On a Data Assimilation Method coupling Kalman Filtering, MCRE Concept and PGD Model Reduction for Real-Time Updating of Structural Mechanics Model

2016 SIAM Conference on Uncertainty Quantification

Basile Marchand¹, Ludovic Chamoin¹, Christian Rey²

¹ LMT/ENS Cachan/CNRS/Paris-Saclay University, France

² SAFRAN, Research and Technology Center, France

April 5-8, 2016

DDDAS¹ paradigm : a continuous exchange between

0 Basics on Kalman Filtering

0 Proposed Approach

0 Numerical Results

O Conclusion

the physical system and its numerical model

^{1.} Darema, Dynamica Data Driven Applications Systems : A New Paradigm for Application Simulations and Measurements, 2003

Introduction

0 Basics on Kalman Filtering

O Proposed Approach

0 Numerical Results

O Conclusion

Objectives :

Identification process

- ▶ for time dependent systems/parameters
- ► fast resolution
- robust even if highly corrupted data

Introduction

0 Basics on Kalman Filtering

0 Proposed Approach

0 Numerical Results

O Conclusion

Objectives :

Identification process

- ▶ for time dependent systems/parameters
- ► fast resolution
- robust even if highly corrupted data

Tools :

Kalman filter for evolution aspect

modified Constitutive Relation Error for robustness

offline/online process based on Proper Generalized Decomposition

O Introduction

 Basics on Kalman Filtering

O Proposed Approach

0 Numerical Results

O Conclusion

Basics on Kalman Filtering

Proposed Approach

Numerical Results

Conclusion

Data assimilation

O Introduction

 Basics on Kalman Filtering Dynamical system :

O Proposed Approach

O Numerical Results

O Conclusion

$$\begin{aligned} \mathbf{u}^{(k+1)} &= \mathcal{M}^{(k)} \mathbf{u}^{(k)} + \mathbf{e}_{\mathbf{u}}^{(k)} \\ \mathbf{s}^{(k)} &= \mathcal{H}^{(k)} \mathbf{u}^{(k)} + \mathbf{e}_{\mathbf{s}}^{(k)} \end{aligned}$$

O Introduction

 Basics on Kalman Filtering

O Proposed Approach

0 Numerical Results

O Conclusion

Bayes theorem :

Dynamical system :

$$\pi\left(\mathbf{u}^{(k)}|\mathbf{s}^{(k)}\right) = \frac{\pi\left(\mathbf{s}^{(k)}|\mathbf{u}^{(k)}\right)\pi\left(\mathbf{u}^{(k)}|\mathbf{s}^{(0:k-1)}\right)}{\pi\left(\mathbf{s}^{(k)}|\mathbf{s}^{(0:k-1)}\right)}$$

 $\begin{cases} \mathbf{u}^{(k+1)} &= \mathcal{M}^{(k)} \mathbf{u}^{(k)} + \mathbf{e}_{\mathbf{u}}^{(k)} \\ \mathbf{s}^{(k)} &= \mathcal{H}^{(k)} \mathbf{u}^{(k)} + \mathbf{e}_{\mathbf{s}}^{(k)} \end{cases}$

under the following hypothesis :

- State u^(k) is a Markov process,
- Observations $\mathbf{s}^{(k)}$ are statistically independent of state history

O Introduction

• Basics on Kalman Filtering

0 Proposed Approach

0 Numerical Results

O Conclusion

Kalman filter²is a bayesian filter combined with *Maximum a Posteriori* method in the case of Gaussian probability density functions.

^{2.} Kalman, A new approach to linear filtering and prediction problems, 1960

O Introduction

• Basics on Kalman Filtering

0 Proposed Approach

0 Numerical Results

O Conclusion

Kalman filter²is a bayesian filter combined with *Maximum a Posteriori* method in the case of Gaussian probability density functions.

