On a Data Assimilation Method coupling Kalman Filtering, MCRE Concept and PGD Model Reduction for Real-Time Updating of Structural Mechanics Model

2016 SIAM Conference on Uncertainty Quantification

LOt
 CACHAN

[^0]
DDDAS Paradigm

DDDAS ${ }^{1}$ paradigm : a continuous exchange between

- Introduction
- Basics on Kalman Filtering

- Proposed

 Approach- Numerical

Results

- Conclusion
the physical system
and
its numerical model

1. Darema, Dynamica Data Driven Applications Systems : A New Paradigm for Application Simulations and Measurements, 2003

In this work

Objectives :

> Identification process

- for time dependent systems/parameters
- fast resolution
- robust even if highly corrupted data

In this work

Objectives :

Identification process

- for time dependent systems/parameters
- fast resolution
- robust even if highly corrupted data

Tools :

Kalman filter for evolution aspect modified Constitutive Relation Error for robustness
offline/online process based on
Proper Generalized Decomposition

Outline

- Introduction
- Basics on
Kalman Filtering
- Proposed Approach
- Numerical
Results
- Conclusion

* Basics on Kalman Filtering

Proposed Approach

Numerical Results

Conclusion

Data assimilation

- Basics on

Kalman Filtering

- Proposed Approach
- Numerical

Results

- Conclusion

Dynamical system :

$$
\begin{cases}\mathbf{u}^{(k+1)} & =\mathcal{M}^{(k)} \mathbf{u}^{(k)}+\mathbf{e}_{\mathbf{u}}{ }^{(k)} \\ \mathbf{s}^{(k)} & =\mathcal{H}^{(k)} \mathbf{u}^{(k)}+\mathbf{e}_{\mathbf{s}}^{(k)}\end{cases}
$$

Data assimilation

Dynamical system :

$$
\begin{cases}\mathbf{u}^{(k+1)} & =\mathcal{M}^{(k)} \mathbf{u}^{(k)}+\mathbf{e}_{\mathbf{u}}{ }^{(k)} \\ \mathbf{s}^{(k)} & =\mathcal{H}^{(k)} \mathbf{u}^{(k)}+\mathbf{e}_{\mathbf{s}}{ }^{(k)}\end{cases}
$$

Bayes theorem :

$$
\pi\left(\mathbf{u}^{(k)} \mid \mathbf{s}^{(k)}\right)=\frac{\pi\left(\mathbf{s}^{(k)} \mid \mathbf{u}^{(k)}\right) \pi\left(\mathbf{u}^{(k)} \mid \mathbf{s}^{(0: k-1)}\right)}{\pi\left(\mathbf{s}^{(k)} \mid \mathbf{s}^{(0: k-1)}\right)}
$$

under the following hypothesis :

- State $\mathbf{u}^{(k)}$ is a Markov process,
- Observations $\mathbf{s}^{(k)}$ are statistically independent of state history

Linear Kalman Filter

Principle

Kalman filter ${ }^{2}$ is a bayesian filter combined with Maximum a Posteriori method in the case of Gaussian probability density functions. Approach

- Numerical Results
- Conclusion

Linear Kalman Filter

Principle

Kalman filter ${ }^{2}$ is a bayesian filter combined with Maximum a Posteriori method in the case of Gaussian probability density functions.
Two main steps :

2. Kalman, A new approach to linear filtering and prediction problems, 1960

Linear Kalman Filter

Principle

Kalman filter ${ }^{2}$ is a bayesian filter combined with Maximum a Posteriori method in the case of Gaussian probability density functions.
Two main steps :
(a) Prediction step where is realized a priori estimation $\mathbf{u}^{\left(k+\frac{1}{2}\right)}$ of state system

2. Kalman, A new approach to linear filtering and prediction problems, 1960

Linear Kalman Filter

Principle

Kalman filter ${ }^{2}$ is a bayesian filter combined with Maximum a Posteriori method in the case of Gaussian probability density functions.
Two main steps :
(a) Prediction step where is realized a priori estimation $\mathbf{u}^{\left(k+\frac{1}{2}\right)}$ of state system
(b) Assimilation step where is realized a posteriori estimation \mathbf{u}_{a} using observations data

2. Kalman, A new approach to linear filtering and prediction problems, 1960

Inverse problems formulation

Kalman filter is a very well-known method to solve inverse problems ${ }^{3}$

Inverse problems formulation

Kalman filter is a very well-known method to solve inverse problems ${ }^{3}$
Principle : Introduce model parameters vector $\boldsymbol{\xi} \in \mathbb{R}^{n_{p}}$
no a priori knowledge \rightarrow stationarity hypothesis :

$$
\frac{\partial \boldsymbol{\xi}}{\partial t} \simeq 0 \Rightarrow \boldsymbol{\xi}^{(k+1)}=\boldsymbol{\xi}^{(k)}+\mathbf{e}_{\xi}^{(k)}
$$

