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Abstract—In this paper, we consider the problem of user
scheduling and pilot assignment in TDD multicell multiuser
Massive MIMO systems. While in TDD systems the channel
is acquired using uplink pilots, we propose a scheme that
utilizes additional downlink probing in order to improve the
spectral efficiency. The idea is to dynamically assign mobile
users to different clusters based on the directions of their
channels through the use of downlink reference beams. This
will result in forcing the interference to be centered in semi-
orthogonal subspaces without the need for important feedback
and therefore enabling reduction of the pilot contamination effect.
The scheduled users in each cluster employs orthogonal training
sequences with a pilot reuse factor of 1 among the clusters. We
then propose a graphical framework for pilot assignment. We
show that this problem can be modeled as a max cut problem
and we provide an approximation algorithm that optimizes the
pilot allocation.

I. INTRODUCTION

Multiuser MIMO is one of the main technologies that has

been adopted for wireless networks. It enables serving users in

the same frequency band and time, exploiting the degrees of

freedom in the spatial domain. Coupled with a large antenna

array at the Base Station, this system enables a huge increase

in the network spectral and energy efficiency. Massive MIMO

was first proposed in [1]. The idea was to mimics spread-

spectrum used in 3G networks in which a large processing gain

can be realized by massive use of radio spectrum. This gain is

imitated through the use of a large number of antennas. Mas-

sive MIMO systems were intensively investigated and shown

to have a huge potential in improving the spectral and energy

efficiency of wireless networks. In [1], the author showed that

Massive MIMO systems require channel state information in

order to enable simple linear beamforming. It was shown that

the spectral efficiency of the massive MIMO system is limited

by the CSI imperfection due to pilot contamination. With

massive MIMO, the impact of uncorrelated receiver noise,

fast fading and interference is decreasing as the number of

antennas increases. Usually, when using pilot aided channel

estimation, a limiting factor arises since we are required to

reuse the same orthogonal pilot sequences in neighboring
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cells. This results in pilot contamination. This phenomenon

was heavily investigated and many works proposed differ-

ent methods to deal with it. In [2], the authors proposed

a Coordinated Approach to Channel Estimation, in which

exploitation of covariance information under certain conditions

on the covariance matrices can lead to a complete removal of

pilot contamination effects in the large antenna limit. In [3],

Joint Spatial Division and Multiplexing (JSDM) for multiuser

MIMO downlink was investigated. JSDM is a scheme that

aims to serve users by clustering them into groups such

that users within a group have approximately similar channel

covariances, while users across groups have near orthogonal

covariances. In [4], a two-stage beamforming method for mas-

sive MIMO broadcast channel in FDD mode was proposed.

The key ideas was to use a set of reference beams in order

to select semi-orthogonal users and then apply zero-forcing

beamforming using the CSI feedback from the selected users.

In our paper, we revisit user scheduling for Massive MIMO,

based on the channel covariance informations. We consider

an a scheduling method where users are grouped according

to their channel directions. We concentrate on time division

duplexing (TDD) systems, in which channel reciprocity can

be used to get estimates of the downlink channels through

uplink training, thereby eliminating the need for feedback.

This has the important advantage of enabling the usage of the

full bandwidth efficiently for data transmission compared with

the FDD case where a portion of the available bandwidth is

reserved for feedback. We consider a multicell system and we

aim at reducing the pilot contamination effect, resulting in an

improved spectral efficiency. The proposed scheme consists

of using random beamforming [6] for downlink probing in

TDD mode. This enables to schedule users in different clusters

according to their channel directions. The proposed scheme

allows to reduce the feedback to the index of the subspace on

which users’ channel is concentrated. The users in each cluster

will then employ orthogonal training sequences in the uplink

and the same set of pilots are reused in all clusters within

a given cell. This allows more aggressive pilot reuse. While

this scheme allows improvement in the spectral efficiency, it

cannot remove completely the interference due to the semi

orthogonality and limited dimensionality. In the second part of



the paper, we propose a intelligent pilot assignment framework

that reduces the remaining interference. We show that pilot

assignment can be modeled as a max cut problem. We then

propose an approximation algorithm, that optimizes the pilot

allocation based only on the large scale fading coefficients.

Notations: The notations A†, ‖A‖ and Tr {A} are used

for transpose, Euclidean norm and trace, respectively. We

use CN
(

0, σ2
)

for a circular symmetric complex Gaussian

distribution a with zero mean and variance σ2.

