In this paper, we study liquid crystal nematodynamics (i.e., the hydrodynamics of nematic liquid crystals). In previous work, we investigated periodic mesomorphic media [START_REF] Chechkin | Nematic liquid crystals. Existence and uniqueness of periodic solutions to Ericksen-Leslie equations[END_REF] and homogenization of micro inhomogeneous nematic liquid crystals (periodic in [START_REF] Ratiu | Homogenization of the equations of the dynamics of nematic liquid crystals with inhomogeneous density[END_REF] and random in [START_REF] Chechkin | Nematodynamics and random homogenization[END_REF]).

The hydrodynamic theory of liquid crystals, due to Ericksen and Leslie, was developed in the 1960's [START_REF] Ericksen | Conservation laws for liquid crystals[END_REF][START_REF] Ericksen | Hydrostatic theory of liquid crystals[END_REF][START_REF] Leslie | Some constitutive equations for anisotropic fluids[END_REF][START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF]; see also [START_REF] Ericksen | Continuum theory of nematic liquid crystals[END_REF][START_REF] Leslie | Continuum theory for nematic liquid crystals[END_REF]. The subject of our research is the Ericksen-Leslie system describing the dynamics of nematic liquid crystals

u -μΔu = -∇p -∂ ∂xj ∂F ∂nx j • (∇n) + F + f, div u = 0, J n -2qn + h = g + G, n = 1, (1) 
where summation on repeated indices is understood, n xj := ∂ ∂xj n, and ∂F ∂n xj

• (∇n) := ∂F ∂n k, xj ∇n k (see also [1, formulas (3.90), (3.99), (3.100), (5.2)], [11, page 90], or [START_REF] Lin | Existence of solutions for the Ericksen-Leslie system[END_REF]). Here, u is the Eulerian, or spatial velocity vector field, n = (n 1 , n 2 , n 3 ) is the director field, the constant μ > 0 is the viscosity coefficient, the constant J > 0 is the moment of inertia of the molecule, F(x, t) and G(x, t) are given external forces, and ˙:= ∂ ∂t + u • ∇ is the material derivative. The terms f and g correspond to the dissipative part of the stress tensor and the dissipative part of the intrinsic body force, respectively, and they depend on u, n, and their derivatives. The function F(n, ∇n) is the Oseen-Zöcher-Frank free energy and is defined by

F(n, ∇n) := K 1 n • curl n + 1 2 K 11 (div n) 2 + K 22 (n • curl n) 2 + K 33 n × curl n 2 . ( 2 
)
The molecular field h is defined by

h := ∂F ∂n - ∂ ∂x j ∂F ∂n xj . ( 3 
)
The pressure p and the Lagrange multiplier 2q are determined, respectively, by the conditions div u = 0 and n = 1. We are interested in the non-dissipative case, i.e., g = 0, f = 0. Since the liquid crystal is nematic, we necessarily have K 1 = 0. For simplicity, we study the one-constant approximation, i.e., we assume

K 11 = K 22 = K 33 =: K > 0.
Thus, using n = 1, the Oseen-Zöcher-Frank free energy [START_REF] Chechkin | Nematic liquid crystals. Existence and uniqueness of periodic solutions to Ericksen-Leslie equations[END_REF] becomes

F = K 11 2 (div n) 2 + K 22 -K 33 2 (n • curl n) 2 + K 33 2 n 2 curl n 2 = K 2 (div n) 2 + K 2 (n j,xi n j,xi -n i,xj n j,xi ), (4) 
where the subscript x j means partial derivative relative to the spatial coordinate x j and summation on repeated indices is understood, irrespective of their position. Hence,

∂F ∂n = 0, ∂F ∂n i,xj = K(div n)δ ij + Kn i,xj -Kn j,xi . (5) 
Lemma 1.1. The non-dissipative (i.e., f = 0, g = 0) nematic (i.e., K 1 = 0) Ericksen-Leslie equations in the one constant approximation (i.e., K := K 11 = K 22 = K 33 > 0) are

u -μΔu = -∇p -K n xj • (∇n) xj + F, div u = 0, J n + J ṅ 2 -h • n + G • n n + h = G, n = 1, (6) 
where the molecular field has the expression

h = ∂F ∂n - ∂ ∂x j ∂F ∂n xj = -KΔn. ( 7 
)
and

p := p + K 2 (div n) 2 -n i,xj n j,xi . Proof. Formula (5) implies 1 K ∂ ∂x j ∂F ∂n xj • (∇n) = (div n)δ ij + n i,xj -n j,xi ∇n i xj = n k,x k xj ∇n j + n k,x k ∇n j,xj + n i,xj ∇n i xj -n j,xj xi ∇n i -n j,xi ∇n i,xj = n i,xj ∇n i xj + 1 2 ∇ (div n) 2 -n i,xj n j,xi
and hence the first equation in (1) becomes the first equation in [START_REF] Ericksen | Hydrostatic theory of liquid crystals[END_REF]. In addition, (3) and ( 5) yield

h i = -K(n k,x k xj δ ij + n i,xj xj -n j,xixj ) = -KΔn i .
which is [START_REF] Leslie | Some constitutive equations for anisotropic fluids[END_REF]. Next, taking the dot product of the second equation in [START_REF] De Gennes | The physics of liquid crystals[END_REF] with n yields

2q = J n • n + h • n -G • n = -J ṅ 2 + h • n -G • n (8) 
since n • ṅ = 0. Therefore, the second equation in (1) becomes

0 = J n -2qn + h -G = J n + J ṅ 2 -h • n + G • n n + h -G
which is the second equation in [START_REF] Ericksen | Hydrostatic theory of liquid crystals[END_REF].

We rewrite the Ericksen-Leslie equations (6) as a system of three equations of first order by introducing a new vector field ν. This vector field appeared for the first time in [START_REF] Gay-Balmaz | The geometric structure of complex fluids[END_REF], motivated by the geometric and variational structure of the conservative version of the Ericksen-Leslie equations (i.e., μ = 0,

f = g = 0, F = G = 0). Theorem 1.1. If (u, n) is a solution of Ericksen-Leslie equations (6), n = 1, define the vector field ν := n × ṅ. Then, (u, ν, n) is a solution of the system u -μΔu = -∇p -(Kn k,xj ∇n k ) xj + F, div u = 0, ( 9 
) J ν = -K(Δn) × n + n × G, ( 10 
) ṅ = ν × n, (11) 
with initial conditions n 0 and ν 0 satisfying n 0 = 1 and n 0 • ν 0 = 0. Conversely, if (u, ν, n) is a solution of the system (9)-( 11) with initial conditions n 0 and ν 0 satisfying n 0 = 1 and n 0 • ν 0 = 0, then (u, n) is a solution of the Ericksen-Leslie equations [START_REF] Ericksen | Hydrostatic theory of liquid crystals[END_REF].