3. Kaipio and Somersalo, Statistical and Computational Inverse Problems, 2006

Inverse problems formulation

Kalman filter is a very well-known method to solve inverse problems ${ }^{3}$
Principle : Introduce model parameters vector $\boldsymbol{\xi} \in \mathbb{R}^{n_{p}}$
no a priori knowledge \rightarrow stationarity hypothesis :

$$
\frac{\partial \boldsymbol{\xi}}{\partial t} \simeq 0 \Rightarrow \boldsymbol{\xi}^{(k+1)}=\boldsymbol{\xi}^{(k)}+\mathbf{e}_{\xi}^{(k)}
$$

3. Kaipio and Somersalo, Statistical and Computational Inverse Problems, 2006

Inverse problems formulation

Kalman filter is a very well-known method to solve inverse problems ${ }^{3}$
Principle : Introduce model parameters vector $\boldsymbol{\xi} \in \mathbb{R}^{n_{p}}$
no a priori knowledge \rightarrow stationarity hypothesis :

$$
\frac{\partial \boldsymbol{\xi}}{\partial t} \simeq 0 \Rightarrow \boldsymbol{\xi}^{(k+1)}=\boldsymbol{\xi}^{(k)}+\mathbf{e}_{\xi}^{(k)}
$$

Two formulations

$$
\begin{aligned}
& \text { Joint Kalman Filter } \\
& \left\{\begin{array}{l}
\overline{\mathbf{u}}^{(k+1)}=\overline{\mathcal{M}}^{(k)} \overline{\mathbf{u}}^{(k)}+\overline{\mathbf{e}}_{M}^{(k)} \\
\mathbf{s}^{(k)}=\overline{\mathcal{H}}^{(k)} \overline{\mathbf{u}}^{(k)}+\mathbf{e}_{s}^{(k)}
\end{array}\right. \\
& \text { Dual Kalman filter } \\
& \left\{\begin{array}{l}
\boldsymbol{\xi}^{(k+1)}=\boldsymbol{\xi}^{(k)}+\mathbf{e}_{\boldsymbol{\xi}}^{(k)} \\
\mathbf{s}^{(k)}=\mathcal{H}^{(k)} \mathbf{u}^{(k)}\left(\boldsymbol{\xi}^{(k)}\right)+\mathbf{e}_{s}^{(k)}
\end{array}\right.
\end{aligned}
$$

[^1]
Inverse problems formulation

Kalman filter is a very well-known method to solve inverse problems ${ }^{3}$

Principle : Introduce model parameters vector $\boldsymbol{\xi} \in \mathbb{R}^{n_{p}}$
no a priori knowledge \rightarrow stationarity hypothesis :

$$
\frac{\partial \boldsymbol{\xi}}{\partial t} \simeq 0 \Rightarrow \boldsymbol{\xi}^{(k+1)}=\boldsymbol{\xi}^{(k)}+\mathbf{e}_{\xi}^{(k)}
$$

Two formulations

Dual Kalman filter

$$
\left\{\begin{array}{l}
\boldsymbol{\xi}^{(k+1)}=\boldsymbol{\xi}^{(k)}+\mathbf{e}_{\boldsymbol{\xi}}^{(k)} \\
\mathbf{s}^{(k)}=\mathcal{H}^{(k)} \mathbf{u}^{(k)}\left(\boldsymbol{\xi}^{(k)}\right)+\mathbf{e}_{s}^{(k)}
\end{array}\right.
$$

Joint Kalman Filter

[^2]
Inverse problems formulation

Kalman filter is a very well-known method to solve inverse problems ${ }^{3}$

Principle : Introduce model parameters vector $\boldsymbol{\xi} \in \mathbb{R}^{n_{p}}$
no a priori knowledge \rightarrow stationarity hypothesis :

$$
\frac{\partial \boldsymbol{\xi}}{\partial t} \simeq 0 \Rightarrow \boldsymbol{\xi}^{(k+1)}=\boldsymbol{\xi}^{(k)}+\mathbf{e}_{\boldsymbol{\xi}}^{(k)} \boldsymbol{\beta}
$$

Two formulations

Joint Kalman Filter

Dual Kalman filter

computed with another Kalman filter
3. Kaipio and Somersalo, Statistical and Computational Inverse Problems, 2006

Resolution schemes : UKF vs EKF

The problem :

- Introduction
- Basics on

Kalman Filtering

- Proposed

Approach

- Numerical

Results

- Conclusion

Two main approaches in Kalman filtering context Resolution schemes : UKF vs EKF

The problem :

- Introduction
- Basics on Kalman Filtering
- Proposed Approach
- Numerical

Results

- Conclusion

Two main approaches in Kalman filtering context

- First order linearization,

Extended Kalman filter ${ }^{4}$

4. Sorenson and Stubberud, Non-linear Filtering by Approximation of the a posteriori Density, 1968 Resolution schemes : UKF vs EKF

The problem :

Two main approaches in Kalman filtering context

- First order linearization,

$$
\text { Extended Kalman filter }{ }^{4}
$$

- Deterministic Monte-Carlo like method, Unscented Transform, Unscented Kalman filter ${ }^{5}$

4. Sorenson and Stubberud, Non-linear Filtering by Approximation of the a posteriori Density, 1968
5. Julier and Uhlmann, A new extension of the kalman filter to nonlinear systems, 1997