II. SYSTEM MODEL AND PRELIMINARIES

We consider a two-dimensional cellular network composed

of C hexagonal cells with one base station and K single

omnidirectional antenna users in each cell. Each base station is

equipped with M antennas . An example of the cells layout is

given in FIGURE 1. We consider the case of frequency reuse

factor of one where the same bandwidth is reused in all cells.

The wireless channel from the ith user in the bth cell to the jth

BS is given by: g
[j]
ib =

√

β
[j]
ib h

[j]
ib . We assume that each channel

coefficient can be decomposed as a product of the large-scale

fading coefficient and the small-scale fading coefficient. The

small-scale fading coefficients h
[jn]
ib are modeled as Rayleigh

fading, i.e., an i.i.d CN (0, 1) distributed random variables.

The large-scale fading (LSF) coefficient β
[j]
ib ∈ R

+ depends

on the distance between the user and BS and the shadowing.

Typically, the distance between BS and a user is significantly

larger than the distance between antennas, then the large-scale

fading coefficient is the same for all the BS antennas. We

suppose that the large-scale fading coefficient vary slower

than small-scale fading coefficients which is particularly true

when mobile users have low speed. We assume the block

fading model for the small-scale fading coefficients, meaning

they stay constant during small-scale coherent interval of T
symbols. We consider Time-Division Duplexing (TDD) mode

where the entire frequency band is used for downlink and

uplink transmissions by all base stations and all users. In this

paper we concentrate on the uplink. Channel state information

estimation is performed using orthonormal training sequences

where in each cell the same set of τ training sequences

qi ∈ C
τ×1 (q†i qj = δij) is used with reuse factor of 1.

Fig. 1: Network Model

III. GROUP BASED USER SCHEDULING

In this section, we propose a user scheduling method that

exploits the directions of user’s channel [4] [2] without the

need for substantial feedback. We first provide a general

introduction to the proposed scheduling scheme and then, in

the next subsection, we describe the scheduling algorithm in

more details. As in [3][7], the key idea is to partition users

into multiple groups so that each group has a distinguishable

linear subspace. While in [3][7], the subspaces are defined by

the dominant eigenvectors of the groups channel covariance

matrix, we concentrate in this work on multiuser diversity and

the users are grouped according to their channel directions.

The grouping method used in this paper has the advantage to

not require the estimation of user channel covariance matrix

which may be cumbersome and quite complex especially in

massive MIMO systems The clusters will be computed in

each cell such that the signal of users in different clusters are

centered in orthogonal subspaces. This enable us to effectively

mitigate the pilot contamination effect and even reusing the

same pilot sequence more than once in a given cell. Scheduling

users based on the dominant sub-spaces of their signal, can

reduce the mutual interference. The Key idea is to limit

pilot contamination which is responsible for the persistent

interference in the large antenna array regime. This will be

done by allocating the same pilot sequence only to users

in different clusters [7]. In order to exploit having multiple

antennas at the BS without having full CSI, we propose a

scheme in which the BS constructs random beams which will

be used as downlink probes. The set of M random beams

φ = {φ1, φ2, ...φM} with φi a random orthonormal vector

∈ CM×1 is generated according to an isotropic distribution.

Using this property we restrain the scheduled users to those

having a predefined dominant subspace based on d vectors

of the set of the reference beams, where d is the number of

beams that are associated with each cluster. Using downlink

probing simplifies the clustering procedure. While random

beamforming has been already used in the literature [6],[4]

for FDD systems with CSI feedback, we apply it here for

downlink probing in TDD mode with uplink training. This

enables a more dynamic system and mitigates the need for

substantial feedback. In fact, this is quite advantageous since

the resources needed for CSI acquisition scale up with the

number of BS antennas in FDD systems. The number of

different beams sets that are associated with the clusters is

G = M
d

. We will reuse the same reference beams in different

cells. In the proposed setting, we consider a pilot reuse factor

of 1 between the clusters in a given cell. Different pilot

sequences will be used in neighboring cells which enables

to reduce the pilot contamination effect thanks to pathloss.

In fact, for a given user, copilot interference will be coming

from distant or users with semi-orthogonal channels. Once

the reference beams are allocated to the different cells, they

will be transmitted so that the mobile users could determine

if its channel is aligned enough with the reference beams

corresponding to its serving cell. The detailed scheduling

procedure is provided in the next subsection.



