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Existence and Unigueness Theorems for the Two-Dimensional Ericksen—Leslie System

Gregory A. Chechkin, Tudor 5. Ratiu, Maxim S. Romanov and Vyacheslav N. Samckhin

Communimited by M. Hieber

Abstract. In this paper we study the two dimensional Ericksen—Leslie equations for the nematodynamics of lquid crys
tals if the moment of mertia of the molecules does not vanish, We prove short time existence and uniqueness of strong
solutions for the initial value problem in two situaticns: the space-periodic problem and the case of a bounded domain
with spatial Dirichlet boundary conditions on the Eulerian velocity and the cross product of the director field with its
time derivative. We also ghow that the speed of propagation of the director field is finite and give an upper bound for
1L,

Keywords. Liquid crystals, Ericksen—Leslie equations, nematodyvnamics, existence and unigueness, director field,
apeed of propagation.

1. Introduction

Liquid crystals, a state of matter exhibiting properties between those of a liquid and a solid ecrystal,
were discovered by the botanical physiologist Friedrich Reinitzer in 1888, They were first studied by the
physicist Otio Lehman around 1900 and the chemist Daniel Vorlinder who, at the beginning of the 20th
century, synthesized most of the liquid erystals known at the time. The mineralogist and crystallographer
George Friedel gave a first classification of the liquid erystals arcund the same time. The first modern
phyzical theory of liquid crystals, due to the physicist Carl Wilhelm Oseen, was formulated during the
1930s. In the same period, the physicist Victor N. Tavetkov used viscosity, dielectric, and diamagnetic
anisotropy of liguid crystals to create a general theory of the mesomorphic state. He invented methods
that led to the understanding of the dynamic properties of the mesophaszes. In 1963, James Ferguson
used liquid ervstals in practical applications, such as detecting thermal fields. After that, interest in
liquid crystals has increased dramatically.

The microscopic theoretical treatment of Auids iz very complicated, since interactions hetween mole-
cules should be taken into account. In the casze of liguid crystals, which are anisotropic in all of these
interactions, the analysis is another order of magnitude more complicated, However, there are a number
of microscopic theoriez that can at least predict the general behavior of the phase transitions in liquid
crystal systems (see, for instance [1]),

There are two broad kinds of liquid ecrystals: thermotropic (formed by heating a solid) and
Iyotropic (formed in mixtures of solids with solvents). The thermotropic liquid crystals may be
nematic, smectic, cholesteric (see Fig. 1), chiral, discotic, or in the blue phase. In all these
types of liquid crystals, the orientation of the molecular dipole is defined by a unit vector, called
“director”.

! From Wikipedia article hitp://www. mmssika ru/t. phpTt=4305 and a google search for images of liquid crystals, where
many more pictures of various phases of liguid erystals can be found.



F1a. 1. The structure of smectic (left), nematic (center) and cholesteric (right) liquid crystals

In this paper, we study liquid crystal nematodynamics (i.e., the hydrodynamics of nematic liquid
crystals). In previous work, we investigated periodic mesomorphic media [2] and homogenization of micro
inhomogeneous nematic liquid crystals (periodic in [3] and random in [4]).

The hydrodynamic theory of liquid crystals, due to Ericksen and Leslie, was developed in the 1960’s
[5-8]; see also [9,10]. The subject of our research is the Ericksen—Leslie system describing the dynamics
of nematic liquid crystals

ong .

u—MAu:—Vp—%(a]: -(Vn))+F+f, divu =0, (1)
Ji—2m+h=g+G, |n||=1,

where summation on repeated indices is understood, n,, := %n, and
J
OF
-(Vn) := Vny
8nmj 8nk,1j

(see also [1, formulas (3.90), (3.99), (3.100), (5.2)], [11, page 90], or [12]). Here, u is the Eulerian, or spatial
velocity vector field, n = (ny,na, ng) is the director field, the constant p > 0 is the viscosity coefficient,
the constant J > 0 is the moment of inertia of the molecule, F(x,t) and G(x,t) are given external forces,
and := % +u-V is the material derivative. The terms f and g correspond to the dissipative part of the
stress tensor and the dissipative part of the intrinsic body force, respectively, and they depend on u, n,
and their derivatives. The function F(n, Vn) is the Oseen-Zdcher-Frank free energy and is defined by

1
F(n,Vn) := Kin-curln + 3 (Ku(div n)? + Ky (n - curln)? 4 Ks3|n x curln||2) ) (2)
The molecular field h is defined by
OF 0 OF
he=2" 2 .
On Oz (8n$j) (3)

The pressure p and the Lagrange multiplier 2q are determined, respectively, by the conditions divu =0
and ||n|| = 1.

We are interested in the non-dissipative case, i.e., g = 0, f = 0. Since the liquid crystal is nematic,
we necessarily have K7 = 0. For simplicity, we study the one-constant approximation, i.e., we assume

Kll = K22 = K33 =K >0.
Thus, using ||n|| = 1, the Oseen-Zocher-Frank free energy (2) becomes

Kay — K33
2

K
(n - curln)? + =22 ||n|/?||curl n|?

F= ﬁ(div n)? + 5

2

. K
= E(dlv n)2 + ?(nj,xinj,xi - ni,xj”j,a:i)v (4)



where the subscript z; means partial derivative relative to the spatial coordinate x; and summation on
repeated indices is understood, irrespective of their position. Hence,
oF 0 oOF

- ?
on Emmj

= K(dlv n)5ij + K?’li@j — Knj@z. (5)

Lemma 1.1. The non-dissipative (i.e., f =0, g = 0) nematic (i.e., K1 = 0) Ericksen—Leslie equations in

the one constant approzimation (i.e., K := K11 = Koy = K33 > 0) are
ua—pAu=-Vp - K (nwj . (Vn))z_ +F, divu=0, (©)
Ji+ (Ja|?~h-n+G-n)n+h=G, |n||=1,

where the molecular field has the expression

_OF 9 (8}'

= o0 or; \on,,

) — —KAn. (7)

and p' :=p+ & ((divn)? —niz,n;a.,) .
Proof. Formula (5) implies
10 (or
K 8xj anlj