Linearization vs Unscented Transform

First Order Linearization

Linearization
 $$
\mathbf{A}=\nabla_{\mathrm{x}} \mathcal{A}
$$
 $$
\overline{\mathbf{y}}=\mathcal{A}(\overline{\mathbf{x}})
$$
 $$
\mathbf{C}_{\mathbf{y}}=\mathbf{A C}_{\mathrm{x}} \mathbf{A}^{T}
$$

Linearization vs Unscented Transform

First Order Linearization

$$
\begin{gathered}
\text { Linearization } \\
\mathbf{A}=\nabla_{\mathbf{x}} \mathcal{A} \\
\overline{\mathbf{y}}=\mathcal{A}(\overline{\mathbf{x}}) \\
\mathbf{C}_{\mathbf{y}}=\mathbf{A} \mathbf{C}_{\mathrm{x}} \mathbf{A}^{T}
\end{gathered}
$$

Unscented Transform

σ-points
propagation
$\left\{\mathbf{x}_{i}\right\}_{i=1, . ., 2 N+1}$
$\left\{y_{i}\right\}=\mathcal{A}\left(\left\{\mathbf{x}_{i}\right\}\right)$

Linearization vs Unscented Transform

First Order Linearization

Unscented Transform

Linearization
$\mathbf{A}=\nabla_{\mathrm{x}} \mathcal{A}$
$\overline{\mathbf{y}}=\mathcal{A}(\overline{\mathbf{x}})$
$\mathbf{C}_{\mathbf{y}}=\mathbf{A C}_{\mathrm{x}} \mathbf{A}^{T}$

For the same computational cost

Why another approach ?

Kalman Filter based methods well-adapted for evolution problems and DDDAS paradigm

Why another approach ?

Kalman Filter based methods well-adapted for evolution problems and DDDAS paradigm

- Basics on

Kalman Filtering

- Proposed

 Approach- Numerical

Results

- Conclusion
methods very costly
if degrees of freedom/parameters increase

Why another approach ?

Kalman Filter based methods well-adapted for evolution problems and DDDAS paradigm

But :

> methods very costly
if degrees of freedom/parameters increase

Identification quality strongly depends on measurement noise

Outline

- Introduction
- Basics on

Kalman Filtering

- Proposed Approach
- Numerical Results
- Conclusion

Basics on Kalman Filtering
\% Proposed Approach

Numerical Results

Conclusion

Principle of the method

Keep the dual formulation

- Introduction
- Basics on Kalman Filtering
- Proposed Approach
- Numerical Results
- Conclusion

Classically computed using a Kalman Filter

Principle of the method

Keep the dual formulation

- Introduction
- Basics on Kalman Filtering
- Proposed Approach
- Numerical

Results

- Conclusion

But use another observation operator

$$
\left\{\begin{array}{l}
\boldsymbol{\xi}^{(k+1)}=\boldsymbol{\xi}^{(k)}+\mathbf{e}_{\boldsymbol{\xi}}^{(k)} \\
\mathbf{s}^{(k)}=\mathcal{H}_{m}^{(k)}\left(\boldsymbol{\xi}^{(k)} ; \mathbf{s}^{(k-1: k)}\right)+\mathbf{e}_{s}^{(k)}
\end{array}\right.
$$

Principle of the method

Keep the dual formulation

- Introduction
- Basics on Kalman Filtering
- Proposed Approach
- Numerical Results
- Conclusion

But use another observation operator

Defined from the modified
Constitutive Relation Error
functional $\left\{\begin{array}{l}\boldsymbol{\xi}^{(k+1)}=\boldsymbol{\xi}^{(k)}+\mathbf{e}_{\xi}^{(k)} \\ \mathbf{s}^{(k)}=\mathcal{H}_{m}^{(k)}\left(\boldsymbol{\xi}^{(k)} ; \mathbf{s}^{(k-1: k)}\right)+\mathbf{e}_{s}^{(k)}\end{array}\right.$

MCRE framework

The idea ${ }^{6}$:

Weight the classical Constitutive Relation Error ${ }^{7}$ by a measurements error term

7. Ladevèze and Leguillon, Error estimate procedure in the finite element method and application, 1983

The idea ${ }^{6}$:

Weight the classical Constitutive Relation Error ${ }^{7}$ by a measurements error term

Principle :
Primal-dual formulation based on Legendre-Fenchel inequality applied to Helmholtz free energy

[^3]The idea ${ }^{6}$:

MCRE framework

Weight the classical Constitutive Relation Error ${ }^{7}$ by a measurements error term

Principle :