A. Training and Downlink Probing

As in [6] [4], user selection will start by BSs sending their

reference predefined beams which constitute a basis of the

signal space. We suppose that user lr, ( lth user in cell r)

knows

∥

∥

∥

∥

g
[r]†

lr
φi

∥

∥

∥

∥

‖g
[r]
lr

‖
for i = 1, ...,M . This can be justified by

measuring the strength of the signal on each beam given

by

∥

∥

∥
g
[r]†

lr φi

∥

∥

∥

2

and an estimate of ‖g
[r]
lr ‖

2 which can be

approximated by Mβ
[r]
lr . Assuming that we have G different

clusters, each one is associated with d predefined reference

beams Φc = [φic, i = 1...d] for c = 1...G. If the channel g
[r]
lr

of user lr verifies:

∥

∥

∥g
[r]†

lr Φc

∥

∥

∥

‖g
[r]
lr ‖

< α , for, i = 1...d, for all but one c in [1...G]

meaning that user lr will be affected to the cluster for which

the normalized projection is greater than α since the user

channel is well aligned with the reference beams associated

with this cluster. Since users associated with different clusters

have their channels centered in different subspaces, the same

pilot sequences will be used with a reuse factor of 1 between

the clusters. After downlink probing, the mobile users will

feed back the index of their cluster to the BS which will

conduct pilot assignment and select the users scheduled for

transmission. In each group, a maximum of τ users will be

scheduled, each one having a different pilot sequence. The

main upside of using the downlink probing through reference

beams, is to reduce the complexity of the user grouping

scheme. In fact, in our setting we do not need to estimate

the user channel covariance matrix (e.g. as in [3], [7]) which

may be cumbersome and quite complex especially in massive

MIMO systems. We are able to group users according to their

channel subspaces dynamically through the use of reference

beams and very limited feedback. In fact the users will only

feed back an index. Note that 0 < α < 1 and can be defined

dynamically as a function of the user density in the network.

The same pilot sequences will be reused in all clusters within a

single cell. In this case, we will have an interesting impact on

the training phase since we can shorten the pilot transmission

time. Supposing that, for each cell, we are going to schedule K
users and that we have Gc clusters with Nb direct neighboring

cells. Then, in the classical MIMO setting with pilot aided

channel estimation and universal pilot reuse, the training phase

should at least have a duration of K channel uses. In our

clustering setting on the other hand, only
K(Nb+1)

Gc
symbols

are needed for training. By appropriately choosing Gc and

d, we are able to reduce the needed training resources for

a given number of scheduled users. The copilot interference,

in this case, is coming from users in different clusters or in

distant cells. This will enable to reduce the impact of copilot

interference.

B. Group based Channel Estimation

Once the users identify their serving cluster, the BS will

select τ users per cluster to be scheduled for pilot transmission

in order to estimate the effective CSI. In this section we

introduce the index of the reference beams set to which, each

user is assigned. The wireless channel from user l in cell

r associated with cluster j to BS r is given by g
[rj]
lr . Here

ν(b), ∀b = 1..C gives the index of the beams groups allocated

to cell b. Not that all the sets of beams can be used in each

cell and the number of clusters Gc can take values in [1, G].
χ(b) refers to the cells using the same set of pilot sequences

as cell b. qbi refers to the ith pilot sequence used in cell b.
Then during the training phase, the received pilot signal at BS

r taken here as a reference BS is given by:

Y p
c =

C
∑

b=1

∑

j∈ν(b)

τ
∑

i=1

g
[rj]
ib qbi

†
+Np

Where Np ∈ C
M×

τ(Nb+1)

Gc is the additive white Gaussian noise

matrix with i.i.d. CN (0, 1) entries. Conventionally, the Base

Station correlates the training signal with the known pilot

sequences of each user in order to obtain a channel estimate.

Although we do not estimate the covariance matrix, we can use

the information on the dominant subspace to further improve

the estimation. Then the MMSE estimate of the lth user in

cluster k and cell r is given by: ĝ
[rk]
lr = Θ

[rk]
lr ĝ

[rk]LS

lr with

ĝ
[rk]LS

lr being the least square estimate of the channel given

by: ĝ
[rk]LS

lr = Y p
c × qrl =

∑C
b∈χ(r)

∑

j∈ν(b) g
[rj]
lb + Npq

r
l and

Θ
[rk]
lr = R

[rk]
lr

(

I +
∑C

b∈χ(r)

∑

j∈ν(b) R
[rj]
lb

)−1

.

Since {φ1, φ2, ...φM} is an orthonormal basis of the channel,

then g
[rk]
lb can be written as g

[rk]
lb =

√

β
[rk]
lr

∑M
i=1 a

[rk]
ilr φi .