Proof. Suppose that (u, n) is a solution of Ericksen-Leslie equations ( 6) and define the vector field ν := n × ṅ. Then, ν × n = (n × ṅ) × n = ṅ since n = 1 and n • ṅ = 0, which gives [START_REF] Chandrasekhar | Liquid crystals[END_REF]. The first equation in [START_REF] Ericksen | Hydrostatic theory of liquid crystals[END_REF] coincides with [START_REF] Ericksen | Continuum theory of nematic liquid crystals[END_REF]. Finally,

J ν = J(n × ṅ) ˙= n × J n (6) = -n × h + n × G (7) = -K(Δn) × n + n × G
which is [START_REF] Leslie | Continuum theory for nematic liquid crystals[END_REF]. Since (u, n) is a solution of (6), we have n = 1. In addition, n • ν = n • (n × ṅ) = 0. Therefore, the initial conditions of the system ( 9)-( 11) necessarily satisfy n 0 = 1 and n 0 • ν 0 = 0, as stated.

Conversely, suppose that (u, ν, n) is a solution of the system ( 9)- [START_REF] Chandrasekhar | Liquid crystals[END_REF] with initial conditions satisfying

n 0 = 1 and n 0 • ν 0 = 0. Then ( n 2 ) ˙= 2n • ṅ (11) = 2n • (ν × n) = 0 and (n • ν) ˙= ṅ • ν + n • ν = (ν × n) • n + n • 1 J (-KΔn × n + n × G) = 0
by [START_REF] Leslie | Continuum theory for nematic liquid crystals[END_REF] and [START_REF] Chandrasekhar | Liquid crystals[END_REF], which implies n = 1 and n • ν = 0.

We have

n × ṅ (11) = n × (ν × n) = ν since n = 1 and n • ν = 0. Conversely, if ν = n × ṅ, then ν × n = (n × ṅ) × n = ṅ, since n = 1.
The first equation in [START_REF] Ericksen | Hydrostatic theory of liquid crystals[END_REF] coincides with [START_REF] Ericksen | Continuum theory of nematic liquid crystals[END_REF]. Finally, by ( 7), [START_REF] Chandrasekhar | Liquid crystals[END_REF], n = 1, and ν • n = 0, we get

J n + J ṅ 2 -h • n + G • n n + h = J ν × n + Jν × ṅ + J ṅ 2 + KΔn • n + G • n n -KΔn (10) = -K((Δn) × n) × n + (n × G) × n + Jν × (ν × n) + J ν 2 + KΔn • n + G • n n -KΔn = KΔn -K(n • Δn)n + G -(G • n)n -J ν 2 n + J ν 2 n + K(Δn • n)n + (G • n)n -KΔn = G
which is the second equation in [START_REF] Ericksen | Hydrostatic theory of liquid crystals[END_REF].

In terms of ν, by ( 8) and [START_REF] Chandrasekhar | Liquid crystals[END_REF], we have 2q

= h • n -J ν 2 -G • n.
Because of Theorem 1.1, we work in the rest of the paper exclusively with the Ericksen-Leslie equations expressed as ( 9)- [START_REF] Chandrasekhar | Liquid crystals[END_REF] with initial conditions (u 0 , ν 0 , n 0 ) satisfying n 0 = 1 and n 0 • ν 0 = 0.

Since the structure of the full Ericksen-Leslie system is sufficiently complicated, simplified models have been introduced in order to get some reasonable results. Most of the known results are obtained under the assumption J = 0. For the incompressible model in [START_REF] Lin | Nonlinear theory of defects in nematic liquid crystal: phase transition and flow phenomena[END_REF], Lin introduced a simplification of the general Ericksen-Leslie system that keeps many of the mathematical difficulties of the original system by using a Ginzburg-Landau approximation to relax the nonlinear constraint. Namely, instead of the restriction n = 1, the penalty term 1 2 ( n 2 -1) 2 was added to the free energy functional. In [START_REF] Lin | Nonparabolic dissipative system modeling the ow of liquid crystals[END_REF], Lin and Liu showed the global existence of weak solutions and smooth solutions for that approximation. In [START_REF] Shkoller | Well-posedness and global attractors for liquid crystals on Riemannian manifolds[END_REF], a very simple proof of local well-posedness for this coupled system was provided using a contraction mapping argument. It was proved that this system is globally well-posed and has compact global attractors in 2D. Recently, Hong [START_REF] Hong | Global existence of solutions of the simplified Ericksen-Leslie system in dimension two[END_REF] and Lin-Liu-Wang [START_REF] Lin | Liquid crystal flows in two dimensions[END_REF] showed, independently, the global existence of weak solutions of an incompressible model in two dimensional space. Moreover, in [START_REF] Lin | Liquid crystal flows in two dimensions[END_REF], the regularity of solutions, except for a countable set of singularities whose projection on the time axis is a finite set, has been obtained (see also [START_REF] Hong | Global existence of solutions of the liquid crystal ow for the Oseen-Frank model in R 2[END_REF]). In [START_REF] Wang | Well-posedness for the heat flow of harmonic maps and the liquid crystal flow with rough initial data[END_REF], Wang established a global well-posedness theory for the incompressible liquid crystals for rough initial data. A simplified Ericksen-Leslie system for two-dimensional compressible flow was considered in [START_REF] Jiang | Global weak solutions to the equations of compressible flow of nematic liquid crystals in two dimensions[END_REF]. Hieber, Nesensohn, Prüss, and Schade analyzed in [START_REF] Hieber | Dynamics of nematic liquid crystal flows: the quasilinear approach[END_REF] the simplified system as a parabolic evolutional equation in an L p -L q -setting and studied the system near an equilibrium.

In the present paper we focus on the system (9)- [START_REF] Chandrasekhar | Liquid crystals[END_REF] in the hyperbolic case J > 0 and prove an existence and uniqueness theorem for two-dimensional periodic media as well as for the problem in a bounded domain of the plane. We also prove the finite propagation speed of waves in such media. Some results in this paper were announced in [START_REF] Ratiu | Existence and uniqueness theorems in two-dimensional nematodynamics. Finite speed of propagation[END_REF].

Two-Dimensional Solution in a Periodic Domain

Consider a liquid crystal flow in R 3 . The flow is called two-dimensional if all unknowns in the Ericksen-Leslie system are independent of the third coordinate x 3 ; so we can suppose that they are all defined on a plane (x 1 , x 2 ). Let Q T := (0, T ) × T, where T := R 2 /Z 2 is the two-dimensional flat torus. We study the system (9)-( 11) in Q T with initial conditions

u(0, x) = u 0 , ν(0, x) = ν 0 , n(0, x) = n 0 , ( 12 
)
satisfying n 0 = 1 and n 0 • ν 0 = 0. Here u, ν, n are unknown vector fields, p is an unknown scalar function, and J, K, μ are fixed strictly positive numbers. The material derivative

f t + 3 i=1 u i f xi turns into f t + 2 i=1 u i f xi .
It is natural to consider a flat motion, i.e., u : T → R 2 × {u 3 = 0}. Note that the vector fields n, ν are always three-dimensional, even if they are defined on a flat two-dimensional domain; in particular the director field is not necessarily tangential to the plane {x 3 = 0}.