Primal-dual formulation based on Legendre-Fenchel inequality applied to Helmholtz free energy
mCRE functional for unsteady thermal problems :

$$
\begin{array}{r}
\mathcal{E}_{m}(u, \boldsymbol{q} ; \boldsymbol{\xi})=\frac{1}{2} \int_{I_{t}} \int_{\Omega}(\boldsymbol{q}-\mathcal{K} \nabla u) \mathcal{K}^{-1}(\boldsymbol{q}-\mathcal{K} \nabla u) \mathrm{d} \mathbf{x d} t+\frac{\delta}{2} \int_{I_{t}}\|\boldsymbol{\Pi} u-\mathbf{s}\|^{2} \mathrm{~d} t \\
\mathcal{U}=\left\{u \in H^{1}(\Omega) \otimes L^{2}\left(I_{t}\right) \backslash u=u^{d} \text { on } \partial \Omega_{u}, u=u^{0} \text { at } t=t_{0}\right\} \\
\mathcal{S}(u)=\left\{\mathbf{q} \in\left[L^{2}(\Omega) \otimes L^{2}\left(I_{t}\right)\right]^{d} \backslash \mathbf{q} \cdot \mathbf{n}=q^{d} \text { on } \partial \Omega_{\mathbf{q}}, \partial_{t} u+\nabla \cdot \mathbf{q}=f\right\}
\end{array}
$$

[^4]
mCRE inverse problems

Solution is defined by :

- Basics on

Kalman Filtering

- Proposed Approach
- Numerical

Results

- Conclusion

$$
\boldsymbol{p}=\underset{\boldsymbol{\xi} \in \mathcal{P}_{\mathrm{ad}}}{\operatorname{argmin}} \min _{(u, \boldsymbol{q}) \in \mathcal{U}_{a d} \times \mathcal{S}_{a d}} \mathcal{E}_{m}(u, \boldsymbol{q} ; \boldsymbol{\xi})
$$

mCRE inverse problems

Solution is defined by :

- Basics on

Kalman Filtering

- Proposed Approach
- Numerical Results
- Conclusion

$$
\boldsymbol{p}=\min _{\boldsymbol{\xi} \in \mathcal{P}_{a d}}^{\operatorname{argmin}} \min _{(u, \boldsymbol{q}) \in \mathcal{U}_{a d} \times \mathcal{S}_{a d}} \mathcal{E}_{m}(u, \boldsymbol{q} ; \boldsymbol{\xi})
$$

Admissible fields
Constrained minimization

mCRE inverse problems

Solution is defined by :

$$
\boldsymbol{p}=\underset{\boldsymbol{\xi} \in \mathcal{P}_{\mathrm{ad}}}{\operatorname{argmin}} \min _{(u, \boldsymbol{q}) \in \mathcal{U}_{\mathrm{ad}} \times \mathcal{S}_{\mathrm{ad}}} \mathcal{E}_{m}(u, \boldsymbol{q} ; \boldsymbol{\xi})
$$

Parameters minimization

Admissible fields
Constrained minimization

mCRE inverse problems

Solution is defined by :

$$
\boldsymbol{p}=\underset{\boldsymbol{\xi} \in \mathcal{P}_{a d}}{\operatorname{argmin}} \min _{(u, \boldsymbol{q}) \in \mathcal{U}_{a d} \times \mathcal{S}_{a d}} \mathcal{E}_{m}(u, \boldsymbol{q} ; \boldsymbol{\xi})
$$

mCRE inverse problems

Solution is defined by

$$
\boldsymbol{p}=\underset{\boldsymbol{\xi} \in \mathcal{P}_{\mathrm{ad}}}{\operatorname{argmin}} \min _{(u, \boldsymbol{q}) \in \mathcal{U}_{\mathrm{ad}} \times \mathcal{S}_{\mathrm{ad}}} \mathcal{E}_{m}(u, \boldsymbol{q} ; \boldsymbol{\xi})
$$

(i) Robustness of the method with highly corrupted data
(ii) Strong mechanical content
(iii) Model reduction integration

The Modified Kalman Filter

$$
\left\{\begin{array}{l}
\boldsymbol{\xi}^{(k+1)}=\boldsymbol{\xi}^{(k)}+\mathbf{e}_{\boldsymbol{\xi}}^{(k)} \\
\mathbf{s}^{(k)}=\mathcal{H}_{m}^{(k)}\left(\boldsymbol{\xi}^{(k)}, \mathbf{s}^{(k-1: k)}\right)+\mathbf{e}_{\mathbf{s}}^{(k)}
\end{array}\right.
$$

The Modified Kalman Filter

$$
\left\{\begin{array}{l}
\boldsymbol{\xi}^{(k+1)}=\boldsymbol{\xi}^{(k)}+\mathbf{e}_{\boldsymbol{\xi}}^{(k)} \\
\mathbf{s}^{(k)}=\mathcal{H}_{m}^{(k)}\left(\boldsymbol{\xi}^{(k)}, \mathbf{s}^{(k-1: k)}\right)+\mathbf{e}_{\mathbf{s}}^{(k)}
\end{array}\right.
$$

- Introduction

- Basics on

Kalman Filtering

- Proposed

 Approach- Numerical Results
- Conclusion

Two steps for $\mathcal{H}_{m}^{(k)}\left(\boldsymbol{\xi}^{(k)}, \mathbf{s}^{(k-1: k)}\right)$