Note that R
[rk]
lr the covariance matrix of the channel of user

l, r. The Mean square error of channel estimation is given in

our case by:

MSElr = E

[

‖g
[rk]
lr − ĝ

[rk]
lr ‖2

]

= Tr











R
[rk]
lr −R

[rk]2

lr



I +

C
∑

b∈χ(r)

∑

j∈ν(b)

R
[rj]
lb





−1










Then the channel estimate of user l, r can be written as:

ĝ
[rk]
lr = R

[rk]
lr



I +

C
∑

b∈χ(r)

∑

j∈ν(b)

R
[rj]
lb





−1

ĝ
[rk]LS

lr

= ΦA
[rk]
lr Φ†ĝ

[rk]LS

lr

where A
[rk]
lr is a diagonal matrix with

(

A
[rk]
lr

)

ii
=

β
[rk]
lr

1+
∑

C
b∈χ(r)

∑

j∈ν(b) β
[rj]
lb

Since we enforce semi-orthogonality

among users in different clusters before the training phase, co-

pilot users within a given cell will have their signals confined

in different subspaces each one with dimension d. We consider



that Φk =
{

φ(k−1)d+1...φkd

}

are the reference beams vectors

associated with cluster k. With α −→ 0, we reduce the inter-

ference between the groups since we confine more and more

the channels to defined subspaces of rank d. With α −→ 0 we

have

∣

∣

∣a
[rk]2

ilr

∣

∣

∣

2

−→ 0 for ∀i > (k − 1)d+ 1 and i < (kd).

Therefore with α ≈ 0, g
[rk]
lr ∈ Span

{

φ(k−1)d+1...φkd

}

and the rest of copilot users is either confined in orthogonal

subspace or coming from distant cells. The resulting channel

estimate is given by:

lim
α→0

Φ†
kĝ

[rk]
lr =Φ†

kR
[rk]
lr (I +

∑

b∈χ(r)
b 6=r

∑

j∈ν(b)

R
[rj]
lb )−1

(
∑

b∈χ(r)
b 6=r

∑

j∈ν(b)

g
[rj]
lb +Npq

r
l )

Having a lower α enables us to have a better channel estimate

reducing the interference and enhancing the spectral efficiency.

Note that with α = 0, the only left copilot interference comes

from distant cells in which the same set of pilots is reused.

In our setting, thanks to MMSE channel estimation, we are

able to separate copilot users signals since each is centered

in a different subspace. This enables us to reduce the pilot

contamination problem. We propose that the pilot reuse factor

would be 1 between the groups meaning that the same pilot

sequence can be used Gc times within one cell which enables

us to reduce the training duration compared with a classical

system for the same number of scheduled users. Since copilot

signals are centered in different subspaces, increasing the reuse

of a given training sequence will not degrade the achievable

spectral efficiency of the system.

IV. SPECTRAL EFFICIENCY IMPROVEMENT

In this section we investigate the spectral efficiency of

our system under direction based user scheduling. We derive

SINR expressions for uplink when the number of antennas

goes to infinity. Upon receiving the uplink signal the BS

will use the MMSE estimate of the users channels. The

decoding in MIMO systems can be done through, Zero-

forcing, MMSE, or Matched filtering receivers. In this paper

we use the Matched filtering approach at the reception. Using

MMSE channel estimation, we consider g̃
[rk]
lr to be the error

in channel estimation, g̃
[rk]
lr = g

[rk]
lr − ĝ

[rk]
lr . In order to

complete our analysis we need the following properties of ĝ
[rk]
lr

and g̃
[rk]
lr which can easily be derived from their definitions:

ĝ
[rk]
lr ∼ CN

(

0, C
[rk]
lr

)

and g̃
[rk]
lr ∼ CN

(

0, C̃
[rk]
lr

)

with

C̃
[rk]
lr = R

[rk]
lr −C

[rk]
lr . Note that ĝ

[rk]
lr and g̃

[rj]
ib are uncorrelated

for all indexes r, l, j, i, b. and C
[rk]
lr is a diagonal matrix with:

(

C
[rk]
lr

)

ii
=

β
[rk]2

lr

1+
∑

C
b∈χ(r)

∑

j∈ν(b) β
[rj]
lb

We concentrate on cell

r taken as a reference. After the training phase and upon

receiving the uplink signal, the BS applies a matched filter

using ĝ
[rk]†

lr in order to detect the data from user (k, l, r).