Notations and Definitions

Throughout the paper we use the following notations: 3 ), or a vector field with values in R 3 ;

• ḟ := ∂f ∂t + u • ∇f = f t + u j f xj is the material time derivative of f ; • a bold letter b denotes a 3-dimensional vector b = (b 1 , b 2 , b
• standard summation convention is used on repeated indices, independent on their position, e.g., 9)-( 11) hold almost everywhere.

a i b i := i a i b i ; • L 2 (T) := v : T → R 3 | T v 2 d 2 x < ∞ ; • W m 2 (T) is the Sobolev space of functions on T having m distributional derivatives in L 2 (T); • Sol(T) := {v : T → R 3 | v ∈ C ∞ (T), div v = 0}; • Sol(Q T ) := {v ∈ C ∞ (Q T ) | v(t, •) ∈ Sol(T), ∀t ∈ (0, T )}; • Sol 2 (T) is the closure of Sol(T) in the norm L 2 (T); • Sol m 2 (T) is the closure of Sol(T) in the norm W m 2 (T). Definition 2.1. A quadruple (u, ν, n, ∇p ) is a strong solution of problem (9)-(12) in the domain Q T if (i) u is a time-dependent vector field in L 2 ((0, T ); Sol 3 2 (T)), u t ∈ L 2 (Q T ); (ii) ν is a vector field in L ∞ ((0, T ); W 2 2 (T)), ν t ∈ L ∞ ((0, T ); L 2 (T)); (iii) n is a vector field in L ∞ ((0, T ); W 3 2 (T)), n t ∈ L ∞ ((0, T ); W 1 2 (T)); (iv) ∇p ∈ L 2 (Q T ); (v) u, n, ν satisfy the initial conditions (12), i.e., (u, n, ν) → (u 0 , n 0 , ν 0 ) in L 2 (T) as t → 0; (vi) Equations (
The first goal of the paper is to prove existence of strong solutions to the problem ( 9)- [START_REF] Lin | Existence of solutions for the Ericksen-Leslie system[END_REF].

Theorem 2.1. Let F = 0, G = 0. Suppose u 0 ∈ Sol 2 2 (T), Δν 0 ∈ L 2 (T), Δn 0 ∈ W 1 2 (T).
Then there is a T > 0 such that the solution to problem (9)-( 12) (as given in Definition 2.1) does exist.

The proof of this theorem is given in the next subsections.

Galerkin-Type Approximations

We begin the proof with a classical approximation method.

Select two sequences of subspaces

E 1 ⊂ E 2 ⊂ • • • and F 1 ⊂ F 2 ⊂ • • • such that ∪ k∈N E k is dense in Sol 2 2 (T) and ∪ k∈N F k is dense in W 2 2 (T) (and, consequently, in W 1 2 (T)). Since the inclusions W 1 2 (T) → L 2 (T)
and Sol 1 2 (T) → Sol 2 (T) are both compact, the operator Δ : Sol(T) → Sol(T) is a symmetric operator that extends to a self-adjoint operator on Sol 2 (T) and L 2 (T). Fix bases of eigenfunctions of Δ in Sol 2 (T) and L 2 (T) and denote by E k and F k the linear span of the first k eigenfunctions in Sol 2 (T) and L 2 (T), respectively. The subspaces E k and F k consist of smooth functions and thus ∪ k∈N E k and ∪ k∈N F k are dense in Sol 2 2 (T) and W 2 2 (T), respectively.

Proposition 2.1. Let (u 0k , ν 0,k , n 0,k ) ∈ E k × F k × F k be an approximation of the initial data (u 0 , ν 0 , n 0 ) for fixed k.
Then, for some T > 0, there exists a solution

(u k , ν k , n k ) ⊂ C 0 ((0, T ); E k × F k × F k ) of the problem (u k,t , ω) = -(u l k u k,x l , ω) + μ(Δu k , ω) -K(Δn k • ∇n k , ω), ( 13 
)
J(ν k,t , ζ) + (Ju l k ν k,x l , ζ) + K(Δn k × n k , ζ) = 0, ( 14 
) (n k,t , ψ) + (u l k n k,x l , ψ) -(ν k × n k , ψ) = 0, ( 15 
) (u k , ν k , n k )| t=0 = (u 0k , ν 0k , n 0k ), ( 16 
)
where the identities above hold for all

ω ∈ E k , ζ, ψ ∈ F k , and (u, v) = T u • v dx 1 dx 2 is the L 2 (T)-inner product.
Indeed, the system ( 13)-( 16) could be regarded as a Cauchy problem for the ordinary differential equation X t = f (X) in 3k-dimensional space with continuous right-hand side. Due to the Cauchy-Peano theorem, there exists some small T 0 > 0 such that this problem has a solution for |t| < T 0 =: T . Remark 2.1. If u 3 0k = 0, then for any t < T 0 , we have

u 3 k (t) = 0.
The next step is to get a uniform estimate on (u k , ν k , n k ) in some appropriate norm.

Energy Conservation

We need the following identity.

Lemma 2.1. For all t ∈ (0, T ) we have

T u k (t) 2 + J ν k (t) 2 + K ∇n k (t) 2 dx 1 dx 2 + 2μ t 0 T ∇u k 2 dx 1 dx 2 dt = T u 0k 2 + ν 0k 2 + ∇n 0k 2 dx 1 dx 2 .
Proof. In this proof we use (u, ν, n) instead of (u k , ν k , n k ), in order to simplify notation. In Eqs. ( 13)- [START_REF] Lin | Nonparabolic dissipative system modeling the ow of liquid crystals[END_REF] we substitute (ω, ζ, ψ) = (u, ν, -KΔn). Since Δ : F k → F k , this substitution is allowed. Taking the integral over the interval (0, t) in (13) and using periodicity of all functions, we obtain

T 1 2 u 2 t 0 dx 1 dx 2 = t 0 T -μ ∇u 2 + Kn s xj n s xi u i xj dx 1 dx 2 dt. ( 17 
)
The sum of the integrals over the interval (0, t) of the relations ( 14) and ( 15) reads

0 = t 0 T J(ν • ν t + u l ν i x l ν i ) + K (Δn × n) • ν + (ν × n) • Δn -n i t n i xsxs -u j n i xj n i xsxs dx 1 dx 2 dt = T 1 2 J ν 2 + Kn i xs n i xs dx 1 dx 2 t 0 + t 0 T Ku j xs n i xs n i xj dx 1 dx 2 dt. ( 18 
)
Taking the sum of ( 17) and ( 18) we obtain

1 2 T u 2 + J ν 2 + K ∇n 2 dx 1 dx 2 t 0 + μ t 0 T ∇u 2 dx 1 dx 2 dt = 0,
which proves the stated identity.

Corollary 1. Problem (13)-( 16) has a solution for every T > 0.

Proof. Reconsider our problem as an ordinary differential equation X t = f (X) with continuous right hand side. The value T 0 obtained from the Cauchy-Peano theorem depends only on the function f and on the norm of the initial data. Since f doesn't depend on t and for any t ∈ (0, T 0 ) the solution

X(t) = (u k (t), ν k (t), n k (t)) is bounded with X(0) = (u k (0), ν k (0), n k (0)
), the Cauchy-Peano theorem guarantees the existence of the solution on the interval (t, t + T 0 ) for any t < T 0 , and, consequently, on the interval (0, 2T 0 ). Repeating the procedure, this proves the existence of the solution for any t ∈ (0, NT 0 ), where N is an arbitrary natural number.