The Modified Kalman Filter

$$
\left\{\begin{array}{l}
\boldsymbol{\xi}^{(k+1)}=\boldsymbol{\xi}^{(k)}+\mathbf{e}_{\boldsymbol{\xi}}^{(k)} \\
\mathbf{s}^{(k)}=\mathcal{H}_{m}^{(k)}\left(\boldsymbol{\xi}^{(k)}, \mathbf{s}^{(k-1: k)}\right)+\mathbf{e}_{\mathbf{s}}^{(k)}
\end{array}\right.
$$

$$
\text { Two steps for } \mathcal{H}_{m}^{(k)}\left(\boldsymbol{\xi}^{(k)}, \mathbf{s}^{(k-1: k)}\right)
$$

Step 1 : admissible fields computation

$$
\mathbf{u}^{(k)}=\mathcal{G}_{m C R E}\left(\boldsymbol{\xi}^{(k)}, \mathbf{s}^{(k-1: k)}\right)
$$

The Modified Kalman Filter

$$
\left\{\begin{array}{l}
\boldsymbol{\xi}^{(k+1)}=\boldsymbol{\xi}^{(k)}+\mathbf{e}_{\xi}^{(k)} \\
\mathbf{s}^{(k)}=\mathcal{H}_{m}^{(k)}\left(\boldsymbol{\xi}^{(k)}, \mathbf{s}^{(k-1: k)}\right)+\mathbf{e}_{\mathbf{s}}^{(k)}
\end{array}\right.
$$

$$
\text { Two steps for } \mathcal{H}_{m}^{(k)}\left(\boldsymbol{\xi}^{(k)}, \mathbf{s}^{(k-1: k)}\right)
$$

Step 1 : admissible fields computation

$$
\mathbf{u}^{(k)}=\mathcal{G}_{m C R E}\left(\boldsymbol{\xi}^{(k)}, \mathbf{s}^{(k-1: k)}\right)
$$

Step 2 : projection
Typically using boolean matrix

$$
\mathcal{H}:=\Pi
$$

$$
\mathcal{H}_{m}\left(\xi^{(k)}, \mathbf{s}^{(k)}\right)=\mathcal{H} \circ \mathcal{G}_{m C R E}\left(\boldsymbol{\xi}^{(k)}, \mathbf{s}^{(k-1: k)}\right)
$$

Optimization point of view

Dual Kalman filter based identification can be seen as the minimization of

$$
J(\boldsymbol{\xi})=\sum_{k=0}^{n_{t}}\left(\mathbf{s}^{(k)}-\mathcal{H}^{(k)} \boldsymbol{u}^{(k)}\left(\boldsymbol{\xi}^{(k)}\right)\right)^{T} \mathbf{C}_{\mathbf{s}}^{(k)^{-1}}\left(\mathbf{s}^{(k)}-\mathcal{H}^{(k)} \mathbf{u}^{(k)}\left(\boldsymbol{\xi}^{(k)}\right)\right)
$$

Optimization point of view

Dual Kalman filter based identification

can be seen as the minimization of

- Basics on

Kalman Filtering

- Proposed Approach
- Numerical

Results

- Conclusion

$$
\begin{aligned}
& J(\boldsymbol{\xi})=\sum_{k=0}^{n_{t}}\left(\mathbf{s}^{(k)}-\mathcal{H}^{(k)} \boldsymbol{u}^{(k)}\left(\boldsymbol{\xi}^{(k)}\right)\right)^{T} \mathbf{C}_{\mathbf{s}}^{(k)^{-1}}(\mathbf{s}^{(k)}-\mathcal{H}^{(k)} \underbrace{(k)}\left(\boldsymbol{\xi}^{(k)}\right)) \\
& \min _{\mathcal{U}}\left\|\mathbf{s}^{(k)}-\mathcal{H}^{(k)} \boldsymbol{u}^{(k)}\right\|_{\mathbf{C}_{\mathbf{s}}^{(k)-1}}
\end{aligned}
$$

Optimization point of view

Dual Kalman filter based identification can be seen as the minimization of

$$
J(\boldsymbol{\xi})=\sum_{k=0}^{n_{t}}(\mathbf{s}^{(k)}-\mathcal{H}^{(k)} \underbrace{\mathbf{u}^{(k)}\left(\boldsymbol{\xi}^{(k)}\right)})^{T} \mathbf{C}_{\mathbf{s}}^{(k)^{-1}}(\mathbf{s}^{(k)}-\mathcal{H}^{(k)} \underbrace{\left(\mathbf { u } ^ { (k) } \left(\boldsymbol{\xi}^{(k)}\right.\right.}))
$$

$$
\min _{\mathcal{U}}\left\|\mathbf{s}^{(k)}-\mathcal{H}^{(k)} \boldsymbol{u}^{(k)}\right\|_{\mathbf{C}_{\mathbf{s}}(k)-1} \quad \min _{\mathcal{U} \times \mathcal{S}}\|\boldsymbol{q}-\nabla \boldsymbol{u}\|_{\mathbf{K}^{-1}, I_{t}^{(k)}}+\frac{\delta}{2}\|\boldsymbol{\Pi} \boldsymbol{u}-\mathbf{s}\|_{l_{t}^{(k)}}
$$