Tj

. (Vn)) = (((le n)5ij + ni,mj — njymi) an)

= (n;”wj Vn; + N g, V"j,rj + (nwj Vn,;) — njyzjmiVni — nj,miVm,zj)

1
= (i, Vi), + 3V ((divn)? = ni;nj.0,)
and hence the first equation in (1) becomes the first equation in (6). In addition, (3) and (5) yield
hi = =Kk aya;0ij + Niaja; = Njaie;) = —K AN

which is (7).
Next, taking the dot product of the second equation in (1) with n yields

2¢=Ji-n+h-n—G-n=-Ja|*+h-n—G-n (8)
since n - n = 0. Therefore, the second equation in (1) becomes
0=Ji—2mn+h-G=Ji+ (J|n|’~h-n+G-n)n+h-G

which is the second equation in (6). O

We rewrite the Ericksen—Leslie equations (6) as a system of three equations of first order by introducing
a new vector field v. This vector field appeared for the first time in [13], motivated by the geometric and
variational structure of the conservative version of the Ericksen—Leslie equations (i.e., u =0, f = g =0,
F=G=0).

Theorem 1.1. If (u,n) is a solution of Ericksen—Leslie equations (6), ||n|| = 1, define the vector field
v:=nxn. Then, (u,v,n) is a solution of the system

u—pAu = —-Vp' — (Knp,,Vng),, + F, divu=0, (9)
Jv=—-K(An) xn+n x G, (10)
n=vxn, (11)
with initial conditions ng and vy satisfying |ng|| =1 and ng - vy = 0.

Conversely, if (u,v,n) is a solution of the system (9)—(11) with initial conditions ny and vy satisfying
Ingl| =1 and ng - vy =0, then (u,n) is a solution of the Ericksen—Leslie equations (6).



Proof. Suppose that (u,n) is a solution of Ericksen—Leslie equations (6) and define the vector field
v:=nxn. Then, vy xn = (nxn)xn =nsince |n| =1 and n-n = 0, which gives (11). The first
equation in (6) coincides with (9). Finally,

. 6 7
Jz):J(nxfl):nxJﬁ(:) —n><h+n><G(:) —K(An) xn+nxG
which is (10).
Since (u,n) is a solution of (6), we have ||n|| = 1. In addition, n-v = n- (n x n) = 0. Therefore, the
initial conditions of the system (9)—(11) necessarily satisfy ||ng|| = 1 and ng - vo = 0, as stated.
Conversely, suppose that (u, v, n) is a solution of the system (9)—(11) with initial conditions satisfying

(11

[no|l =1 and ng - vo = 0. Then (|n||?) =2n-n :) 2n- (v x n) =0 and

1
(n~u):r'1~u+n~1'/:(1/><n)~n+n~j(fKAn><n+n><G):()

by (10) and (11), which implies |n|| =1 and n-v = 0.

We have n x n (: n x (v xn) = v since |n|| =1 and n- v = 0. Conversely, if v = n x i, then
vXxn=(nxn)xn=n, since ||n| =1.

The first equation in (6) coincides with (9).

Finally, by (7), (11), |n|]| =1, and v - n = 0, we get

Ji+ (J|n*~h-n+G-n)n+h=Joxn+Jvxn+ (J|a|*+ KAn-n+ G -n)n— KAn

(1:0) —K((An) xn)xn+ (nx G) xn+ Jv x (v X n)
+(J|v[|’+ KAn-n+ G -n)n— KAn

= KAn—K(n-An)n+ G — (G -n)n — J||v|’n
+J|v|’n+ K(An-n)n+ (G -n)n — KAn = G

which is the second equation in (6). O

In terms of v, by (8) and (11), we have 2¢ = h-n — J|v||? — G - n.

Because of Theorem 1.1, we work in the rest of the paper exclusively with the Ericksen—Leslie equations
expressed as (9)—(11) with initial conditions (ug, o, ng) satisfying ||ng|| = 1 and ng - vg = 0.

Since the structure of the full Ericksen—Leslie system is sufficiently complicated, simplified models have
been introduced in order to get some reasonable results. Most of the known results are obtained under
the assumption J = 0. For the incompressible model in [14], Lin introduced a simplification of the general
Ericksen—Leslie system that keeps many of the mathematical difficulties of the original system by using
a Ginzburg-Landau approximation to relax the nonlinear constraint. Namely, instead of the restriction
|n|| = 1, the penalty term % (||n|> — 1)? was added to the free energy functional. In [15], Lin and Liu
showed the global existence of weak solutions and smooth solutions for that approximation. In [16], a very
simple proof of local well-posedness for this coupled system was provided using a contraction mapping
argument. It was proved that this system is globally well-posed and has compact global attractors in 2D.
Recently, Hong [17] and Lin-Liu-Wang [18] showed, independently, the global existence of weak solutions
of an incompressible model in two dimensional space. Moreover, in [18], the regularity of solutions, except
for a countable set of singularities whose projection on the time axis is a finite set, has been obtained
(see also [19]). In [20], Wang established a global well-posedness theory for the incompressible liquid
crystals for rough initial data. A simplified Ericksen—Leslie system for two-dimensional compressible flow
was considered in [21]. Hieber, Nesensohn, Priiss, and Schade analyzed in [22] the simplified system as a
parabolic evolutional equation in an L,—L,-setting and studied the system near an equilibrium.



In the present paper we focus on the system (9)—(11) in the hyperbolic case J > 0 and prove an
existence and uniqueness theorem for two-dimensional periodic media as well as for the problem in a
bounded domain of the plane. We also prove the finite propagation speed of waves in such media.

Some results in this paper were announced in [23].

2. Two-Dimensional Solution in a Periodic Domain

Consider a liquid crystal flow in R3. The flow is called two-dimensional if all unknowns in the Ericksen—
Leslie system are independent of the third coordinate z3; so we can suppose that they are all defined on
a plane (1, z2).

Let Qr := (0,T) x T, where T := R?/Z? is the two-dimensional flat torus. We study the system
(9)—(11) in Q7 with initial conditions

U(O, JZ) = o, IJ(O,I) = Vo, n(ovx) = ng, (12>

satisfying ||ng|| = 1 and ng - vo = 0. Here u, v, n are unknown vector fields, p’ is an unknown scalar
function, and J, K, u are fixed strictly positive numbers. The material derivative f; + Z?Zl u'f,, turns
. 2 i
into fi + >, u' fa,.