Estimates on Higher Derivatives

Unfortunately, the results of Lemma 2.1 are not sufficient to prove the convergence of (u k , ν k , n k ) to the solution of ( 9)- [START_REF] Lin | Existence of solutions for the Ericksen-Leslie system[END_REF]. We need more precise estimates.

Theorem 2.2.

There exists T > 0 and C > 0, depending only on the initial data, and constants J, K, μ > 0, such that

u k L2((0,T );W 3 2 ) , u k L∞((0,T );W 2 2 ) , ν k L∞((0,T );W 2 2 ) , n k L∞((0,T );W 3 2 ) ≤ C, u k,t L2(QT ) , ν k,t L2(QT ) , ∇n k,t L2(QT ) ≤ C.
Proof. We begin by proving the first set of inequalities. In equation [START_REF] Lin | Nonlinear theory of defects in nematic liquid crystal: phase transition and flow phenomena[END_REF], set ζ = -Δν and integrate over the domain (0, T ) using Green's identities. We have

J 2 T ∇ν 2 dx 1 dx 2 T 0 = QT - J 2 u j x k ν i xj ν i x k -K(Δn × n x k ) • ν x k -K(Δn x k × n) • ν x k dx 1 dx 2 dt. ( 19 
)
The integral of ( 15) with ψ = KΔ 2 n can be written as

K 2 T n x k xj • n x k xj dx 1 dx 2 T 0 = K QT u j n i x k xj Δn i x k + u j x k n i xj Δn i x k -(ν × n x k + ν x k × n) • Δn x k dx 1 dx 2 dt = K QT -2u j x k n xj x k • Δn -Δu j n xj • Δn + (ν x k × n x k ) • Δn + (n × ν x k ) • Δn x k dx 1 dx 2 dt. ( 20 
)
To estimate the second derivatives of u, we set ω = -Δu in [START_REF] Gay-Balmaz | The geometric structure of complex fluids[END_REF] and integrate over (0, T ):

1 2 T ∇u 2 dx 1 dx 2 T 0 + μ QT Δu 2 dx 1 dx 2 dt (13) = QT -u j x k u xj • u x k + Kn xi • ΔnΔu i dx 1 dx 2 dt. ( 21 
)
The sum of ( 19)-( 21) is

1 2 T J ∇ν 2 + K 2 j,k=1 n xj x k 2 + ∇u 2 dx 1 dx 2 T 0 + μ QT Δu 2 dx 1 dx 2 dt = QT -Ju j x k ν xj • ν x k -2Ku j x k n xj x k • Δn + K(ν x k × n x k ) • Δn -u j x k u xj • u x k dx 1 dx 2 dt.
We estimate the integral on the right-hand side:

1 2 T J ∇ν 2 + K 2 j,k=1 n xj x k 2 + ∇u 2 dx 1 dx 2 T 0 + μ QT Δu 2 dx 1 dx 2 dt ≤ C 1 T 0 esssup ∇u(t) ∇ν(t) 2 L2(T) + 2 i,j=1 n xixj (t) 2 L2(T) + ∇u 2 L2(T) + esssup ∇n(t) ∇ν(t) L2(T) Δn(t) L2(T) dt. ( 22 
)
Since ij u xixj 2 L2(T) = Δu 2 L2(T) (see [24, III, §8]), we have estimated u in the L 2 ((0, T ); W 2 2 (T))- norm.
We need to estimate esssup ∇u(t) and esssup ∇n(t) in terms of higher derivatives. Unfortunately, the W 2 2 -norm is not enough, so we repeat the previous procedure for (ω, ζ, ψ) = (Δ 2 u, Δ 2 ν, -KΔ 3 n). We use below the identity ∇(Δu) 2 := Δu x k • Δu x k . From ( 13)-( 15), we have

1 2 T J Δν 2 + Δu 2 + K ∇(Δn) 2 dx 1 dx 2 t 0 + Qt μ ∇(Δu) 2 dx 1 dx 2 dt ≤ - Qt u j x k (2Jν xj x k • Δν + 2u xj x k • Δu + KΔn xj • Δn x k + 2Kn xixj x k • Δn xi ) + Δu j (Jν xj • Δν + u xj • Δu + Kn xj x k • Δn x k ) + Ku j x k xi n xj x k • Δn xi + KΔu j x k n xj • Δn x k -K(Δn x k • n xj + n xj x k • Δn)Δu j x k + K(Δ 2 n × n + 2(Δn x k × n x k )) • Δν + K(Δν × n) • Δ 2 n -K(2ν xj x k × n xj + 2ν xj × n xj x k + ν x k × Δn + ν × Δn x k ) • Δn x k dx 1 dx 2 dt ≤ C T 0 esssup ∇u(t) ν(t) 2 W 2 2 (T) + u(t) 2 W 2 2 (T) + n(t) 2 W 3 2 (T) + u W 2 4 (T) + ν W 1 4 (T) ν(t) W 1 4 (T) + u(t) W 1 4 (T) + n(t) W 2 4 (T) ν(t) W 2 2 (T) + u(t) W 2 2 (T) + n(t) W 3 2 (T) + u W 3 2 (T) n(t) 2 W 2 4 (T) + esssup ∇n(t) ||ν(t)|| W 2 2 (T) n(t) W 3 2 (T) + esssup ν(t) n(t) 2 W 3 2 (T) dt. ( 23 
)
Since for any periodic f ∈ W 1 2 ([0, 1] 2 ), we have

f Lp ≤ C( ∇f L2 + f L2 ) for any p < ∞, (24) 
and any periodic g

∈ W 1 p ([0, 1] 2 ), max g ≤ C( ∇g Lp + g L2 ) for p > 2, (25) 
we conclude from Lemma 2.1, ( 22), [START_REF] Jiang | Global weak solutions to the equations of compressible flow of nematic liquid crystals in two dimensions[END_REF], and (23) that

I (t) ≤ I (0) + C 4 t 0 I (t) 2 dt, as t < T 1 , (26) 
where

I (t) := u(t) 2 W 2 2 (T) + J ν(t) 2 W 2 2 (T) + K n(t) 2 W 3
2 (T) + 1, and the time T 1 depends only on initial data, and the positive constants J, K, μ. Indeed, due to the Cauchy inequality and ( 24), ( 25)

T 0 esssup ∇u (I (t) -1)dt ≤ ε T 0 ∇(Δu(t)) 2 L2(T) dt + C ε T 0 I 2 (t)dt
for any ε > 0 and some C ε > 0. The same inequality holds for the terms containing u W 2 4 (T) or u W 3 2 (T) . The rest of the terms can be estimated with C

t 0 I 3 2 dt ≤ C t 0 I 2 dt.
If ε is sufficiently small, we get [START_REF] Mikhailov | Partial differential equations[END_REF].

Next, we need the following simple lemma, a kind of Gronwall-Bellman inequality.

Lemma 2.2. Let Y be a measurable function on R. Suppose that for almost all t we have

0 ≤ Y (t) ≤ Y (0) + k t 0 Y (s) 2 ds.
Then

Y (t) ≤ Y (0) 1 -ktY (0)
.