Then the expected value of dklr is given by:

d̂klr =

C
∑

b=1

∑

j∈ν(b)

τ
∑

i=1

ĝ
[rk]†

lr g
[rj]
ib djib + ĝ

[rk]†

lr Nu

where djib is the data symbol of user j, i, b with E(|djib|
2
) =

1. We see that with α ≈ 0 we completely remove the

interference due to pilot contamination coming from different

user clusters and the only remaining copilot contamination

comes from distant cells in which the same training sequences

are used. But another component of the interference becomes

dominant. In fact, in classical Random Beam-forming settings,

[6] [4], only one user is scheduled according to a given

criterion from the set of users associated with a given Beam.

In our setting τ users from each cluster are scheduled. These

users have channels that are to some degree correlated. Then

even when using orthogonal pilot sequences, it is difficult to

separate their signals. In order to reduce this effect we tend

to have d −→ ∞ in the infinite antenna regime or at least

a large number of beams d which reduces the correlation

between the channels of users within the same group. When d
is large, users in the same cluster will have channels distinct

enough so that the detection of their signals is possible. When

the number of antennas is large, interference not related to

pilot contamination vanishes. Considering a constant number

of clusters G and d very large we obtain the following result:

Lemma 1. With a matched filter receiver
(

Φ†
kĝ

[rk]
lr

)†

and

large d the uplink SINR of user l, r, k is lower bounded by:

SINR
[k]
lr =

β
[rk]2

lr
∑

b∈χ(r)
b 6=r

∑

j∈ν(b) β
[rj]2

lb +
∑

j∈ν(r)
j 6=k

β
[rj]2

lr ξ

with ξ = α4

Proof: The detailed proof can be found in [12]

The first term in the denominator represents the interference

coming from users using the same pilot sequences in distant

cells where the second term is the interference coming from

clusters using different beams within cell r. Having a lower

α will result in better spectral efficiency. When α −→ 0
the persistent interference will vanish, leaving only a weak

component coming from distant cells. While it is very tempting

to have a vanishing interference in the asymptotic regime, α
can not be made low without having impact on the system. In

fact in addition to spectral efficiency, α has an impact on the

probability of having a user with the desired channel direction.

V. PILOT ASSIGNMENT USING MAX CUT

The proposed dynamic clustering scheme enables to im-

prove the spectral efficiency but we are not able to completely

remove copilot interference. In fact α is typically different

from 0 and the limited training resources means that the same

pilot sequences need to be reused in distant cells.



A. Problem Formulation

In order to further reduce copilot interference, we propose

an intelligent pilot assignment method. In fact, the SINR

in the large antenna regime can be enhanced if the users

are associated with their pilot sequences such that copilot

interference is minimized. After downlink probing, the users

are separated into clusters (as explained in section III.A).

The Base station selects then at most τ users per cluster

(since the number of users in each cluster can be higher

than τ ) to be active during one coherence time. This user

selection can be done using any known scheduling policy.

Then the network will assign efficiently the training sequences

to the scheduled users in such a way to reduce the copilot

interference. In this section, we focus on this pilot assignment

problem. The basic idea is to infer the interference from the

Large Scale Fading coefficients that depend on the mobile user

geographical location. The aim is to maximize the sum rate

by efficiently assigning the pilot sequences. We construct the

following combinatorial optimization problem :

max
X

C
∑

b=1

∑

j∈ν(b)

τ
∑

i=1

τ
∑

p=1

log











1 +
β
′[rj]2

ib x
[jp]
ib

C
∑

s∈χ(b)

∑

u∈ν(s)

τ
∑

n=1
β
′[ru]2
ns x

[up]
ns











s.t

τ
∑

p=1

x
[jp]
ib ≤ 1 ∀b = [1..C] , ∀i = [1..τ ] , ∀j ∈ ν(b)

τ
∑

i=1

x
[jp]
ib ≤ 1 ∀p = [1..τ ] , ∀b = [1..C] , ∀j ∈ ν(b)

With x
[jp]
ib =

{

1 if user (i,b,j) uses pilot p

0 otherwise
Here user (i, b, j) means user i in cell b and cluster j and

p gives the index of the used pilot sequence. β
′[rj]2

ib is equal

to β
[rj]2

ib ξ or β
[rj]2

ib depending on whether the interference is

impacting users from the same cell or from distant ones with

the same pilot sequences. The first constraint guarantees that a

given user is allocated only one training sequences. The second

constraints guarantees that a given pilot sequence is used

only once in each cluster. Finding an optimal solution for the

proposed optimization problem is computationally prohibitive.