It is natural to consider a flat motion, i.e., u: T — R? x {u = 0}. Note that the vector fields n, v
are always three-dimensional, even if they are defined on a flat two-dimensional domain; in particular the
director field is not necessarily tangential to the plane {z3 = 0}.

2.1. Notations and Definitions

Throughout the paper we use the following notations:

o fi= %{ +u-Vf=fi+ ujfx]. is the material time derivative of f;

e a bold letter b denotes a 3-dimensional vector b = (b!, b2, %), or a vector field with values in R?;
e standard summation convention is used on repeated indices, independent on their position, e.g.,
aibi = Zz aibi;

Ly(T) :={v:T— R | [, |[v]*d®z < oo};

W3™(T) is the Sobolev space of functions on T having m distributional derivatives in Lo(T);
Sol(T) :={v:T — R3|v e C>(T), divv =0};

Sol(Qr) :={v € C=(Qr) | v(t,-) € Sol(T), ¥t € (0,T)};

Sola(T) is the closure of Sol(T) in the norm Lo(T);

Sol7*(T) is the closure of Sol(T) in the norm W3 (T).

Definition 2.1. A quadruple (u,v,n, V') is a strong solution of problem (9)—(12) in the domain Q7 if
(i) u is a time-dependent vector field in Lo ((0,7); Sol3(T)), u; € La(Q7);

(ii) v is a vector field in Lo, ((0,7); W2(T)), vy € Loo((0,T); Lo(T));

(ili) n is a vector field in Lo ((0,7); W5(T)), n; € Loo((0,T); W4 (T));

(iv) Vi € Lo(Qr);

(v) u, n, v satisfy the initial conditions (12), i.e., (u,n,v) — (ug, ng, o) in La(T) ast — 0;

(vi) Equations (9)—(11) hold almost everywhere.

The first goal of the paper is to prove existence of strong solutions to the problem (9)—(12).

Theorem 2.1. Let F = 0, G = 0. Suppose ug € Sol3(T), Avg € Lao(T), Ang € Wy (T). Then there is a
T > 0 such that the solution to problem (9)—(12) (as given in Definition 2.1) does exist.

The proof of this theorem is given in the next subsections.



2.2. Galerkin-Type Approximations

We begin the proof with a classical approximation method.

Select two sequences of subspaces E' C E? C --- and F'' € F? C --- such that UpenEF is dense in
Sol3(T) and UgenF* is dense in W (T) (and, consequently, in W3 (T)).

Since the inclusions W3 (T) < Ly(T) and Sol}(T) — Sols(T) are both compact, the operator A :
Sol(T) — Sol(T) is a symmetric operator that extends to a self-adjoint operator on Soly(T) and Lo(T).
Fix bases of eigenfunctions of A in Soly(T) and L (T) and denote by E* and F* the linear span of the
first k eigenfunctions in Soly(T) and Ly (T), respectively. The subspaces E¥ and F* consist of smooth
functions and thus UreyE* and UgenF'* are dense in Sol2(T) and WZ(T), respectively.

Proposition 2.1. Let (ugk, Vo5, No k) € E¥ x F* x F¥ be an approzimation of the initial data (ug, Vo, ng)
for fixed k.

Then, for some T > 0, there exists a solution (ug,vi,ny) C CO((0,T); E* x F* x F¥) of the problem

13
14
15
16

(ug 1, w) = —(Ujug 2, @) + p(Aug, w) — K(Ang - Vg, w),
JWi, ) + (Jubvi o), €) + K(Any, x ng, ¢) = 0,
(e, ) + (UDg oy, ) — (Vi X Dg, 1) =0,
(ug, v, ng)|t=0 = (Uok, Yok, Nok ),

T —

(
(
(
(
where the identities above hold for allw € E*, ¢, v € F*, and (u,v) = fTu-V dxydxs is the Lo(T)-inner
product.

Indeed, the system (13)—(16) could be regarded as a Cauchy problem for the ordinary differential
equation X; = f(X) in 3k-dimensional space with continuous right-hand side. Due to the Cauchy-Peano
theorem, there exists some small T > 0 such that this problem has a solution for |t| < Ty =: T

Remark 2.1. If u}, = 0, then for any ¢ < Tp, we have u} (t) = 0.

The next step is to get a uniform estimate on (uy, Vi, ng) in some appropriate norm.

2.3. Energy Conservation

We need the following identity.

Lemma 2.1. For allt € (0,T) we have

t
/ (lae@®)? + Jvk@®)|? + K||Vngt)]]?) derdas + 2u/ / | Vuy||2de daodt
T 0 T
- / (luokll? + [wokll? + Vo |?) deydeca.
T

Proof. In this proof we use (u,v,n) instead of (ug, vy, ny), in order to simplify notation.

In Egs. (13)-(15) we substitute (w,¢,%) = (u,v, —KAn). Since A : F¥ — F*_ this substitution
is allowed. Taking the integral over the interval (0,t¢) in (13) and using periodicity of all functions, we
obtain

1 t t .
/ f||u|‘2‘ dridxy = / / (—/J”Vu”Q + Kn;n;u;) dxidxadt. (17)
T 2 0 0 T 7 J



The sum of the integrals over the interval (0,¢) of the relations (14) and (15) reads

0*// (v-vi+ulvy, )

((An xn) v+ (v xn) -An—njnl, , —u'n nx -, )dmdmgdt

1 o t t S
= / = (J|v|? + Knl nl )dxldm’ +/ /Kuf,: ny n. dridzadt. (18)
T 2 o 0 Jo Jr c

Taking the sum of (17) and (18) we obtain

1 ¢ K

,/ (|[a]® + J|v|? + K| Va|?) dl’ldl'g‘ + ,u/ / | Vul|?dz, dzodt = 0,

2 Jr 0 0o JT
which proves the stated identity. O
Corollary 1. Problem (13)—(16) has a solution for every T > 0.

Proof. Reconsider our problem as an ordinary differential equation X; = f(X) with continuous right
hand side.