Proof. Define the function X(t) by the integral equation

X(t) = Y (0) + ε + k t 0 X(s) 2 ds ⇐⇒ X = kX 2 , X(0) = Y (0) + ε, i.e., X(t) = Y (0) + ε 1 -kt(Y (0) + ε) .
The difference W = Y -X satisfies the inequality

W (t) ≤ -ε + k t 0 (X(s) + Y (s))W (s)ds.
Since Y and X are measurable, the function

f (t) = -ε + t 0 (X(s) + Y (s))W (s)ds
is continuous. Suppose t 0 is the least zero of f . Since X + Y > 0, the condition f (t 0 ) = 0 means that W is non-negative on a positive measure subset of (0, t 0 ). But this is in contradiction with f (t) < 0 as t < t 0 ; consequently f (t) < 0 for all t > 0.

Letting ε → 0, yields the statement in the lemma.

We continue the proof of the theorem. From ( 26), we conclude that for any t < min{T 1 , (C 4 I (0)) -1 /2} =: T 2 we have

I (t) ≤ C 5 , (27) 
where C 5 depends only on K, μ, J, I (0). This proves the first set of three inequalities in the statement of the theorem. Using Lemma 2.2 we can now estimate the time-derivative u t . Set ω = u t in (13) and rewrite the resulting identity as 

QT 2 u t 2 dx 1 dx 2 dt + 1 2 μ T ∇u 2 dx 1 dx 2 t 0 = QT 2 -u j u xj • u t + Δn • n xj u j t dx
u t 2 + μ Qt ∇u 2 dx 1 dx 2 t 0 ≤ u j u xj 2 L2(Qt) + Δn • ∇n 2 L2(Qt) ≤ C 6 .
The same type of inequalities can be obtained in a similar fashion for ν t and ∇n t . This proves the second set of inequalities in the statement of the theorem.

Convergence of the Approximations

In this subsection we finish the proof of Theorem 2.1.

Theorem 2.2 provides the existence of measurable functions u, ν, n and a subsequence of (u k , ν k , n k ) such that

u k u weakly in L 2 ((0, T ); Sol 2 2 (T)), u k,t u t weakly in Sol 2 (Q T ), ν k * ν *-weakly in L ∞ ((0, T ); W 2 2 (T)), n k * n *-weakly in L ∞ ((0, T ); W 3 2 (T)), u k,t u t , ν k,t ν t , ∇n k,t ∇n t weakly in L 2 (Q T ).
Moreover, due to standard embedding theorems,

u k → u strongly in Sol 2 (Q T ), ν k → ν strongly in L 2 (Q T ),
and

∇n k → ∇n strongly in L 2 (Q T ). Fix ω ∈ ∪ k C 1 (0, T ; E k ), ζ(t), ψ(t) ∈ ∪ k C 1 (0, T ; F k
) and integrate ( 13)-( 15) over (0, T ). Passing to the limits as k → ∞ we have 9)- [START_REF] Chandrasekhar | Liquid crystals[END_REF].

⎧ ⎪ ⎨ ⎪ ⎩ QT ( u -μΔu -KΔn i ∇n i ) • ωdx 1 dx 2 dt = 0, QT J K ν • ζ + (Δn × n) • ζ dx 1 dx 2 dt = 0, QT ( ṅ • ψ -(ν × n) • ψ) dx 1 dx 2 dt = 0. (28) Since ∪ k C 1 ((0, T ); E k ) is dense in L 2 ((0, T ); Sol 2 (T)) and ∪ k C 1 ((0, T ); F k ) is dense in L 2 (Q T ), these equations imply (
If ∇p is the Hodge projection of u -μΔu -Δn∇n ∈ L 2 (Q T ) on the orthogonal complement of L 2 ((0, T ); Sol 2 (T)), then ∇p ∈ L 2 (Q T ).

Finally, we check the initial conditions [START_REF] Lin | Existence of solutions for the Ericksen-Leslie system[END_REF].

Fix φ ∈ Sol 2 (T) and consider the family of functions

f k (t) = (u k (t), φ) L2(T) . Since f k (t) = (u k,t (t), φ) L2(T) (u t , φ) L2(T) weakly in L 2 (0, T ), it follows that f k tends to (u, φ) L2(T) in C(0, T ). Thus, u(t, •) tends to lim k u 0k = u 0 weakly in L 2 (T). Also T (u(t, x) -u(0, x)) 2 dx 1 dx 2 = T t 0 u t dt 2 dx 1 dx 2 ≤ t T t 0 u 2 t dtdx 1 dx 2 .
Since u t ∈ L 2 (Q t ), the function u(t, x) is continuous in L 2 (T)-norm with respect to t. Consequently, u 0 is both a weak and a strong limit.

The weak limits of the other variables to their respective initial conditions are checked in the same way. This proves Theorem 2.1.

Uniqueness

Theorem 2.3. Suppose that (u 1 , ν 1 , n 1 , p 1 ) and (u 2 , ν 2 , n 2 , p 2 ) are solutions of the problem (9)-( 12) in the domain Q T . Then, for some 0

< T 0 ≤ T (u 2 , ν 2 , n 2 , ∇p 2 ) = (u 1 , ν 1 , n 1 , ∇p 1 )
almost everywhere in Q T0 .

Proof. First of all, every solution of the problem satisfies identities (28) for all 28). With this substitution, for any τ < T , the identities (28) give

ω ∈ W 1 2 (Q T ), ζ ∈ W 1 2 (Q t ), ψ ∈ L 2 (0, T ; W 2 2 ). Denote w = u 1 -u 2 , f = ν 1 -ν 2 , g = n 1 -n 2 and set (ω, ζ, ψ) = (w, f, -KΔg) in (
Qτ w t • w + u i 2 w xi • w + w i u 1,xi • w + μ ∇w 2 + KΔn 1 • g xj w i + KΔg • n 2,xj w j dx 1 dx 2 dt = 0, ( 29 
) Qτ J(f t • f + u i 2 f xi • f + w i ν 1,xi • f) + K(Δg × n 1 + Δn 2 × g) • f) dx 1 dx 2 dt = 0, ( 30 
) -K Qτ g t • Δg + u 1 i g xi • Δg + w i n 2,xi • Δg -(ν 1 × g + f × n 2 ) • Δg) dx 1 dx 2 dt = 0. (31) 
Next, we rewrite these identities as

T 1 2 w(τ ) 2 d 2 x + Qτ μ ∇w 2 d 2 xdt = Qτ -w i u 1,xi • w -K(Δn 1 • g xj w i + Δg • n 2,xj w j dx 1 dx 2 dt, ( 32 
) J 2 T f(τ ) 2 dx 1 dx 2 = - Qτ Jw i ν 1,xi • f + K(Δg × n 2 + Δn 1 × g) • f dx 1 dx 2 dt, ( 33 
) K 2 T ∇g(τ ) 2 dx 1 dx 2 = K Qτ w i n 2,xi • Δg -u i 1,x k g xi • g x k + (ν 1,x k × g) • g x k -(f × n 2 ) • Δg) dx 1 dx 2 dt. ( 34 
)
Adding the identities (32)-(34), we get 1 2 T ( w(τ

) 2 + J f(τ ) 2 + K ∇g(τ ) 2 ) dx 1 dx 2 + μ Qτ ∇w(t) 2 dx 1 dx 2 dt = - Qτ w j u i 1,xj w i + KΔn 1 • g xj w i + Jw i ν 1,xi • f + K(Δn 1 × g) • f + Ku i 1,x k g xi • g x k -K(ν 1,x k × g) • g x k dx 1 dx 2 dt.
Due to the embedding theorems and the Hölder inequalities we get 1 2 T ( w(τ

