considering data coded on 2 bytes) or 12 TB per
simulation run. One could argue that such 1,000 million cells
mesh has never been used in parametric studies before. If we
consider a simpler 100 times smaller mesh of 10 million cells,
a scale today common in industrial environments, we would
still get an ensemble of 12 TB. To reduce the data size, a first
solution commonly adopted in industrial parametric studies
consists in eliminating part of the complexity by choosing
one variable (eliminate multivariability) and one point in
the simulation (eliminate spatial multidimensionality). This
solution leads to a reduced dataset where only the multiple
values of one parameter for the different simulations and
timesteps are kept. Fig. 1 shows 600 Monte Carlo simulations
of temperature in function of time in a thermo-hydraulical
transient parametrical simulation performed at EDF, simu-
lating a large break loss of primary coolant accident in a
power plant. The engineer can study the loss of temperature
by exploring this set of curves but they are focusing on a
specific variable and on a specific location in the simulation
domain. Attempting to compute statistics for all variables and
locations handling data stored on disks would be extremely
time-consuming or just not possible today.

In this paper we present early work to compute efficiently
the statistics for all variables, locations and timesteps, by
relying on an in situ processing approach. The goal is to avoid
having to save the simulation results to disk, computing the
statistics as soon as available from the simulations. Because
we bypass the disk, we can envision to compute the statistics
at a high sampling rate, or, what we considered for our
experiments, at full resolution. For that we have developed
a library called Melissa (Modular External Library for In Situ
Statistical Analysis), running on staging nodes as a parallel
server. When starting, simulations connect to Melissa and
forward it the results of each time step as soon as available.
Melissa implements iterative versions of classical statistic
operations (average, standard deviation, minimum, maximum
and threshold exceedance) enabling to update results as soon
as a new time step from a simulation is available. Once all
statistics updated, the time step can be discarded. We also
discuss two different approaches for scheduling simulation
runs. Each run can be submitted to the machine batch sched-
uler, letting the scheduler optimize resource allocation globally
in between all submitted jobs from the different users. The
second approach consists in requesting once the necessary
resources for running all simulations as well as Melissa,
and then use our own scheduling strategy on the allocated
resources. After presenting Melissa Architecture (Sec. II), we
introduce some early experiments (Sec. III).

II. ARCHITECTURE

A. Iterative Statistics

We consider a numerical simulation on a fixed mesh. The
simulation computes values for different fields u for each mesh
cell or node. As meshes have usually 3 dimensions, we denote
by X = (x, y, z) each node or cell. The simulation progresses
in time through various time steps (all simulations simulate

the same time steps). Let t be the time step index. The same
simulation runs N times with different input parameters. Let
call i the ith simulation. The goal is to compute statistics over
all simulations for each mesh element at each time step and
for each field u(i,X, t). For instance, the classical formula to
compute a simple mean of the field u for each (X, t) over the
N simulations is:

µ(X, t) =

∑
i=1,N u(i,X, t)

N

Our goal is to compute such statistics in situ with a minimal
memory footprint. If the statistics can be computed iteratively,
i.e. if the current value can be updated as soon as incoming
results are available, we would not need to save the simulation
results. This is actually the case for the simple mean µ that
can be formulated iteratively:

µi(X, t) = µi−1(X, t) +
1

i
(u(i,X, t)− µi−1(X, t))

with µ0(X, t) = 0 and 1 ≤ i ≤ N . Similarly for the the
variance:

Vi(X, t) = Vi−1(X, t)

+ (u(i,X, t)− µi−1(X, t))(u(i,X, t)− µi(X, t))

with V0(X, t) = 0 and 1 ≤ i ≤ N . Not only simulation
results do not need to be saved, but they can be consumed
in any order, lossening synchronisation constraints on the
simulation executions. More generally, a given statistic Stat
can be computed iteratively if it can be written as:

Stati(X, t) = f(Stati−1(X, t), u(i,X, t)).