The value T, obtained from the Cauchy-Peano theorem depends only on the function f and on
the norm of the initial data. Since f doesn’t depend on t and for any ¢ € (0,Tp) the solution X (¢t) =
(ug(t), vi(t),ng(t)) is bounded with X (0) = (ux(0), v (0),nk(0)), the Cauchy-Peano theorem guarantees
the existence of the solution on the interval (¢,¢+ Tp) for any ¢ < Tp, and, consequently, on the interval
(0,2T5). Repeating the procedure, this proves the existence of the solution for any ¢ € (0, NTp), where
N is an arbitrary natural number. O

2.4. Estimates on Higher Derivatives
Unfortunately, the results of Lemma 2.1 are not sufficient to prove the convergence of (ux, vk, ng) to the
solution of (9)—(12). We need more precise estimates.

Theorem 2.2. There exists T > 0 and C > 0, depending only on the initial data, and constants J, K,
1> 0, such that

||uk||L2((O,T);W3 ||uk||Loo ((0,T);W2)> HVkHLOO((O T);W2)s ||nk||L°c((o,T);W§) <C,
| IVl < C.

Proof. We begin by proving the first set of 1nequahtles. In equation (14), set ¢ = —Awv and integrate over
the domain (0,7") using Green’s identities. We have

J 2 T J j
9 . Vvl dmldﬂfQ‘O = —§uwkuxj Vg:k —K(An xny,) v,
T

— K(An,, xn)- ka) dxydradt. (19)

The integral of (15) with ¢ = KA%n can be written as
K T
5 /T nwkmj . nwkxjdl‘ldl‘glo

K

ST~

( ni o, An 4l nb Ani — (U X 0y, + v, X 1) ~Anwk> dydaadt

TK' T,
T

K

(—2u§cknxjmk -An — Aujnx]. “An+ (Vg Xng, ) -An+ (n X vy,) - Anxk) dx1dxodt.

T

(20)



To estimate the second derivatives of u, we set w = —Au in (13) and integrate over (0,7):

1 T
i/Hqudeld@‘O —l—u/ | Aul|?dzy dzodt
T

Qr

13 ) )
(:) / (—ul, Ug, - Uy, + Kng, - AnAu') doydzydt. (21)
T
The sum of (19)—(21) is

2
1 T
5 [ (I K S e |+ [Vl )doadaa]| s [ A derdoads
T e QT
7,k=1

= / (=Jul, Vo, Vo, — 2Kt 0y 0, - An+ K (v, X ng,) - An
T

—ug;ku%. . uwk) dzridzadt.
We estimate the integral on the right-hand side:

2

1 T

5/T (J||VVH2—|—K S g 2 + ||Vu||2)da:1dx2‘0 +“/Q | Au|2de: dasdt
k=1 T

T 2
<G / <p IVa@®) | (IVv Ol + D s, Oy + V0l )

i,j=1
+esssup [|Vn(D)] (||Vu<t>||L2<T>||An<t>|Lm)))dt. (22)

Since >, HuzﬂjHQLQ(T) = ||AuH%2(T) (see [24, III, §8]), we have estimated u in the Ly((0,T); W2(T))-

norm.
We need to estimate esssup ||Vu(t)|| and esssup ||[Vn(t)| in terms of higher derivatives. Unfortunately,

the Wi-norm is not enough, so we repeat the previous procedure for (w,¢, %) = (A%u, A?v, —KA3n).
We use below the identity ||V(Au)||? := Au,, - Au,, . From (13)—(15), we have

1 t
5/ (JAv|]? + || Aul? +K||V(An)||2)dx1dx2’0 +/ p||V(A)||?dzy dzodt
T Qt

< —/ (u;k (2JVs 0, - AV + 22Uy 4, - Au+ KAng, - Ang, +2Kn04,,4.4, - Ang,)

+ AW (Jvg, - Av +u,, - Au+ Kng ., - Ang, ) + Kul , 0, 4, - Ang,
+KAu;knmj “Ang, — K(Ang, -1y, +1ng 4, - An)Auik
+ K(A’n xn+2(An,, xn,,)) Av+ K(Av x n) - A’n

— K(2V4,0, X Ny, + 204, X Ng gy + Ve, X AD+v X Ang, ) - Anxk)dxldxgdt
T
<0 [ (essup IVaON (0 Bz + 1Ol + InOFrges)
+ (Iallwzry + lwy ) (1@ lwzry + ) lwg o

) lwzer) ) (O llwz + [u@lwze + 00 lwse )

[l om0 By + esssup 19O (1100 lwz ey IO wgr)

+ esssup ||V(t)||||n(t)||%,V§(T))dt. (23)



Since for any periodic f € W3 ([0,1]?), we have
1fllz, < CUNV L, +11flz,)  for any p < oo, (24)
and any periodic g € W ([0, 1]?),
max [|g]| < C([|Vylr, + ll9llz.) forp>2, (25)
we conclude from Lemma 2.1, (22), (21), and (23) that

t
() < .7(0) + 04/ S(t)2dt, ast<T, (26)
0
where

S() = [z + T Oz ) + K0 gy + 1,

and the time 7} depends only on initial data, and the positive constants J, K, p. Indeed, due to the
Cauchy inequality and (24), (25)

T T T
/ esssup [|[Vul[(Z(t) — 1)dt < s/ ||V(Au(t))||%2(mdt + CE/ I2(t)dt
0 0 0

for any € > 0 and some C; > 0. The same inequality holds for the terms containing |[u|lyz(r) or [[ullwsz -

The rest of the terms can be estimated with C fot Fidt < C fot F2dt. If € is sufficiently small, we get
(26).
Next, we need the following simple lemma, a kind of Gronwall-Bellman inequality.

Lemma 2.2. Let Y be a measurable function on R. Suppose that for almost all t we have
t
0<Y() <Y(0)+ k/ Y (s)%ds.
0

Then

Y(0)
YO = oy

Proof. Define the function X (t) by the integral equation
t
X(t) = Y(0) + 2+ k/ X(s)2ds <= X' = kX2, X(0) = Y(0) +2,
0

B Y(0)+e¢
1 —kt(Y(0)+e)

The difference W =Y — X satisfies the inequality

LX)

W(t) < —e+ k/o (X (s) +Y(s)W(s)ds.