So in order to solve this problem we propose a graphical

approach with an approximation algorithm that is guaranteed

to achieve at least a constant relative performance guarantee.

In order to optimize the pilot assignment we propose to

construct a graph representing the mobile users and the mutual

interference based on the large scale fading coefficients. To

do this, we need first to proceed by simplifying the objective

function of the optimization problem. Once the pilots are

assigned the sum rate is given by:

C
∑

b=1

∑

j∈ν(b)

τ
∑

p=1

log











1 +
β
′[rj]2

ϕ(p)b

C
∑

s∈χ(b)

∑

u∈ν(s)
us 6=jb

β
′[ru]2

ϕ(p)s











Here ϕ(p) gives the index of the user using pilot sequence p
in each cell and cluster. Assuming high SINR, we obtain the

following expression equivalent to the sum rate:

C
∑

b=1

∑

j∈ν(b)

τ
∑

p=1

log
(

β
′[rj]2

ϕ(p)b

)

− log









C
∑

s∈χ(b)

∑

u∈ν(s)
us 6=jb

β
′[ru]2

ϕ(p)s









We can further simplify this expression by using the results

from [11], replacing the arithmetic mean with geometric

mean. Then ∀i we can write:

(

C
∑

s∈χ(b)

∑

u∈ν(s)
us 6=jb

β
′[ru]2

ϕ(p)s

)

≈

(|χ(b)|Gc − 1)
|χ(b)|Gc







∏

s∈χ(b)

∏

u∈ν(s)
us 6=jb

β
′[ru]2

ϕ(p)s







1
(|χ(b)|Gc−1)

+U .

Here U is due to the difference between the arithmetic and

geometric means. U depends on the smallest and largest values

in addition to the variance of the LSF coefficients. This ap-

proximation becomes accurate when the variance of the values

of LSF coefficients is small. Since the persistent interference

coming from co-pilot users in different neighboring clusters

is attenuated by the semi orthogonality and the remaining

interference is from distant cells, the variation of the LSF

is small making the above approximation efficient. Then the

aim of the pilot assignment optimization is to maximize the

following expression:

C
∑

b=1

∑

j∈ν(b)

τ
∑

p=1

log
(

β
′[rj]2

ϕ(p)b

)

− log









∏

s∈χ(b)

∏

u∈ν(s)
us 6=jb

β
′[ru]2

ϕ(p)s









Since the users are already selected for pilot transmission, the

first term of the sum does not play any role in the optimization.

Finally the original problem is equivalent to minimizing:

min
X

C
∑

b=1
s∈χ(b)

∑

j∈ν(b)
u∈ν(s)

τ
∑

i=1
n=1

τ
∑

p=1

(

log(β
′[ru]2

is ) + log(β
′[rj]2

nb )
)

x
[up]
is x

[jp]
nb

s.t

τ
∑

p=1

x
[jp]
ib ≤ 1 ∀b = [1..C] , ∀i = [1..τ ] , ∀j ∈ ν(b)

τ
∑

i=1

x
[jp]
ib ≤ 1 ∀p = [1..τ ] , ∀b = [1..C] , ∀j ∈ ν(b)

Using the mentioned simplifications, we are now able to

construct the graphical framework for the problem of pilot

allocation.

B. Graphical Modeling and Pilot allocation

We construct corresponding undirected graph for the pilot

allocation problem G = (V,E) where V represent the users

and each edge from E will be associated with a weight that



characterizes the mutual interference between the users in the

uplink based on the large scale fading. Note that G = (V,E)
will be given by Nb + 1 disjoint graphs each one associated

with a set of pilot sequences. Figure 2 shows the interference

graph for a given set of τ pilot sequences. We specify the

Fig. 2: Interference graph

edge’s weight so that we approach the effective interference

between the users in the uplink. In order to make sure that

a given pilot sequence is allocated only once in each cluster,

the weight of the links between users in the same cluster will

be given a large value ω. The weight of the link between

two users k, l, r and j, i, b in different cells is given by:

ω
[kj]
lr,ib = log(β

′[rk]2

lr ) + log(β
′[rj]2

ib ). The optimization problem

aims at putting users that interfere strongly in different pilot

groups, resulting in the reduction of the copilot interference.