) 2 + J f(τ ) 2 + K ∇g(τ ) 2 ) dx 1 dx 2 + μ Qτ ∇w(t) 2 dx 1 dx 2 dt ≤ C τ 0 f L2(T) ∇ν 1 Lq(T) + ∇g L2(T) Δn 1 Lq(T) w Lp(T) + g L2(T) ∇ν 1 Lq(T) + ∇f L2(T) Δn 1 Lq(T) g Lp(T) + ∇u 1 L∞(T) w 2 L2(T) + ∇g 2 L2(T) dt ≤ C(δ)τ 1 2 esssup t Δn 1 (t) Lq(T) + ∇ν 1 (t) Lq(T) + ∇u 1 (t) L2((0,T );L∞(T)) esssup t w(t) 2 L2(T) + f(t) 2 L2(T) + ∇g(t) 2 L2(T) + ∇w(t) 2 L2(Qτ )
for some q > 2,

p -1 = 1/2 -q -1 .
Taking the τ -esssup of the left hand side and comparing it to the second factor on the right hand side, shows that for τ sufficiently small we have

(w, f, ∇g) = (0, 0, 0). Consequently, (u 1 , ν 1 ) = (u 2 , ν 2 ). However, ġ = -w i n 2,xi + ν 1 × g + f × n 2 . Since f = 0 and w = 0, we have d dt g(t) = ν 1 (t) × g(t)
with initial condition g(0) = 0. This implies that g = 0, i.e., n 1 = n 2 . Since ∇p i is the projection of u -μΔu -Δn∇n, we have ∇p 1 = ∇p 2 .

Theorem 2.3 is proved.

Liquid Crystal in the Presence of External Forces

Theorem 2.1 can be easily extended if F, G = 0.

Theorem 2.4. Suppose u 0 ∈ Sol 2 2 (T), ν 0 ∈ W 2 2 (T), n 0 ∈ W 3 2 (T) and F ∈ L 2 ((0, T ); W 1 2 (T)), G ∈ L 1 ((0, T ); W 2 2 (T)); F 3 = 0.
Then there exists some 0 < T 0 < T such that the solution (as in Definition 2.1) of problem (9)-( 11) exists and is unique in Q T0 .

Liquid Crystal Flow in Bounded Domains

Let Ω be a bounded domain in R 2 and consider nematic liquid crystal flow in the cylinder Ω × R which does not depend on the third coordinate.

Since all functions in the Ericksen-Leslie system depend only on the points (x 1 , x 2 ) ∈ Ω, we are studying Eqs. ( 9)- [START_REF] Chandrasekhar | Liquid crystals[END_REF] in domain (0, T ) × Ω with initial conditions [START_REF] Lin | Existence of solutions for the Ericksen-Leslie system[END_REF] and additional boundary conditions

u ∂Ω = 0, n -n 1 ∂Ω = 0, ν| ∂Ω = 0 for any t > 0, (35) 
where n 1 is a given vector field on Ω × R.

Condition u ∂Ω = 0 means that the domain has impenetrable boundary and that the fluid moves without slipping; nn 1 ∂Ω = 0 describes the director position at the boundary. The third condition comes from the original Ericksen-Leslie system and means that ṅ = 0 at the boundary.

The Definition of the Solution and the Existence Theorem

We begin by introducing some notations.

In this section we let Q T := (0, T ) × Ω,

• Sol (Ω) := {v : Ω → R 3 such as v ∈ C ∞ 0 Ω), div v = 0}; • Sol (Q T ) := {v ∈ C ∞ (Q T ) : ∀t v(t, •) ∈ • Sol (Ω)}; • Sol m 2 (Ω) is the closure of • Sol (Ω) in the norm W m 2 (Ω) • W m 2 (Ω)
is the subspace of W m 2 (Ω) with zero trace (see, for instance [START_REF] Sobolev | Some applications of functional analysis in mathematical physics, 3rd edn[END_REF][START_REF] Mikhailov | Partial differential equations[END_REF]). The definition of a solution of the Ericksen-Leslie equations is quite similar to the one in Definition 2.1, with some changes because of the boundary. Definition 3.1. The quadruple (u, ν, n, ∇p ) is a strong solution of problem ( 9)-( 12), (35

) in domain Q T if • u is a vector field in L 2 ((0, T ); • Sol 1 2 (Ω)) ∩ L 2 ((0, T ); W 2 2 (Ω)), u t ∈ L 2 (Q T ); • ν is a vector field in L ∞ ((0, T ); • W 1 2 (Ω)), ν t ∈ L ∞ ((0, T ); L 2 (Ω)); • n -n 1 is a vector field in L ∞ ((0, T ); • W 1 2 (Ω)) ∩ L 2 ((0, T ); W 2 2 (Ω))
, where n 1 is a given constant vector field in (x, t),

n t ∈ L ∞ ((0, T ); W 1 2 (Ω)); • ∇p ∈ L 2 (Q T );
• u, n, ν satisfy initial conditions [START_REF] Lin | Existence of solutions for the Ericksen-Leslie system[END_REF], i.e., (u, n, ν) → (u 0 , n 0 , ν 0 ) in L 2 (Ω) as t → 0; • Equations ( 9)- [START_REF] Chandrasekhar | Liquid crystals[END_REF] hold almost everywhere.

In this section we suppose the third component of the director to be equal to zero. Then we have n = (cos θ, sin θ, 0), ν = (0, 0, ν), where θ is a new unknown function. The Ericksen-Leslie system becomes

u -μΔu = -∇ p + K 2 ∇θ 2 -KΔθ∇θ, div u = 0, ( 36 
) J ν = -KΔθ, (37) θ = ν (38)
with boundary and initial conditions

u ∂Ω = 0, θ -θ 1 ∂Ω = 0, ν| ∂Ω = 0 for any t > 0, (39) 
u(0, x) = u 0 (x), ν(0, x) = ν 0 (x), θ(0, x) = θ 0 (x). ( 40 
) Theorem 3.1. Assume that Ω is a domain with C 2 -boundary. Let θ 0 ∈ W 3 2 (Ω), ν 0 ∈ W 2 2 (Ω), u 0 ∈ • Sol 1 2 (Ω) ∩ W 2 2
(Ω); Δu 0 ∂Ω = 0 and assume that for some d > 0 we have

θ 0 (x) = θ 1 ≡ const, ν 0 (x) = 0 if dist(x, ∂Ω) < d.
Then the solution of (36)-( 40) exists for some T > 0 and is unique.

The proof proceeds along the same lines as that of Theorem 2.1. We point out the necessary modifications.

Instead of ( 36)-(38) we consider the regularized system, where equation ( 36) is replaced with

u -μΔu + εΔ 2 u = -∇P -Δθ∇θ (41) 
with additional boundary conditions Δu ∂Ω = 0; where ε is a small parameter, P = p + K 2 ∇θ 2 . Also, we replace θ with θ 1 + θ, where θ is a new unknown function. As in the proof of Theorem 2.1, select two sequences of subspaces

E 1 ⊂ E 2 ⊂ • • • and F 1 ⊂ F 2 ⊂ • • • such that ∪ k E k is dense in • Sol 1 2 (Ω) ∩ W 2 2 (Ω) and ∪ k F k is dense in W 2 2 (Ω)∩ • W 1 2 (Ω).
It is still useful to choose E k and F k to be the linear span of the first k eigenfunctions of the Laplacian in the corresponding spaces.