Since Y and X are measurable, the function

f(t)=—¢ +/0 (X(s) +Y(s))W(s)ds

is continuous. Suppose ty is the least zero of f. Since X +Y > 0, the condition f(¢y) = 0 means that
W is non-negative on a positive measure subset of (0,%p). But this is in contradiction with f(¢) < 0 as
t < to; consequently f(t) < 0 for all ¢ > 0.

Letting € — 0, yields the statement in the lemma. (I



We continue the proof of the theorem. From (26), we conclude that for any ¢ < min{Ty, (C4.#(0))~!/2}
=:T5 we have

S(t) < Cs, (27)

where C5 depends only on K, u, J, .#(0). This proves the first set of three inequalities in the statement
of the theorem.

Using Lemma 2.2 we can now estimate the time-derivative u;. Set w = u; in (13) and rewrite the
resulting identity as

1
/ ||ut||2dx1dx2dt+iu/THVuHdeldxg’

2

t

0

= / (—ujua:j ‘uy + An - ng; ui) dxidzodt.
Qr,

Since w/u,; and An - n,, are uniformly bounded in Ly(Q;) [which follows from (27) and standard
embedding theorems], we conclude

t X
/Q Judl + g /Q IValPdridzs|| < e, I, + 180 Tnli, g, < Co

The same type of inequalities can be obtained in a similar fashion for v; and Vny. This proves the
second set of inequalities in the statement of the theorem. O

2.5. Convergence of the Approximations

In this subsection we finish the proof of Theorem 2.1.
Theorem 2.2 provides the existence of measurable functions u, v, n and a subsequence of (uy, vy, ny)
such that

u, —u  weakly in Ly((0,7); Sol3(T)), ux;— u; weakly in Solo(Qr),
vy =v  *weakly in Lo ((0,T); W2(T)),
n; =n *weakly in Lo ((0,7); W3(T)),
Upy — W, Vip— Ve Vng,— Vn, weakly in Lo(Qr).
Moreover, due to standard embedding theorems,
u;y — u  strongly in Sola(Qr), vi — v strongly in L2 (Qr),
and
Vn; — Vn  strongly in Ls(Q7).

Fix w € UyCH(0,T; EF), {(t), ¥(t) € UpCL(0,T; F*) and integrate (13)—(15) over (0,T). Passing to
the limits as kK — oo we have
fQT (0 — pAu — KAn'Vn?) - wdrydzodt = 0,
Jox (£ ¢+ (An x n) - ) dzydzadt = 0, (28)
fQT (-1 — (v xn)-1p)dridredt = 0.

Since U,C((0,T); E¥) is dense in Ly((0,T); Soly(T)) and U,C((0,T); F*) is dense in Ly (Q7), these
equations imply (9)—(11).

If Vp' is the Hodge projection of 1 — pAu — AnVn € Ly(Qr) on the orthogonal complement of
L2((0,7); Soly(T)), then Vp' € La(Qr).

Finally, we check the initial conditions (12).



Fix ¢ € Soly(T) and consider the family of functions fr(t) = (ux(t),®)r,(m). Since fi(t) =
(up,e(t), @) yry — (g, @),y weakly in Ly(0,7), it follows that fi tends to (w, @)z, in C(0,T).
Thus, u(t, ) tends to limg ugr = ug weakly in Lo(T). Also

t t
/(u(t,x) — u(O,x))zdxlde :/ </ utdt) dridas < t// ufdtdxldxg.
T T \Jo TJo

Since u; € La(Q:), the function u(t,x) is continuous in Lo (T)-norm with respect to ¢. Consequently, ug
is both a weak and a strong limit.

The weak limits of the other variables to their respective initial conditions are checked in the same
way. This proves Theorem 2.1.

2

2.6. Uniqueness

Theorem 2.3. Suppose that (ui,v1,n1,p)) and (us, Ve, na,ph) are solutions of the problem (9)—(12) in
the domain Qr. Then, for some 0 < Ty <T
(u27 V2,13, Vp/Q) - (ula vi,ng, VP/I)

almost everywhere in Qr,.
Proof. First of all, every solution of the problem satisfies identities (28) for all w € W (Qr), ¢ € W(Qy),
(NS LQ(O, T; W22)

Denote w = u; —ug, f =v1 —va, g = n; —ny and set (w,{,¥) = (w,f, —KAg) in (28). With this
substitution, for any 7 < T, the identities (28) give

[ s, w ot whn, o w o Owl?

.

+ KAn; - giji + KAg- ngyijj) dxidxodt = 0, (29)

/ (J(f - £+ ubfy, - £+ wvy g, - )

-

+ K(Ag x ny + Ang x g) - f) deydzadt = 0, (30)
- K/ (8- Ag+ui'g,, - Ag+w'ny,, - Ag

Qr
— (Vl X g+ f x IIQ) . Ag) dl‘ldl‘gdt =0. (31)

Next, we rewrite these identities as
1
[iw@iRdes [ pvwieza
T 2 Q-

= / (—Wiul,mi -w — K(Any - ngWi + Ag- n27ijj> dxidxodt, (32)
Q

-

J
5 [ 1oz,
T

= —/ (Jw'vi g, - £+ K(Ag x np + Any x g) - f) dzydzadt, (33)

.

K
5 [IvelPdnds,
T

= K/Q (Wng e, - Ag —ul 4 8y, 84y + W1a, X 8) - 8,
7(f>< Ilg) . Ag) dl‘ldl‘gdt. (34)



Adding the identities (32)—(34), we get
1
5 [+ TR + K| Ve() ) dodas + e [ [0 Pdordeds

QT

= —/ (wjuiymjwi + KAn, -ngwi + Jw'vi g, £+ K(Any x g) - f

+Kui7mkgmi 8y — K(Vig, X8)- gmk) dxidxodt.