Putting two users k, l, r and j, i, b in the same group p means

that x
[jp]
ib = 1 and x

[kp]
lr = 1. Then given the pilot allocation

graph the aim is to partition the graph into τ disjoint Clusters

[P1...Pτ ] such that ∪τ
i=1Pi = V and

∑τ
i=1

∑

a,b∈Pi
ωab is

minimized. This means that edges where the interference

is high are removed since the corresponding users will be

allocated different pilot sequences. Recall that the weight of

the edges between users in the same cluster will be given a

large value ω. This will guarantee that each pilot sequence

is used only once in each cluster. After building the Pilot

association graph, we can notice that our optimization problem

is equivalent to the MAX-τ -CUT problem for Nb + 1 disjoint

graphs. In graph theory the MAX-τ -CUT problem aims at

partitioning the vertices’s of the graph so that the weight of the

edges crossing the cut is maximized. In our setting we partition

the users into τ(Nb + 1) groups, each one using one of the

orthogonal pilot sequences. Solving the MAX-τ -CUT problem

for each set of τ pilot sequences results in the minimization of

the edges sum weight within each group, meaning a minimiza-

tion of the mutual interference in each copilot users group.

In this section we use an approximation algorithm to solve

the pilot association problem. It is known that, MAX-τ -CUT

problem is NP-hard. Which means that the optimal solution

for this problem is computationally prohibitive. Then we apply

the approximation algorithm proposed in [8] which produces

an approximate solution that attains, at least,
(

1− 1
τ

)

of the

optimal solution of the max-τ -cut problem. The proposed

algorithm can produce a solution in which the inter-cluster

weight is at least
(

1− 1
τ

)

times the optimal sum weight for

each set of cells using the same pilot sequences. Since the

edge’s weight represents the mutual interference that results

from sharing a pilot sequence, then the max cut algorithm

will assign different pilot sequences for users that interfere

strongly.The algorithm proceeds by assigning users to the

clusters such that, we minimize the intra-cluster interference

at each step. The detailed description of the algorithm is given

in the next table. The complexity of the proposed algorithm is

proportional to the number of edges, nodes and clusters. The

proposed method enables to efficiently allocate pilot sequences

based only on large scale fading coefficient which are slowly

varying and easily estimated compared with the instantaneous

CSI.

Pilot assignment algorithm

For each set of cells using the same pilot sequences:

Initialize:

intra-cluster interference Wi = 0, ∀i = 1..τ
1. Assign the τ users in cell 1 to different clusters

2. Randomly Order the rest of the users

3. Take the next Node l and assign it to group i∗ for which

the sum W l
i is minimized where W l

i =
∑

a∈Pi
ωla

4. Update the intragroup interference of group i∗

such that Wi∗ = Wi∗ +W l
i∗

5. Repeat steps 3-4 until all nodes are assigned.

VI. NUMERICAL RESULTS

In this section we provide some numerical results demon-

strating the performance of the proposed user clustering

scheme and the pilot assignment approach. We consider an

hexagonal cell network with 7 cells of 1 Km radius. The

mobile users are located uniformly at random in each cell

and we assume that no user is closer to its serving BS than

r0 = 10 m. For large scale fading coefficients we take

into consideration only path-loss, where β
′[ru]
ib = (R

[r]
ib )

(−σ),

between the ith user in the bth cell and the jth BS, where

the path-loss exponent σ = 3. We select the parameter α
from the interval [0, 1]. We consider a coherence interval of

T = 200 symbols split between training and data transmission.

The spectral efficiency is measured in bits/second/Hz. Figure

3 shows a comparison in mean square error in channel

estimation for a reference user. We can see that the MSE is an

increasing function of α. We notice that for low values of α
we have a considerably enhanced channel estimate, since low

α yields almost orthogonal copilot signal. Figure 4 shows a

comparison of the CDFs of achievable sum rates. We notice

the considerable improvement due to user clustering. Here we

considered the large antenna regime where d = 10. For 7

cells containing each one cluster of users, we achieve a total

sum capacity (all users in the network) up to 289 bit/s/hz with

probability 0.8 with the grouping scheme while a classical user

scheduling achieves a sum capacity up to 140 bit/s/hz with the

same probability. This improvement is due to the reduction of

the persistent interference in massive MIMO systems due to

pilot contamination since copilot signals are semi-orthogonal

with user clustering. Figure 5 shows a comparison of the CDFs



Fig. 3: Mean square Error in reference user channel estimation
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of achievable sum rates when applying the proposed pilot

assignment algorithm. Although the curves seem to be close to

each other, the improvement is not negligible. In fact, with the

proposed pilot assignment method we achieve a sum capacity

up to 291.6 bit/s/hz with probability 0.8 while a random pilot

allocation achieves a sum capacity up to 289 bit/s/hz with the

same probability. This means that the proposed approximation

algorithm results in a gain of approximately 52 Mbits/s for

a bandwidth of 20 Mhz. It is worth mentioning that by

using our proposed direction based scheduling, we already

reduced the interference considerably and the copilot inter-

ference comes from users in distant clusters. Therefore, one

cannot expect a much larger gain from the pilot assignment

framework.