We implemented iterative statistics for the simple mean, vari-
ance, minimum and maximum, threshold exceedance follow-
ing [9]. In all cases, simulation results can be processed in
any order. It remains to be seen if all statistics that a user may
need, can be formulated iteratively.

B. In Transit Data Processing

Given that the statistics we perform combine the results
obtained from different simulations on the same mesh element
and time step, we based Melissa architecture on an in transit
processing model where simulations results are forwarded
as soon as available to the staging nodes Melissa runs on
(Fig. 2). Combining an in situ approach with iterative statistics
enables to drastically reduce the amount of memory needed.
No simulation is saved to disk. Melissa only needs to keep in
memory the current version of each statistic computed. It is of
the order of the size of the results of one simulation. Increasing
the number of staging nodes enables to increase the amount
of memory available. Memory size can also be extended by
relying on out-of-core memory (using local SSD disks or burst
buffers for instance) but Melissa does not support it yet.

Simk

Melissa

Simg

Simp (starting)

Simulation process with its ZeroMQ
client extension

Melissa process with its ZeroMQ
server extension

Figure 2: Melissa architecture diagram. Simulations connect to
Melissa when starting and forward results as soon as available.

C. Client/Server

Melissa relies on a client/server model. This is not classical
in HPC environments, but it is a flexible approach that fits
well the particular execution scheme of parametric studies. A
Melissa server runs in parallel several MPI processes that can
be distributed on different nodes. Melissa runs as a service
waiting for simulations to connect and forward their results.
Once the connection between one simulation and Melissa
is established, each process from the simulation directly
distributes its results to the target Melissa processes that
need them, thus limiting data copies. Messages received are
directly processed to update the computed statistics. Melissa
can process the incoming messages from several simulations
running simultaneously. Melissa adopts its own partition of
the simulation space that is so far defined statically at start
time. On the simulation side, the modifications required are
minimal. The code needs to embed the logic for establishing
the connection with Melissa, the routine to scatter the data to
the correct target Melissa processes, and connection closing.

Current Melissa implementation relies on the ZEROMQ
communication library [11] commonly used for distributed
applications. ZEROMQ allows several clients to connect to the
same server port, and takes care of message transfer, buffering
and aggregation in the background. It proved very convenient
for development. The main ZEROMQ limitation we identified
so far is the lack of direct support for high performance
networks like Infiniband. It needs to rely on IP over infiniband
instead. However in our context we did not experience any
performance issue, neither on the simulation side nor on the
server side. We did attempt to use MPI_connect, but it proved

more cumbersome than ZEROMQ, leading to a more complex
code without any visible performance benefit.

We could rely on a solution like DataSpaces [4] that
provides in-memory data staging for parallel simulations. But
we actually do not need to store the simulation results as they
are consumed as soon as produced.

D. Resource Allocation

The client/server model allows to run each simulation
independently in different execution contexts. This flexibility
enables to envision two different ways for scheduling execu-
tions:

• Jobs-in-job: the user first request one set of processors
for executing all the simulation runs and one instance of
Melissa to the machine scheduler in charge of deciding
when and where to execute submitted jobs. Then, this
is the user responsibility to schedule the different jobs
within the envelop of resources allocated by the machine
scheduler. One option is to rely on a traditional batch
scheduler. Some like OAR [2] support such scheduling
scheme. Once the resources available, the user can have
a good estimate of the full execution duration.

• Multi-jobs: each simulation run is submitted individually
to the machine batch scheduler. The only constraint is to
make sure that Melissa is running from the first to the
last simulation execution, and that the communication
between jobs from the same user are allowed on the
machine. Exposing all the runs to the machine batch
scheduler allows it to take benefit of their independence
to better leverage the machine resources. But the global
duration of the experiment is more uncertain compared
to the previous approach.

Notice that because Melissa does not need all the runs to
execute with the same number of processes, the number of
processors allocated to each run could be decided by the batch
scheduler. Though it has been shown that scheduling these
moldable jobs is more efficient than having rigid jobs, this is
a feature supported by some batch schedulers but that we did
not test yet in our context [3].