Due to the embedding theorems and the Holder inequalities we get
1

5 [UWI + I + KIVe(r)) dodaa 1 | [Vww(t)deadaad
T QT

< C/O [(Hf”Lz(T)Hv’/l”Lq(T) + IVellLomllAnsllz, ) Wz, ()
+ (Igllzom Vel ey + IVEl Ly | An 2, ) 8]l m)
VL) (W1 ) + 980 r)) ]

< CE)* [esssup (1801 (1), o) + (V01 D)llz,)
2
IV 001758 | (esssup (WD r

IO ) + V8O 3am)) + IFW (O30,

for some ¢ > 2, p~t =1/2 - ¢ L
Taking the T-esssup of the left hand side and comparing it to the second factor on the right hand
side, shows that for 7 sufficiently small we have

(w,f,Vg) = (0,0,0).

Consequently, (uy,v1) = (ug,v2). However, § = —w'ns ,, + 1 X g+ f X ny. Since f= 0 and w = 0, we
have £g(t) = v1(t) x g(t) with initial condition g(0) = 0. This implies that g = 0, i.e., n; = ny. Since
Vp; is the projection of u — pAu — AnVn, we have Vp; = Vpa.

Theorem 2.3 is proved. O

2.7. Liquid Crystal in the Presence of External Forces

Theorem 2.1 can be easily extended if F, G # 0.

Theorem 2.4. Suppose ug € Sol3(T), vo € W(T),ng € W(T) and F € Lo((0,T); WH(T)), G €
L1((0,7); W3(T)); F® = 0.

Then there exists some 0 < Ty < T such that the solution (as in Definition 2.1) of problem (9)—(11)
exists and is unique in Q.

3. Liquid Crystal Flow in Bounded Domains

Let Q be a bounded domain in R? and consider nematic liquid crystal flow in the cylinder 2 x R which
does not depend on the third coordinate.
Since all functions in the Ericksen—Leslie system depend only on the points (x1,z2) € €, we are study-
ing Egs. (9)—(11) in domain (0,7 x § with initial conditions (12) and additional boundary conditions
u‘BQ:O, n—n1|aQ=O, v|ipo =0 for any ¢t >0, (35)
where n; is a given vector field on 2 x R.



Condition u| oo — 0 means that the domain has impenetrable boundary and that the fluid moves

without slipping; n — nq|,, = 0 describes the director position at the boundary. The third condition
comes from the original Ericksen—Leslie system and means that n = 0 at the boundary.

3.1. The Definition of the Solution and the Existence Theorem

We begin by introducing some notations.
In this section we let Qr := (0,7 x €,
Sol (Q) :={v:Q — R3such as v € C;°Q), divv = 0};
Sol (Qr) :={veC>®Qr): Vtv(t,-) eSol (Q)};
Soly' (2) is the closure of Sool (©) in the norm W3 (£2)
V[/C'){” (Q) is the subspace of W3 () with zero trace (see, for instance [25,26]).

The definition of a solution of the Ericksen—Leslie equations is quite similar to the one in Definition 2.1,
with some changes because of the boundary.

Definition 3.1. The quadruple (u,v,n, V') is a strong solution of problem (9)—(12), (35) in domain Q1
if

e u is a vector field in Ly ((0,T); Sol2 () N La((0,T); W3(Q)), uy € La(Qr);
e v is a vector field in Lo ((0,T); VV2 (Q)), vi € Loo((0,T); L2(2));

e n —n; is a vector field in Lo ((0,7); W4 (Q)) N La((0,7); WZ(Q2)), where n; is a given constant
vector field in (x,t), n; € Loo((0, T), Wi(Q));

V' € Lo(Qr);

u, n, v satisfy initial conditions (12), i.e., (u,n,v) — (ug,ng, o) in La(Q) ast — 0;

Equations (9)—(11) hold almost everywhere.

In this section we suppose the third component of the director to be equal to zero. Then we have
n = (cosf,sind,0), v =(0,0,v),

where 0 is a new unknown function. The Ericksen—Leslie system becomes

a—pAu = -V <p' " [2(||ve||2> _KAOVE,  divu=0, (36)
Ju = —KNA0, (37)
0=v (38)
with boundary and initial conditions
u|69:07 0—01|6Q:O, vigo =0 for any t > 0, (39)
u(0,z) =up(z), v(0,2)=vp(x), 6(0,z)=6y(x). (40)

Theorem 3.1. Assume that ) is a domain with C?-boundary. Let 0y € W3(Q), vo € W2(Q), ug €Sol}
() NWZ(Q); Auo|aQ =0 and assume that for some d > 0 we have

Oo(x) = 01 = const, vo(x) =0 if dist(xz,00) <d

Then the solution of (36)—(40) exists for some T > 0 and is unique.



The proof proceeds along the same lines as that of Theorem 2.1. We point out the necessary modifi-
cations.
Instead of (36)—(38) we consider the regularized system, where equation (36) is replaced with

1 — pAu+eA’u= —-VP — AOVH (41)

with additional boundary conditions Au|aQ = 0; where ¢ is a small parameter, P = p’ + & || V0|2,

Also, we replace 6 with 6; + 0, where 0 is a new unknown function.
As in the proof of Theorem 2.1, select two sequences of subspaces E' ¢ E2C --- and F1 C F2¢C ---

such that Uy E* is dense in Sold () N WZ(Q) and U, F* is dense in W2(Q)N W3 (). It is still useful to
choose E* and F* to be the linear span of the first k eigenfunctions of the Laplacian in the corresponding
spaces.

Define the finite-dimensional solution (ug, vg, 0;) € CO((0,T); E* x F* x F¥) by the system of ordinary
differential equations

(up s, w) = —(ukuk’ml,w) + (pAug — eAuy, w)
— K(A(O) +61) - V(0 + 61),w), (42)
Tt €) = —(Jupvia k, ) = K(A(Gk +61), ), (43)
(On,t50) = —(u(Ok + 01)a, ) + (i, ), (44)
(ug, vk, Ox)|lt=0 = (o, Yok, Ook)- (45)

The identities (42)-(45) hold for all w € E*, ¢,¢ € F¥. (For simplicity we use the notation 6, = 05, + 01).
The solution of this finite-dimensional problem, obviously, exists for some 7" > 0.
The result of Sect. 2.3 still holds.