Optimization point of view

Dual Kalman filter based identification
can be seen as the minimization of
$\min _{\mathcal{U}}\left\|\mathbf{s}^{(k)}-\mathcal{H}^{(k)} \boldsymbol{u}^{(k)}\right\|_{\mathbf{C}_{\mathbf{s}}^{(k)-1}} \quad \min _{\mathcal{U} \times \mathcal{S}}\|\boldsymbol{q}-\nabla \boldsymbol{u}\|_{\mathbf{K}^{-1}, I_{t}^{(k)}}+\frac{\delta}{2}\|\boldsymbol{\Pi} \boldsymbol{u}-\mathbf{s}\|_{\boldsymbol{l}_{t}^{(k)}}$

Observations data
strongly imposed

Observations data weakly imposed

Technical points

- Introduction

- Basics on

Kalman Filtering

- Proposed Approach - Numerical Results - Conclusion

Admissible fields :

$$
\left(u_{a d}, \boldsymbol{q}_{a d}\right)=\underset{(u, \boldsymbol{q}) \in \mathcal{U}_{a d} \times \mathcal{S}_{a d}}{\operatorname{argmin}} \mathcal{E}_{m}\left(u, \boldsymbol{q} ; \boldsymbol{\xi}^{(k)}\right)
$$

Technical points

State estimation

\author{

- Introduction
 - Basics on
 Kalman Filtering
 - Proposed Approach
 - Numerical
 Results
 - Conclusion
}

Technical points

- Basics on

Kalman Filtering

- Proposed Approach
- Numerical

Results

- Conclusion

λ lagrange multiplier field and stationarity conditions

Technical points

- Introduction

- Basics on

Kalman Filtering

- Proposed Approach
- Numerical Results
- Conclusion

$$
\lambda \text { lagrange multiplier field and stationarity conditions }
$$

After FE discretization :

$$
\left[\begin{array}{cc}
\mathbf{C} & \mathbf{0} \\
\mathbf{0} & -\mathbf{C}
\end{array}\right]\left[\begin{array}{c}
\dot{\boldsymbol{u}} \\
\dot{\boldsymbol{\lambda}}
\end{array}\right]+\left[\begin{array}{cc}
\mathbf{K} & \mathbf{- K} \\
\delta \boldsymbol{\Pi}^{T} \boldsymbol{\Pi} & \mathbf{K}
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{u} \\
\boldsymbol{\lambda}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{F}_{\text {ext }} \\
\delta \boldsymbol{\Pi}^{T} \mathbf{s}
\end{array}\right] \quad \forall t
$$

with

$$
\boldsymbol{u}\left(\tau_{k}^{(0)}\right)=\mathbf{u}^{(k-1)} \quad \text { and } \quad \boldsymbol{\lambda}\left(\tau_{k}^{\left(n_{s}-1\right)}\right)=\mathbf{0}
$$

Technical points
 State estimation

- Introduction

- Basics on

Kalman Filtering

- Proposed Approach
- Numerical Results
- Conclusion

$$
\lambda \text { lagrange multiplier field and stationarity conditions }
$$

After FE discretization :

$$
\left[\begin{array}{cc}
\mathbf{C} & \mathbf{0} \\
\mathbf{0} & -\mathbf{C}
\end{array}\right]\left[\begin{array}{c}
\dot{\boldsymbol{u}} \\
\dot{\boldsymbol{\lambda}}
\end{array}\right]+\left[\begin{array}{cc}
\mathbf{K} & \mathbf{- K} \\
\delta \boldsymbol{\Pi}^{T} \boldsymbol{\Pi} & \mathbf{K}
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{u} \\
\boldsymbol{\lambda}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{F}_{\text {ext }} \\
\delta \boldsymbol{\Pi}^{T} \mathbf{s}
\end{array}\right] \quad \forall t
$$

with

$$
\boldsymbol{u}\left(\tau_{k}^{(0)}\right)=\mathbf{u}^{(k-1)} \quad \text { and } \quad \boldsymbol{\lambda}\left(\tau_{k}^{\left(n_{s}-1\right)}\right)=\mathbf{0}
$$

Coupled forward-backward problem in time

PGD based model reduction

Find $\mathbf{u} \in \mathcal{X}=\mathcal{X}_{1} \otimes \cdots \otimes \mathcal{X}_{D}$ such that $B(\mathbf{u}, \mathbf{v})=L(\mathbf{v}) \forall \mathbf{v} \in \mathcal{X}$ - Introduction

- Basics on

Kalman Filtering

- Proposed Approach
- Numerical Results
- Conclusion

8. Nouy, A priori model reduction through Proper Generalized Decomposition for solving time-dependent partial differential equations, 2010

PGD based model reduction

Find $\mathbf{u} \in \mathcal{X}=\mathcal{X}_{1} \otimes \cdots \otimes \mathcal{X}_{D}$ such that $B(\mathbf{u}, \mathbf{v})=L(\mathbf{v}) \forall \mathbf{v} \in \mathcal{X}$ Principle :