III. EXPERIMENTS

We present here a first set of early experiments at modest
scale. All the computations presented in this paper were
performed on the Froggy machine. Each Froggy node have
two Intel E5-2670 (Sandybridge) 2.6 Ghz 8 cores processors,
64 GB memory, and are interconnected by a FDR InfiniBand
network. The batch scheduler used on this machine is OAR1.

The simulation code is Code_Saturne2, a parallel CFD
code developed by Electricité de France (EDF). The statistical
analysis is performed by Melissa. The use case created by
EDF for this experiment simulates a purge of a volume of
hot water by introducing a flow of cold water (Fig. 3). The
parametric study consists in varying the initial temperature

1https://oar.imag.fr/
2http://code-saturne.org/

Figure 3: The use case : a cavity filled with 300◦C water,
chased by a stream of 25◦C water.

of the hot water from 300◦C to 350◦C by 5◦C steps, and the
temperature of the cold water from 20◦C to 30◦C by 1◦C steps.
For this experiment, Melissa computes the mean, variance and
min and max of temperature and pressure for each element
of the mesh at each time step. We used a 3D mesh of 6 002
400 elements. Adapting Code_Saturne to support Melissa was
straightforward. We wrote a new writer (Code_Saturne plugin
that encapsulates the output data management code) based on
Melissa. This writer code is about 400 lines of codes including
40 Melissa specific ones.

We first ran one simulation writing the outputs to disk
(Ensight Gold data format). The output is 24 MB per time step
and per output field. If we run 100 simulations with 30 time
steps and two output fields each, this leads to write 144 GB on
disc. When analysing the results in situ these data are directly
processed by Melissa. Disk usage is limited to storing the final
statistics (24 MB per time step per field and per statistic, for
a total of 5.76 GB). Statistics for each time step can next be
visualized with traditional tools like VTK/Paraview (Fig. 4).

Experiments also confirm that computing the statistics is a
lightweight work compared to the simulation. Running Melissa
on 16 processes (one node) and the simulation on up to 128
cores (8 nodes), Melissa processes the data produced by one
time step in less than 0.02% of the time it takes to compute
these results. When running 100 simulations in parallel, each
one on 16 processes (1 node), Melissa load is still bellow 1%.

We tested the two different scheduling strategies presented
in II-D using the OAR batch scheduler. The jobs-in-job
scheduling can be performed with OAR by first submitting
a specific empty job called a container to request for the
allocation of a set of resources. Then, we submit independently
the simulations and Melissa job as usual, but requesting OAR
to schedule these jobs in the container only. As expected on
a an empty cluster, the delay between the first job submission
and the completion of the executions was similar for both
cases (multi-jobs and jobs-in-job). On a busy cluster, launching

(a) t = 0.006 s (b) t = 0.012 s

(c) t = 0.018 s (d) t = 0.024 s

Figure 4: Heat variance fields for 100 simulations at four
different time steps on an horizontal slice

multi-jobs leads to a faster scheduling.

IV. CONCLUSION

We presented the early development of Melissa, a library for
computing statistics for large scale parametric studies. Melissa
runs as a parallel server on staging nodes, processing the
results of each time step as soon as available. Melissa enables
to bypass the storage of simulation results to disk and requires
memory to store the computed statistics only. Such gains rely
on the capability to compute the statistics iteratively. Future
work include large scale experiments, adding more statistic
operations as well as extending Melissa with fault tolerance
mechanisms. Melissa is still at an early development stage.
We expect to open source the code and make it available in
the coming months.

ACKNOWLEDGEMENT

This work was partly funded in the Programme
d’Investissements d’Avenir , grant PIA-FSN2 -Calcul
intensif et simulation numérique - 2 - AVIDO. All presented
computations were performed on the CIMENT infrastructure3,
which is supported by the Rhône-Alpes region (GRANT
CPER07_13 CIRA) and the Equip@Meso project (reference
ANR-10-EQPX-29-01) of the programme Investissements
d’Avenir supervised by the Agence Nationale pour la
Recherche.