Lemma 3.1. For allt > 0 we have

[ (O + T0)? + K1 90,(0)]?) dads|

t t
—|—2,u/ / [ Vuy(s)||*dwy dwods + 25/ / | Aug(s)||?dzidzads = 0.
0 Jo 0 Jo

Proof. Repeat the procedure used in Lemma 2.1.
We need to check that the boundary integrals are equal to zero. Due to the condition ug|gn = 0, all
terms containing uj, vanish. The only term not containing uy, is

T
/ 010 2, NidS
0 o0

derived from (44), where (Ny, Ny) is an exterior normal vector field. Since 6 is a smooth vector field and
01 does not depend on t, 0¢|gq = 0, it follows that this term vanishes. The Lemma is proved. (I

As in section 2.3, Lemma 3.1 guarantees that the solution of the problem (42)—(45) exists for all T > 0.
Next, we estimate higher derivatives.

Lemma 3.2. There exists T > 0 and C' > 0 depending on e, the initial and boundary data, but not
depending on k, such that

Ikl L, 0. ywz @) 1VVRIlL 01522920 10kl 0.7y w2(0)) < C-

Note that 7' > 0 and C > 0 depend on &, which won’t be sufficient to prove Theorem 3.1. Lemma 3.3
below gives the necessary uniform estimates.



Proof. In this proof we use (u, v, é) instead of (ug, v, ék)

Consider Eqs. (42)-(44) and substitute (w,¢,1) = (Au, Av, A26). First, we note that (44) could be
rewritten as

1

- T T . .
- / (AH)delde‘ - / / ((G—V)Aﬁkak —AG(G—V)kak)det
2 Jo 0 0 Joa

+/ < —2ul, Op,0, 00 — Au?f,, A0 + AI/AG) dxidadt.

The first term of the boundary integral is equal to zero, since 8(t, ) = 0 and v(t,z) = 0 if z € IQ.
Recall that F* is defined to be the linear span of the first k eigenfunctions {v,, | m = 0,...,k} of the
Laplacian, i.e.,

A’Urn = >\Um7 Um|aﬂ = 07

Uy €W (Q); then Av,, €W} (Q) and thus AG €W} (€). This shows that the second term in the
boundary integral also vanishes.

Since Af = A, we have an equation similar to (20).

The analogues of (19) and (21) are obtained in the same way and, consequently, we can prove an
analogue of inequality (22):

2
5 [ (1902 + 55 160,00 + [Vl dasds|

2 .
T J.k=1

+u/ HAqudxldxgdt—i-s/ |V (Aw)||2da, dadt
Qr

Qr

T
0

T 2
<a [ (esssup IVa@l (1920 Fa@) + D Waie, (0 + 1701 )
0

i,j=1
90 e (1800 | 80O ) ) . (46)

Next, we need Lemma 8.1 of [24, Chapter III] to estimate [[ufyz(q) in terms of [|Aul[z,q) and
||u||L2(Q)7 namel%

lallwz @) < ClAU]Ly@) + uflry@)-
We also need inequality (11.8) from [24, Chapter I1]]
¥p >13C Yo € WZ(Q), vloa =0 |[vllwzo) < CUIAVIIL, @) + V] L.()

and the Sobolev embedding theorems to estimate |lul[wz(o) (and, consequently, max [[Vul| ) in terms of
|Aully; () and lower derivatives.
Finally, we can obtain an inequality similar to (26) for

€
I (t) = ) [fyz 0y + IO o) + Klln®) [z ) + §||u||%2((0,t);W23(Q)) +1,

and, consequently, (27). This proves Lemma 3.2. O



Proof of Theorem 3.1. Due to Lemma 3.2, the sequences ug, vy, 0y are weakly-precompact in Lo((0,7);

Sol3 (), Loo((0,T); W3 (), and Lo ((0,T); W(2)). From the embedding theorems,
w, — u®  weakly in Lo((0,7); Sol3 (), ug;—u weakly in Sols(Qr),

v =1 *weakly in Lo ((0,T); W2 (),

*

O —60° *-weakly in Loo((0,T); I/I(}QQ (),
Vgt — V5, VO, — V07 weakly in La2(Qr).
u;, — u strongly in Sola(Qr), v — v° strongly in La(Qr),
and
VO, — V6 strongly in Lo (Qr)

for some subsequence of (u, vk, k).
This proves existence of solutions of the regularized problem (37), (38), (41) for any £ > 0. To prove
Theorem 3.1, it is sufficient to obtain uniform estimates for higher derivatives of (u®,v¢,6%).

Lemma 3.3. For sufficiently small T1 > 0, not depending on €, there is a constant C > 0, also not
depending on €, such that

Il 2, 0y wz @) 10 llLe (o.mwz) IVl mwzo));

10°11 . cco,mywz ) < C, (47)
IuillLo@nys 1V lLa@ys VOl Loy < C- (48)
Proof. Consider, instead of (37) and (38), the equations
Jup + x(z)u'v,, = —KAS, (49)
0; + x(x)u'0,, =v, (50)

where x () is a smooth function,
0, dist(x,00) <
x(x) = _
1, dist(z,00) >

Repeat the Galerkin procedure for the problem (39), (40), (41), (49), (50) as presented in Sect. 2.
Since all nonlinear terms in (49), (50) vanish on the boundary, we can prove the analogue of Theorem 2.2.

[SUISUN SN

Proposition 3.1. There exists a strong solution (@, 7,6) of the problem (39), (40), (41), (49), (50). The
solution is unique and satisfies inequalities (47), (48), where the constants C' and T depend on d and
don’t depend on €.

The proof is identical to that of Theorem 2.2 and the argument in Sect. 2.6, so it won’t be repeated
here.
Let us prove that, for some T} < T not depending on €, the two solutions coincide, i.e.