Low-rank tensor approximation

$$
\mathbf{u} \simeq \mathbf{u}_{m}=\sum_{i=1}^{m} \boldsymbol{w}_{i}^{1} \otimes \boldsymbol{w}_{i}^{2} \otimes \cdots \otimes \boldsymbol{w}_{i}^{D} ; \mathbf{u}_{m} \in \mathcal{X}_{m} \subset \mathcal{X}
$$

PGD based model reduction

Find $\mathbf{u} \in \mathcal{X}=\mathcal{X}_{1} \otimes \cdots \otimes \mathcal{X}_{D}$ such that $B(\mathbf{u}, \mathbf{v})=L(\mathbf{v}) \forall \mathbf{v} \in \mathcal{X}$ Principle :

Low-rank tensor approximation

$$
\mathbf{u} \simeq \mathbf{u}_{m}=\sum_{i=1}^{m} \boldsymbol{w}_{i}^{1} \otimes \boldsymbol{w}_{i}^{2} \otimes \cdots \otimes \boldsymbol{w}_{i}^{D} \quad ; \quad \mathbf{u}_{m} \in \mathcal{X}_{m} \subset \mathcal{X}
$$

Construction : many strategies ${ }^{8}$; progressive Galerkin approach

PGD based model reduction

Find $\mathbf{u} \in \mathcal{X}=\mathcal{X}_{1} \otimes \cdots \otimes \mathcal{X}_{D}$ such that $B(\mathbf{u}, \mathbf{v})=L(\mathbf{v}) \forall \mathbf{v} \in \mathcal{X}$ Principle :

Low-rank tensor approximation

$$
\mathbf{u} \simeq \mathbf{u}_{m}=\sum_{i=1}^{m} \boldsymbol{w}_{i}^{1} \otimes \boldsymbol{w}_{i}^{2} \otimes \cdots \otimes \boldsymbol{w}_{i}^{D} ; \mathbf{u}_{m} \in \mathcal{X}_{m} \subset \mathcal{X}
$$

Construction : many strategies ${ }^{8}$; progressive Galerkin approach
\mathbf{u}_{M-1} known

Orthogonalization and update

$$
\mathbf{u}_{M}=\mathbf{u}_{M-1}+\mathbf{w}^{1} \otimes \cdots \otimes \mathbf{w}^{D}
$$

8. Nouy, A priori model reduction through Proper Generalized Decomposition for solving time-dependent partial differential equations, 2010 PGD-mCRE

Two fields problem : u and λ

> Two PGD decompositions simultaneously computed PGD-mCRE

Two fields problem : u and λ

Two PGD decompositions simultaneously computed
Many parameters to consider as extra-coordinates PGD-mCRE

Two fields problem : u and λ
Two PGD decompositions simultaneously computed
Many parameters to consider as extra-coordinates

- space, time
- parameters to identify $\boldsymbol{\xi}$
- observations data
- initial condition

PGD-mCRE

Two fields problem : u and λ
Two PGD decompositions simultaneously computed
Many parameters to consider as extra-coordinates

- Proposed Approach
- Numerical

Results

- Conclusion
- space, time
- parameters to identify $\boldsymbol{\xi}$
- observations data
- initial condition

Projection into a reduced basis

$$
u_{0}^{(k)}=\sum_{i=0}^{n_{\text {init }}} \alpha_{i} \psi_{i}(\mathbf{x})
$$

Two fields problem : u and λ
Two PGD decompositions simultaneously computed
Many parameters to consider as extra-coordinates

- space, time
- parameters to identify $\boldsymbol{\xi}$
- observations data
- initial condition

PGD-mCRE

- Conclusion

PGD-mCRE

Two fields problem : u and λ
Two PGD decompositions simultaneously computed Many parameters to consider as extra-coordinates

- space, time
- parameters to identify $\boldsymbol{\xi}$
- observations data
- initial condition

$$
\begin{aligned}
& \boldsymbol{u}_{P G D}=\sum_{i=1}^{m} \phi_{i}^{u} \otimes \psi_{i}^{u} \bigotimes_{j=1}^{n_{p}} \chi_{j, i}^{u} \bigotimes_{k=1}^{n_{\text {obs }}} \boldsymbol{\theta}_{k, i}^{u} \bigotimes_{m=1}^{n_{o b s}} \eta_{m, i}^{u} \bigotimes_{q=1}^{n_{\text {init }}} \varphi_{q, i}^{u} \\
& \boldsymbol{\lambda}_{P G D}=\sum_{i=1}^{m} \phi_{i}^{\lambda} \otimes \psi_{i}^{\lambda} \bigotimes_{j=1}^{n_{p}} \chi_{j, i}^{\lambda} \bigotimes_{k=1}^{n_{\text {obs }}} \boldsymbol{\theta}_{k, i}^{\lambda} \bigotimes_{m=1}^{n_{o b s}} \eta_{m, i}^{\lambda} \bigotimes_{q=1}^{n_{\text {init }}} \varphi_{q, i}^{\lambda}
\end{aligned}
$$

$$
n_{p}+2 \cdot n_{\text {obs }}+n_{\text {init }} \lesssim 20
$$

- Introduction
- Basics on Kalman Filtering
- Proposed Approach
- Numerical Results
- Conclusion