VII. CONCLUSION

In this paper we studied the channel direction based user

scheduling in order to mitigate pilot contamination in a mas-

sive MIMO system. We proposed a new scheduling approach

for TDD systems. Downlink probing is used, reducing the

complexity of the scheduling and the need for substantial

feedback. The proposed scheme enables a more aggressive

reuse of the pilot sequences without degrading the perfor-

mance. Results show that this grouping improves the spectral

efficiency and channel estimation accuracy. Since the proposed

grouping approach cannot remove completely the interference,
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Fig. 5: CDF Sum Capacity comparison Pilot Assignment

we also proposed a graphical framework for pilot assignment

in order to further improve the performances of the system.

We proved that pilot assignment can be approximated by a

max cut problem in the high SINR regime. We then provide

an approximation algorithm to optimize the pilot allocation.

REFERENCES

[1] T. L. Marzetta, ”Noncooperative cellular wireless with

unlimited numbers of base station antennas,” IEEE Trans-

actions on Wireless Communications, vol. 9, no. 11, pp.

3590-3600, November 2010.

[2] H. Yin, D. Gesbert, M. Filippou and Y. Liu, ”A Coordi-

nated Approach to Channel Estimation in Large-Scale

Multiple-Antenna Systems,” IEEE Journal on selected

areas in communications, vol 31, no. 2, pp. 264 - 273,

February 2013.

[3] J. Nam, A. Adhikary, J. Y. Ahn and G. Caire, ”Joint Spa-

tial Division and Multiplexing: Opportunistic Beamform-

ing, User Grouping and Simplified Downlink Schedul-

ing,” IEEE Journal of Selected Topics in Signal Process-

ing, vol 8,no. 5, pp. 876 - 890, Mars 2014.

[4] G. Lee, Y. Sung, ”A New Approach to User Schedul-

ing in Massive Multi-user MIMO Broadcast Chan-

nels,”arXiv:1403.6931

[5] Adhikary, Ansuman, Ebrahim Al Safadi, Mathew K.

Samimi, Rui Wang, Giuseppe Caire, Theodore S. Rap-

paport, and Andreas F. Molisch, ”Joint spatial division

and multiplexing for mm-wave channels,” arXiv preprint

arXiv:1312.2045, 2014.

[6] M. Sharif and B. Hassibi, ”On the capacity of MIMO

broadcast channels with partial side information,” IEEE

Trans. Inf Theory, vol. 51, no. 2, pp. 506 -522, Feb. 2005

[7] Junyoung Nam, Giuseppe Caire, Young-Jo Ko,

Jeongseok Ha, ”On the Role of Transmit Correlation

Diversity in Multiuser MIMO Systems,” submitted to

IEEE Trans. Inf Theory.

[8] S. Sahni and T. Gonzalez, ”P-complete approximation

problems,” Journal of the Association for Computing

Machinery, vol.23, No.3, pp.555-565, July 1976.



[9] Saeid Haghighatshoar, Giuseppe Caire, ”Channel Vec-

tor Subspace Estimation from Low-Dimensional Projec-

tions,” arXiv preprint arXiv:1509.07469, 2015.

[10] R. Y. Chang, Z. Tao, J. Zhang, C. C. J. Kuo, ”Mul-

ticell OFDMA Downlink Resource Allocation Using a

Graphic Framework,” IEEE Trans. on Vehicular Tech-

nology, Vol.58, no.7, pp. 3494 - 3507, Sep.2009.

[11] S. H. Tung, ”On lower and Upper Bounds of the Differ-

ence Between the Arithmetic and the Geometric Mean,”

Mathematics of Computation, Vol. 29, no. 131, pp. 834-

836, July 1975.

[12] S. Hajri, M. Assaad, and G. Caire, ”Schedul-

ing in Massive MIMO: User clustering and pi-

lot assignment,” extended version, available online at

http://www.l2s.centralesupelec.fr/perso/salaheddine.hajri