Vte [0,T1] (uf,v5,6°)(t) = (a,7,0)(t).
Define constant 77 > 0 by

Ty := min{T, esssup ||@’,
rE€Q;i,j
and let ¢ := {t < Ty | (u®,v,6°) (1) = (@,7,0)(7),¥r € [0,]}. It is obvious that .# > 0. We prove that
J is both open and closed in [0,77], which then implies that .#" = [0, T1].
Suppose to € . Then the solution (uf,v°,6°) of the regularized problem exists in some interval
(0,tp+ 9). Indeed, let us consider the Egs. (37), (38), (41) with standard boundary conditions and initial

J

A (17, 0.m), d(2 esssup [ +2max{1, £/J}) "'}



conditions (u®, ¢, 60%)(tg) = (11, 7,0)(to). Thus, in the open interval (to,ty + 0) the new problem has a
solution that is a continuation of (u®,v¢,6°%).

Next, we show that (u®,v%,6°) and (q, D,é) coincide on some open interval. Consider Eqgs. (37), (38)
in the domain Qy,. Since u® € La((0,%9); WL (), we can apply Theorem 4.1 (all we need from this
theorem is the existence of the triple (u, v, n) satisfying Eqgs. (10), (11) and this fact does not depend on
any statement below); thus #° = 61, v* = 0 in an a-neighborhood of 9Q if 0 < ¢ < T” for some constant
T" < to. This constant does not depend on ¢ since u® =  for any ¢ < to and [[@|,((0,t0);w2 (0)) is also
e-independent by Proposition 3.1. Due to the definition of 77, we have o > % and T' = .

Moreover, since u® € La((0,t9 + 6); WL (Q)) and 9€|t:t0 =0, I/€|t:t0 = 0 in the a-neighborhood of
09}, there exists a constant J. depending on ¢ such that 6 = 6, v = 0 in the %—neighborhood of Q) if
0<t<ty+oe.

Now it is easy to check that the solution (u®, v°, 6°) satisfies the Eqgs. (41), (49), (50) in Qr,, and
hence coincides with (a, 7, é) in some neighborhood of t = ty. Consequently, %" is open.

We now show that ¢ is closed, i.e., if t,, € # and t, — to then tg € J#. Indeed, ty ¢ # only if the
W3 x W3 x W3-norm of the solution (uf, %, 6¥) at the point ¢, tends to oo. This is impossible since we
have inequalities (47), (48) for the solution (u,7,6). Hence to € 4 .

Therefore, £ is both open and closed in [0,7}] which implies that # = [0, T3] and concludes the
proof of the lemma. O

Continuing the proof of Theorem 3.1, select a subsequence ¢ such that (u, v, n) is a weak limit
[e]

of (u®*, v, n®) in the spaces La((0,7);So0l3 (2)), Loo((0,T); Wy (£2)), and Loo((0,T); W2(£2)). The
vector fields (u, v, n) are the first three terms of the solution. The term Vp’ is the Hodge projection of
u — pAu— AnVn € Ly(Qr) on the orthogonal complement of Lo(0,T; Sola(2)).

As in Sect. 2.5, one checks that the initial conditions hold.

The proof of uniqueness is identical to that in Sect. 2.6. O

Remark 3.1. As can be seen from the proof, all that is needed is that n; is piecewise constant on the
boundary 9f2.

The same result holds if external forces are present.

Theorem 3.2. Suppose €, ng, v, ug, ny satisfy the conditions of Theorem 3.1. Assume also that F €
Lo((0,T); W3(Q)), G = (G1,G2,0) € L1((0,T); WZ(Q)), F3 = 0. Then the solution exists and is unique
for some T > 0.

Remark 3.2. If G # (G1, G2,0), the director field cannot be represented as n = (cos ¢, sin 6, 0).
Remark 3.3. The analogues of the Theorems 3.1 and 3.2 hold also in the case of the director field

n = (cos #sin ¢y, sin 6 sin ¢g, cos ¢g), v = (0,0, v3),

where ¢ is a constant angle and 6, v3 are new unknown functions.
4. Finite Propagation Speed
In this section we consider the strong solutions of the Ericksen—Leslie equation both in the periodic (see

Definition 2.1) and the bounded domain case (see Definition 3.1). For simplicity in this section we will
use

/fdxldxg instead of /fdxld:rz or /fdxldxg
T Q

depending on the nature of the domain.



Theorem 4.1. Consider the Egs. (10), (11), suppose that w" := u), + uij satisfy
|| esssup |w® (z,1)] oo,y < M/2

for some 1 < a < o0, and that ||ul| is bounded by a constant m > 0. Assume also that Vng and v vanish
for ||x — zol| < r. Then Vn and v are equal to zero for

a— 1
|z — ol < r— (m+ max{1, K/J})t, Mts < 7

In the case of a bounded domain ), we impose the additional assumption u‘ag =0, v(z,t) = 0,
n(z,t); =0 if (z,t) € {x € N | ||z — xo|| <r —t(m +max{l,K/J})}.

Proof. Let xo = 0. Taking ¢ = vy and ¥ = —KAngp in (28) we get
J ¢ J -
) / ||V||2<pdx1dx2’0 = / (2(% + ujgawj)HyHQ — K(An x n) - Vgp) dzydzodt,
K t K »
/3\\Vn||2s0dx1dxz‘0 = / (5(% + ujgomj)HVnH2 — K(v xn)-Angp

~Kul n,, n,¢— Kn-n, gpmj)dxldxgdt.

Add the previous two identities and rewrite the result as

J t K t i K
5 [WwiPednid + [ SivnPedndnl < [ o (5P + GiIval?)

+ K maxw[|Va|*¢ + K||v|| | Vol [ Volldz: dzadt.
1,7,T

Denote ¢ = ¢(||z||+m't), where ¢(z) € C*(R), ¢ = 0 for ||z|| > r, ¢’ < 0. Let m’ := m+max{1, K/J}
and estimate
J
[ (& (5 w1+ 1012 ) + 11 190 1901 ) dod

i J 1
< [l +mte) (' + 52 (Sl + 19l

¢
N M(”V“‘z + | Vn?)daydaadt < 0.

2

Consequently,

J 1

Sl @625 + Sl162 Vn(®)|* < [ maxw” | Vnl|*pde:desdt
K 2 ,5,T
< Mt*+ esssup ||¢%VnH§,
t

which proves the statement. (I

Remark 4.1. The proof of Theorem 4.1 is independent of the existence and uniqueness proof and result.
Moreover, in the proof we can suppose (u, v, n) to satisfy only (10) and (11) but not (9).
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