8. Marchand et al, Real-time updating of structural mechanics models using Kalman filtering, modified Constitutive Relation Error and Proper Generalized Decomposition, 2016

Synthesis

- Introduction

- Basics on

Kalman Filtering

- Proposed Approach
- Numerical

Results

- Conclusion
- Reduced basis computation for initial condition projection
- PGD admissible fields computation

8. Marchand et al, Real-time updating of structural mechanics models using Kalman filtering, modified Constitutive Relation Error and Proper Generalized Decomposition, 2016

Synthesis

- Reduced basis computation for initial condition projection
- PGD admissible fields computation
at each time step
- Project current initial condition in reduced basis
- Evaluate PGD parametric solution for set of σ-points
- Project state into observation space
- Kalman parameters update

8. Marchand et al, Real-time updating of structural mechanics models using Kalman filtering, modified Constitutive Relation Error and Proper Generalized Decomposition, 2016

Outline

- Introduction

- Basics on

Kalman Filtering

- Proposed Approach
- Numerical

Results
Basics on Kalman Filtering

Proposed Approach

- Conclusion

\% Numerical Results

Conclusion

Example 1

Problem setting

- Introduction

- Basics on Kalman Filtering
- Proposed Approach
- Numerical

Results

- Conclusion

Time stepping for observation : 1000 Time stepping for identification : 100 Noise level : 20\%

PGD modes

Exemple 1 : Neumann B.C. identification

- Introduction
- Basics on Kalman Filtering
- Proposed Approach
- Numerical Results
- Conclusion

Better accuracy

Tuning parameters impact

$$
\varepsilon_{M K F}=\frac{\left\|\boldsymbol{\xi}_{\text {true }}-\mathbf{E}\left[\boldsymbol{\xi}_{M K F}\right]\right\|_{L^{2}\left(t_{t}\right)}}{\left\|\boldsymbol{\xi}_{\text {true }}\right\|_{L^{2}\left(t_{t}\right)}}
$$

Example 2

Problem setting

- Introduction

- Basics on

Kalman Filtering

- Proposed

Approach

- Numerical

Results

- Conclusion

Time stepping for observation : 1000 Time stepping for identification : 100 Noise level : 10\%
\square sensor location
Space modes

Exemple 2 : conductivity identification

- Introduction

- Basics on Kalman Filtering
- Proposed Approach
- Numerical Results
- Conclusion

Better
accuracy
and
robustness

Example 3

Problem setting

- Basics on Kalman Filtering
- Proposed Approach
- Numerical

Results

- Conclusion

Thermal source :

$$
f\left(\mathbf{x} ; \mathbf{x}_{c}\right)=\operatorname{sinc}^{2}\left(\pi\left\|\mathbf{x}-\mathbf{x}_{c}(t)\right\|\right)
$$

- sensor location

To include \mathbf{x}_{c} as PGD's extra-coordinate

$$
f\left(\mathbf{x} ; \mathbf{x}_{c}\right) \simeq \sum_{i=1}^{N} F_{i}(\mathbf{x}) \cdot G_{i}\left(\mathbf{x}_{c}\right)
$$

Using SVD

Exemple 3 : source localization

Time stepping for observation : 1000
Time stepping for identification : 100
Noise level : 10\%

-

Results not compared to UKF since this problem requires to solve $\mathbf{5 0 0 0}$ problems at each time step with the UKF approach

Exemple 3 : source localization

PGD limits

Solution is relatively singular involves

Initial condition should be project on many modes

$$
n_{i n i t} \gg 1
$$

but

$$
n_{p}+2 \cdot n_{\text {obs }}+n_{\text {init }} \lesssim 20
$$

Outline

\author{

- Introduction
 - Basics on
 Kalman Filtering
 - Proposed Approach
 - Numerical Results
 - Conclusion
 \title{
Basics on Kalman Filtering
}
 Proposed Approach
 Numerical Results
}

\% Conclusion

Conclusion and future works

- Introduction

- Basics on Kalman Filtering
- Proposed Approach
- Numerical

Results

- Conclusion

Conclusion and future works

Extension to field identification

Number of parameters significantly increases
split state and parameters meshes adaptive strategy ${ }^{9}$

[^0]: Basile Marchand ${ }^{1}$, Ludovic Chamoin ${ }^{1}$, Christian Rey ${ }^{2}$
 ${ }^{1}$ LMT/ENS Cachan/CNRS/Paris-Saclay University, France
 ${ }^{2}$ SAFRAN, Research and Technology Center, France

[^1]: 3. Kaipio and Somersalo, Statistical and Computational Inverse Problems, 2006
[^2]: 3. Kaipio and Somersalo, Statistical and Computational Inverse Problems, 2006
[^3]: 6. Ladevèze et al, Updating of finite element models using vibration tests, 1994
 7. Ladevèze and Leguillon, Error estimate procedure in the finite element method and application, 1983
[^4]: 6. Ladevèze et al, Updating of finite element models using vibration tests, 1994
 7. Ladevèze and Leguillon, Error estimate procedure in the finite element method and application, 1983