Two main steps :

2. Kalman, A new approach to linear filtering and prediction problems, 1960

O Introduction

• Basics on Kalman Filtering

0 Proposed Approach

0 Numerical Results

O Conclusion

Kalman filter²is a bayesian filter combined with *Maximum a Posteriori* method in the case of Gaussian probability density functions.

Two main steps :

(a) Prediction step where is realized *a priori* estimation $\mathbf{u}^{(k+\frac{1}{2})}$ of state system

2. Kalman, A new approach to linear filtering and prediction problems, 1960

O Introduction

 Basics on Kalman Filtering

0 Proposed Approach

0 Numerical Results

O Conclusion

Kalman filter ²is a bayesian filter combined with *Maximum a Posteriori* method in the case of Gaussian probability density functions.

Two main steps :

- (a) Prediction step where is realized *a priori* estimation $\mathbf{u}^{(k+\frac{1}{2})}$ of state system
- (b) Assimilation step where is realized a *posteriori* estimation \mathbf{u}_a using observations data

2. Kalman, A new approach to linear filtering and prediction problems, 1960

Kalman filter is a very well-known method to solve inverse problems³

O Introduction

• Basics on Kalman Filtering

O Proposed Approach

0 Numerical Results

O Conclusion

^{3.} Kaipio and Somersalo, Statistical and Computational Inverse Problems, 2006

	Kalman filter is a very well-known method to solve inverse problems 3
0 Introduction	
 Basics on Kalman Filtering 	Principle : Introduce model parameters vector $oldsymbol{\xi} \in \mathbb{R}^{n_p}$
0 Proposed Approach	no a priori knowledge $ ightarrow$ stationarity hypothesis $$:
0 Numerical Results	$\partial \boldsymbol{\xi}$ \boldsymbol{c} \boldsymbol{c} $(k+1)$ \boldsymbol{c} (k) (k)
O Conclusion	$\frac{\partial t}{\partial t} \simeq 0 \Rightarrow \boldsymbol{\xi}^{(\alpha+\beta)} = \boldsymbol{\xi}^{(\alpha)} + \mathbf{e}_{\boldsymbol{\xi}}^{(\alpha+\beta)}$

^{3.} Kaipio and Somersalo, Statistical and Computational Inverse Problems, 2006

	Kalman filter is a very well-known method to solve inverse problems ³
0 Introduction	
• Basics on Kalman Filtering	$\begin{array}{llllllllllllllllllllllllllllllllllll$
0 Proposed Approach	no <i>a priori</i> knowledge $ ightarrow$ stationarity hypothesis $$:
0 Numerical Results	$\partial \xi$ $(k+1)$ (k) (k)
O Conclusion	$\frac{\partial}{\partial t} \simeq 0 \Rightarrow \xi + e_{\xi} $

^{3.} Kaipio and Somersalo, Statistical and Computational Inverse Problems, 2006

	Kalman filter is a very well-known method to solve inverse problems ³
O Introduction	
 Basics on Kalman Filtering 	Principle : Introduce model parameters vector $oldsymbol{\xi} \in \mathbb{R}^{n_p}$
0 Proposed Approach	no a priori knowledge $ ightarrow$ stationarity hypothesis $$:
0 Numerical Results	$\partial \xi$ $(k+1)$ $t(k)$ (k)
O Conclusion	$\frac{\partial t}{\partial t} \simeq 0 \Rightarrow \boldsymbol{\xi}^{(n+1)} = \boldsymbol{\xi}^{(n)} + \mathbf{e}_{\boldsymbol{\xi}} \qquad \mathbf{X}$
	Two formulations

Joint Kalman Filter

Dual Kalman filter

 $\begin{cases} \bar{\mathbf{u}}^{(k+1)} = \bar{\mathcal{M}}^{(k)} \bar{\mathbf{u}}^{(k)} + \bar{\mathbf{e}}_{M}^{(k)} \\ \mathbf{s}^{(k)} = \bar{\mathcal{H}}^{(k)} \bar{\mathbf{u}}^{(k)} + \mathbf{e}_{c}^{(k)} \end{cases}$ $\begin{cases} \boldsymbol{\xi}^{(k+1)} = \boldsymbol{\xi}^{(k)} + \mathbf{e}_{\boldsymbol{\xi}}^{(k)} \\ \mathbf{s}^{(k)} = \mathcal{H}^{(k)} \mathbf{u}^{(k)} (\boldsymbol{\xi}^{(k)}) + \mathbf{e}_{\boldsymbol{c}}^{(k)} \end{cases}$