Define the finite-dimensional solution (u k , ν k , θk ) ⊂ C 0 ((0, T ); E k ×F k ×F k ) by the system of ordinary differential equations

(u k,t , ω) = -(u l k u k,x l , ω) + (μΔu k -εΔ 2 u k , ω) -K(Δ( θk + θ 1 ) • ∇( θk + θ 1 ), ω), ( 42 
) J(ν k,t , ζ) = -(Ju l k ν k,x l k, ζ) -K(Δ( θk + θ 1 ), ζ), ( 43 
) ( θk,t , ψ) = -(u l k ( θk + θ 1 ) x l , ψ) + (ν k , ψ), ( 44 
) (u k , ν k , θ k )| t=0 = (u 0k , ν 0k , θ 0k ). ( 45 
)
The identities (42)-( 45) hold for all ω ∈ E k , ζ, ψ ∈ F k . (For simplicity we use the notation θ k = θk + θ 1 ). The solution of this finite-dimensional problem, obviously, exists for some T > 0.

The result of Sect. 2.3 still holds.

Lemma 3.1. For all t > 0 we have

Ω u k (t) 2 + J ν k (t) 2 + K ∇θ k (t) 2 dx 1 dx 2 t 0 + 2μ t 0 Ω ∇u k (s) 2 dx 1 dx 2 ds + 2ε t 0 Ω Δu k (s) 2 dx 1 dx 2 ds = 0.
Proof. Repeat the procedure used in Lemma 2.1.

We need to check that the boundary integrals are equal to zero. Due to the condition u k | ∂Ω = 0, all terms containing u i k vanish. The only term not containing u k is

T 0 ∂Ω θ k,t θ k,xi N i dS
derived from (44), where (N 1 , N 2 ) is an exterior normal vector field. Since θ is a smooth vector field and θ 1 does not depend on t, θ t | ∂Ω = 0, it follows that this term vanishes. The Lemma is proved.

As in section 2.3, Lemma 3.1 guarantees that the solution of the problem (42)-( 45) exists for all T > 0.

Next, we estimate higher derivatives.

Lemma 3.2.

There exists T > 0 and C > 0 depending on ε, the initial and boundary data, but not depending on k, such that u k L2((0,T );W 3 2 (Ω)) , ∇ν k L∞((0,T );L2(Ω)) , θ k L∞((0,T );W 2 2 (Ω)) ≤ C. Note that T > 0 and C > 0 depend on ε, which won't be sufficient to prove Theorem 3.1. Lemma 3.3 below gives the necessary uniform estimates.

Proof. In this proof we use (u, ν, θ) instead of (u k , ν k , θk ).

Consider Eqs. ( 42)-(44) and substitute (ω, ζ, ψ) = (Δu, Δν, Δ 2 θ). First, we note that (44) could be rewritten as

1 2 Ω (Δ θ) 2 dx 1 dx 2 T 0 = T 0 ∂Ω ( θ -ν)Δθ x k N k -Δθ( θ -ν) x k N k dSdt + QT -2u j x k θ xj x k Δθ -Δu j θ xj Δθ + ΔνΔθ dx 1 dx 2 dt.
The first term of the boundary integral is equal to zero, since θ(t, x) = 0 and ν(t, x) = 0 if x ∈ ∂Ω.

Recall that F k is defined to be the linear span of the first k eigenfunctions {v m | m = 0, . . . , k} of the Laplacian, i.e.,

Δv m = λv m , v m | ∂Ω = 0, v m ∈ • W 1 2 (Ω); then Δv m ∈ • W 1 2 (Ω) and thus Δ θ ∈ • W 1 2 (Ω)
. This shows that the second term in the boundary integral also vanishes.

Since Δθ = Δ θ, we have an equation similar to [START_REF] Wang | Well-posedness for the heat flow of harmonic maps and the liquid crystal flow with rough initial data[END_REF]. The analogues of ( 19) and ( 21) are obtained in the same way and, consequently, we can prove an analogue of inequality ( 22 We also need inequality (11.8) from [24, Chapter III]

∀p > 1 ∃C ∀v ∈ W 2 p (Ω), v| ∂Ω = 0 v W 2 p (Ω) ≤ C( Δv Lp(Ω) + v L2(Ω) )
and the Sobolev embedding theorems to estimate u W 2 p (Ω) (and, consequently, max ∇u ) in terms of Δu W 1 2 (Ω) and lower derivatives. Finally, we can obtain an inequality similar to [START_REF] Mikhailov | Partial differential equations[END_REF] for for some 1 < α ≤ ∞, and that u is bounded by a constant m > 0. Assume also that ∇n 0 and ν 0 vanish for xx 0 < r. Then ∇n and ν are equal to zero for xx 0 < r -(m + max{1, K/J})t, M t α-1 α < 1 2 .

I (t) := u(t) 2 W 1 2 (Ω) + J ν(t) 2 W 1 2 (Ω) + K n(t) 2
In the case of a bounded domain Ω, we impose the additional assumption u ∂Ω = 0, ν(x, t) = 0, n(x, t) t = 0 if (x, t) ∈ {x ∈ ∂Ω | xx 0 < rt(m + max{1, K/J})}.

Proof. Let x 0 = 0. Taking ζ = νϕ and ψ = -KΔnϕ in (28) we get which proves the statement.

J 2 ν 2 ϕdx
Remark 4.1. The proof of Theorem 4.1 is independent of the existence and uniqueness proof and result. Moreover, in the proof we can suppose (u, ν, n) to satisfy only [START_REF] Leslie | Continuum theory for nematic liquid crystals[END_REF] and [START_REF] Chandrasekhar | Liquid crystals[END_REF] but not [START_REF] Ericksen | Continuum theory of nematic liquid crystals[END_REF].

Fig. 1 .

 1 Fig. 1. The structure of smectic (left), nematic (center) and cholesteric (right) liquid crystals

2 L2

 2 ((0,t);W 3 2 (Ω)) + 1, and, consequently, (27). This proves Lemma 3.2.

Theorem 4 . 1 .

 41 Consider the Eqs.[START_REF] Leslie | Continuum theory for nematic liquid crystals[END_REF],[START_REF] Chandrasekhar | Liquid crystals[END_REF], suppose thatw ij := u j xi + u i xj satisfy esssup x |w ij (x, t)| Lα(0,T ) ≤ M/2

  1 dx 2 dt. Since u j u xj and Δn • n xj are uniformly bounded in L 2 (Q t ) [which follows from (27) and standard embedding theorems], we conclude

	Qt

  Next, we need Lemma 8.1 of[24, Chapter III] to estimate u W 2 2 (Ω) in terms of Δu L2(Ω) and u L2(Ω) , namely,

				):			
	1 2	T	J ∇ν 2 + K	2 j,k=1	θ xj x k	2 + ∇u 2 dx 1 dx 2	T 0
			+ μ				
			T				2
		≤ C 1	esssup ∇u(t)	∇ν(t) 2 L2(Ω) +	θ xixj (t) 2 L2(Ω) + ∇u 2 L2(Ω)
			0				i,j=1
			+ ∇θ(t) L4(Ω) Δu(t) L4(Ω) Δθ(t) L2(Ω) dt.	(46)
					u W 2		

QT Δu 2 dx 1 dx 2 dt + ε QT ∇(Δu) 2 dx 1 dx 2 dt 2 (Ω) ≤ C( Δu L2(Ω) + u L2(Ω) ).