REFERENCES

[1] A. Agranovsky, D. Camp, C. Garth, E. Bethel, K. Joy, and H. Childs.
Improved post hoc flow analysis via lagrangian representations. In Large
Data Analysis and Visualization (LDAV), 2014 IEEE 4th Symposium on,
pages 67–75, Nov 2014.

[2] N. Capit, G. D. Costa, Y. Georgiou, G. Huard, C. Martin, G. Mounié,
P. Neyron, and O. Richard. A batch scheduler with high level compo-
nents. In 5th International Symposium on Cluster Computing and the
Grid (CCGrid), 2005.

3https://ciment.ujf-grenoble.fr

[3] M. C. Cera, Y. Georgiou, O. Richard, N. Maillard, and P. O. A.
Navaux. Supporting MPI Malleable Applications upon the OAR Re-
source Manager. In Colibri : Colloque d’Informatique: Brésil / INRIA,
Coopérations, Avancées et Défis, Rio Grande do Sul, Brazil, June 2009.

[4] C. Docan, M. Parashar, and S. Klasky. DataSpaces: an Interaction and
Coordination Framework for Coupled Simulation Workflows. Cluster
Computing, 15(2):163–181, 2012.

[5] M. Dorier, G. Antoniu, F. Cappello, M. Snir, and L. Orf. Damaris:
How to Efficiently Leverage Multicore Parallelism to Achieve Scalable,
Jitter-free I/O. In CLUSTER - IEEE International Conference on Cluster
Computing. IEEE, Sept. 2012.

[6] M. Dorier, M. Dreher, T. Peterka, J. M. Wozniak, G. Antoniu, and
B. Raffin. Lessons Learned from Building In Situ Coupling Frameworks.
In Workshop on In Situ Infrastructures for Enabling Extreme-scale
Analysis and Visualization (ISAV’15)- Held in conjunction with SC15,
Austin, Nov. 2015. ACM.

[7] M. Dreher and B. Raffin. A Flexible Framework for Asynchronous
In Situ and In Transit Analytics for Scientific Simulations. In 14th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Com-
puting, Chicago, United States, May 2014. IEEE Computer Science
Press.

[8] EDF, EADS France, and PHIMECA Engineering. Openturns, http://
www.openturns.org.

[9] T. Finch. Incremental calculation of weighted mean and variance.
Technical report, University of Cambridge, 2009.

[10] Y. Fournier, J. Bonelle, C. Moulinec, Z. Shang, A. Sunderland, and
J. Uribe. Optimizing code_saturne computations on petascale systems.
Computers & Fluids, 45(1):103 – 108, 2011. 22nd International Confer-
ence on Parallel Computational Fluid Dynamics (ParCFD 2010)ParCFD.

[11] P. Hintjens. ZeroMQ, Messaging for Many Applications. O’Reilly
Media, 2013.

[12] B. Lorendeau, Y. Fournier, and A. Ribes. In Situ visualization in fluid
mechanics using Catalyst: a case study for Code_Saturne. In IEEE
Symposium on Large Data Analysis and Visualization (LDAV), 2013.

[13] A. L. Love, A. Pang, and D. L. Kao. Visualizing spatial multivalue data.
IEEE Computer Graphics and Applications, 25(3):69–79, May 2005.

[14] A. T. Wilson and K. C. Potter. Toward visual analysis of ensemble data
sets. In Proceedings of the 2009 Workshop on Ultrascale Visualization,
UltraVis ’09, pages 48–53, New York, NY, USA, 2009. ACM.

[15] H. Yu, C. Wang, R. Grout, J. Chen, and K.-L. Ma. In situ visualiza-
tion for large-scale combustion simulations. Computer Graphics and
Applications, IEEE, 30(3):45–57, 2010.

[16] F. Zheng, H. Yu, C. Hantas, M. Wolf, G. Eisenhauer, K. Schwan,
H. Abbasi, and S. Klasky. GoldRush: Resource Efficient in Situ Scien-
tific Data Analytics Using Fine-grained Interference Aware Execution.
In Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, SC ’13, pages 78:1–
78:12, New York, NY, USA, 2013. ACM.