^{3.} Kaipio and Somersalo, Statistical and Computational Inverse Problems, 2006

	Kalman filter is a very well-know	wn method to solve inverse problems ³
O Introduction		
• Basics on Kalman Filtering	Principle : Introduce model pa	arameters vector $oldsymbol{\xi} \in \mathbb{R}^{n_{ ho}}$
0 Proposed Approach	no a priori knowledge $ ightarrow$ stationa	arity hypothesis :
0 Numerical Results	$\partial \boldsymbol{\xi}$	$\star(k+1)$ $\star(k)$ (k) \checkmark
O Conclusion	$\frac{1}{\partial t} \simeq 0 \Rightarrow$	$\boldsymbol{\xi}^{(1,1,2)} = \boldsymbol{\xi}^{(1,2)} + \mathbf{e}_{\boldsymbol{\xi}}^{(2,2)} \qquad \qquad$
	Two f	formulations
	Joint Kalman Filter	Dual Kalman filter
	$\begin{cases} \bar{\mathbf{u}}^{(k+1)} = \bar{\mathcal{M}}^{(k)} \bar{\mathbf{u}}^{(k)} + \bar{\mathbf{e}}_{M}^{(k)} \\ \mathbf{s}^{(k)} = \bar{\mathcal{H}}^{(k)} \bar{\mathbf{u}}^{(k)} + \mathbf{e}_{s}^{(k)} \end{cases}$ $\begin{bmatrix} \mathbf{u}^{(k)} \end{bmatrix}$	$\begin{cases} \boldsymbol{\xi}^{(k+1)} = \boldsymbol{\xi}^{(k)} + \mathbf{e}_{\boldsymbol{\xi}}^{(k)} \\ \mathbf{s}^{(k)} = \mathcal{H}^{(k)} \mathbf{u}^{(k)}(\boldsymbol{\xi}^{(k)}) + \mathbf{e}_{s}^{(k)} \end{cases}$
	$ \boldsymbol{\xi}^{(k)} $	

3. Kaipio and Somersalo, Statistical and Computational Inverse Problems, 2006

• • . c · · ·

.

. .

.

.

	Kalman filter is a very well-knowi	n method to solve inverse problems ³
O Introduction		
• Basics on Kalman Filtering	Principle : Introduce model par	ameters vector $oldsymbol{\xi} \in \mathbb{R}^{n_p}$
0 Proposed Approach	no <i>a priori</i> knowledge $ ightarrow$ stationar	ity hypothesis :
0 Numerical Results	$\partial \boldsymbol{\xi}$	(k+1) (k) (k)
O Conclusion	$\frac{\partial}{\partial t} \simeq 0 \Rightarrow \xi$	$(\mathbf{u} + \mathbf{e}) = \boldsymbol{\xi}(\mathbf{u}) + \mathbf{e}_{\boldsymbol{\xi}} \qquad \mathbf{w}$
	Two fo	rmulations
	Joint Kalman Filter	Dual Kalman filter
	$\int\! ar{\mathbf{u}}^{(k+1)} = ar{\mathcal{M}}^{(k)} ar{\mathbf{u}}^{(k)} + ar{\mathbf{e}}_M^{(k)}$	$\int oldsymbol{\xi}^{(k+1)} = oldsymbol{\xi}^{(k)} + oldsymbol{e}^{(k)}_{oldsymbol{arepsilon}}$
	$\int \mathbf{s}^{(k)} = \bar{\mathcal{H}}^{(k)} \bar{\mathbf{u}}^{(k)} + \mathbf{e}^{(k)}_{s}$	$\int \mathbf{s}^{(k)} = \mathcal{H}^{(k)} \mathbf{u}^{(k)} (\boldsymbol{\xi}^{(k)}) + \mathbf{e}^{(k)}_{s}$
	$\begin{bmatrix} \mathbf{u}^{(k)} \\ \boldsymbol{\xi}^{(k)} \end{bmatrix} \boldsymbol{\checkmark}$	computed with another Kalman filter
	3. Kaipio and Somersalo, Statistical and Computational In	- verse Problems, 2006

.. .