  + u j ϕ xj ) ν 2 -K(Δn × n) • νϕ dx 1 dx 2 dt, + u j ϕ xj ) ∇n 2 -K(ν × n) • Δnϕ -Ku j x k n xj • n x k ϕ -K ṅ • n xj xj dx 1 dx 2 dt. + ∇n 2 dx 1 dx 2 dt ≤ 0.

	1 dx 2 (ϕ t K t 0 = J 2 2 ∇n 2 ϕdx 1 dx 2 t 0 = K 2 (ϕ t Add the previous two identities and rewrite the result as	
	J 2	ν 2 ϕdx 1 dx 2	t 0	+		K 2	∇n 2 ϕdx 1 dx 2	t 0	≤	φ	J 2	ν 2 +	K 2	∇n 2
		+ K max											
	and estimate												
			φ	J 2K	ν 2 +	1 2	∇n u i x i x		J 2K	ν 2 +	1 2	∇n 2
	+ ν 2 Consequently, |φ ( x + m t)| 2		
		J 2K	ν(t)φ	1 2 2 2 +	1 2	φ	1 2 ∇n(t) 2 ≤ max
												α-1 α	esssup t	φ	1 2 ∇n 2 2 ,

i,j,x
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Proof of Theorem 3.1. Due to Lemma 3.2, the sequences u k , ν k , θ k are weakly-precompact in L 2 ((0, T );

2 (Ω)), L ∞ ((0, T );

• W 1 2 (Ω)), and L ∞ ((0, T ); W 2 2 (Ω)). From the embedding theorems, u k u ε weakly in L 2 ((0, T );

This proves existence of solutions of the regularized problem (37), ( 38), (41) for any ε > 0. To prove Theorem 3.1, it is sufficient to obtain uniform estimates for higher derivatives of (u ε , ν ε , θ ε ). Lemma 3.3. For sufficiently small T 1 > 0, not depending on ε, there is a constant C > 0, also not depending on ε, such that

Proof. Consider, instead of (37) and (38), the equations

where χ(x) is a smooth function,

Repeat the Galerkin procedure for the problem (39), (40), (41), (49), (50) as presented in Sect. 2. Since all nonlinear terms in (49), (50) vanish on the boundary, we can prove the analogue of Theorem 2.2.

Proposition 3.1.

There exists a strong solution (ũ, ν, θ) of the problem (39), (40), (41), (49), (50). The solution is unique and satisfies inequalities (47), (48), where the constants C and T depend on d and don't depend on ε.

The proof is identical to that of Theorem 2.2 and the argument in Sect. 2.6, so it won't be repeated here.

Let us prove that, for some T 1 < T not depending on ε, the two solutions coincide, i.e.

Define constant T 1 > 0 by

Suppose t 0 ∈ K . Then the solution (u ε , ν ε , θ ε ) of the regularized problem exists in some interval (0, t 0 + δ). Indeed, let us consider the Eqs. (37), (38), (41) with standard boundary conditions and initial conditions (u ε , ν ε , θ ε )(t 0 ) = (ũ, ν, θ)(t 0 ). Thus, in the open interval (t 0 , t 0 + δ) the new problem has a solution that is a continuation of (u ε , ν ε , θ ε ).

Next, we show that (u ε , ν ε , θ ε ) and (ũ, ν, θ) coincide on some open interval. Consider Eqs. (37), (38) in the domain Q t0 . Since u ε ∈ L 2 ((0, t 0 ); W 1 ∞ (Ω)), we can apply Theorem 4.1 (all we need from this theorem is the existence of the triple (u, ν, n) satisfying Eqs. [START_REF] Leslie | Continuum theory for nematic liquid crystals[END_REF], [START_REF] Chandrasekhar | Liquid crystals[END_REF] and this fact does not depend on any statement below); thus θ ε = θ 1 , ν ε = 0 in an α-neighborhood of ∂Ω if 0 < t < T for some constant T ≤ t 0 . This constant does not depend on ε since u ε = ũ for any t < t 0 and ũ L2((0,t0);W 1 ∞ (Ω)) is also ε-independent by Proposition 3.1. Due to the definition of T 1 , we have α > d 3 and T = t 0 . Moreover, since u ε ∈ L 2 ((0, t 0 + δ); W 1 ∞ (Ω)) and θ ε t=t0 = θ 1 , ν ε t=t0 = 0 in the α-neighborhood of ∂Ω, there exists a constant δ ε depending on ε such that

Now it is easy to check that the solution (u ε , ν ε , θ ε ) satisfies the Eqs. ( 41), ( 49), (50) in Q T1 , and hence coincides with (ũ, ν, θ) in some neighborhood of t = t 0 . Consequently, K is open.

We now show that K is closed, i.e., if

This is impossible since we have inequalities (47), (48) for the solution (ũ, ν, θ). Hence t 0 ∈ K .

Therefore, K is both open and closed in [0, T 1 ] which implies that K = [0, T 1 ] and concludes the proof of the lemma.

Continuing the proof of Theorem 3.1, select a subsequence ε k such that (u, ν, n) is a weak limit of (u

, and L ∞ ((0, T ); W 2 2 (Ω)). The vector fields (u, ν, n) are the first three terms of the solution. The term ∇p is the Hodge projection of u -μΔu -Δn∇n ∈ L 2 (Q T ) on the orthogonal complement of L 2 (0, T ; Sol 2 (Ω)).

As in Sect. 2.5, one checks that the initial conditions hold. The proof of uniqueness is identical to that in Sect. 2.6.

Remark 3.1. As can be seen from the proof, all that is needed is that n 1 is piecewise constant on the boundary ∂Ω.

The same result holds if external forces are present.

Theorem 3.2. Suppose Ω, n 0 , ν 0 , u 0 , n 1 satisfy the conditions of Theorem 3.1. Assume also that F ∈ L 2 ((0, T );

Then the solution exists and is unique for some T > 0. Remark 3.2. If G = (G 1 , G 2 , 0), the director field cannot be represented as n = (cos θ, sin θ, 0). Remark 3.3. The analogues of the Theorems 3.1 and 3.2 hold also in the case of the director field n = (cos θ sin φ 0 , sin θ sin φ 0 , cos φ 0 ), ν = (0, 0, ν 3 ), where φ 0 is a constant angle and θ, ν 3 are new unknown functions.

Finite Propagation Speed

In this section we consider the strong solutions of the Ericksen-Leslie equation both in the periodic (see Definition 2.1) and the bounded domain case (see Definition 3.1). For simplicity in this section we will use fdx 1 dx 2 instead of T fdx 1 dx 2 or Ω fdx 1 dx 2 depending on the nature of the domain.