2

. .

Two main approaches in Kalman filtering context

Two main approaches in Kalman filtering context

First order linearization,

Extended Kalman filter⁴

^{4.} Sorenson and Stubberud, Non-linear Filtering by Approximation of the a posteriori Density, 1968

Two main approaches in Kalman filtering context

First order linearization,

Extended Kalman filter⁴

Deterministic Monte-Carlo like method, Unscented Transform,

Unscented Kalman filter⁵

^{4.} Sorenson and Stubberud, Non-linear Filtering by Approximation of the a posteriori Density, 1968

^{5.} Julier and Uhlmann, A new extension of the kalman filter to nonlinear systems, 1997

 Basics on Kalman Filtering

O Proposed Approach

0 Numerical Results

O Conclusion

First Order Linearization

- O Introduction
- Basics on Kalman Filtering
- O Proposed Approach
- 0 Numerical Results
- O Conclusion

First Order Linearization

Unscented Transform

 Basics on Kalman Filtering

0 Proposed Approach

0 Numerical Results

O Conclusion

First Order Linearization

Unscented Transform

For the same computational cost

O Introduction

• Basics on Kalman Filtering

0 Proposed Approach

0 Numerical Results

O Conclusion

Kalman Filter based methods well-adapted for evolution problems and DDDAS paradigm

O Introduction

• Basics on Kalman Filtering

But :

O Proposed Approach

0 Numerical Results

O Conclusion

Kalman Filter based methods well-adapted for evolution problems and DDDAS paradigm

methods very costly if degrees of freedom/parameters increase

	I I I I I I I I I I I I I I I I I I I
	Introduction
<u> </u>	meroduceion

 Basics on Kalman Filtering

But :

0 Proposed Approach

O Numerical

Results O Conclusion Kalman Filter based methods well-adapted for evolution problems and DDDAS paradigm

methods very costly if degrees of freedom/parameters increase

Identification quality strongly depends on measurement noise

Outline

O Introduction

0 Basics on Kalman Filtering

Proposed
 Approach

O Numerical Results

O Conclusion

Basics on Kalman Filtering

Proposed Approach

Numerical Results

Conclusion

Keep the dual formulation

O Introduction

0 Basics on Kalman Filtering

Proposed
 Approach

0 Numerical Results

O Conclusion

$$\begin{cases} \boldsymbol{\xi}^{(k+1)} = \boldsymbol{\xi}^{(k)} + \mathbf{e}^{(k)}_{\boldsymbol{\xi}} \\ \mathbf{s}^{(k)} = \mathcal{H}^{(k)} \mathbf{u}^{(k)}(\boldsymbol{\xi}^{(k)}) + \mathbf{e}^{(k)}_{\boldsymbol{s}} \end{cases}$$

Classically computed using a Kalman Filter

Keep the dual formulation

But use another observation operator

$$\begin{cases} \boldsymbol{\xi}^{(k+1)} = \boldsymbol{\xi}^{(k)} + \mathbf{e}^{(k)}_{\boldsymbol{\xi}} \\ \mathbf{s}^{(k)} = \mathcal{H}^{(k)}_{m}(\boldsymbol{\xi}^{(k)}; \mathbf{s}^{(k-1:k)}) + \mathbf{e}^{(k)}_{s} \end{cases}$$

O Introduction

0 Basics on Kalman Filtering

 Proposed Approach

0 Numerical Results

O Conclusion

O Introduction

0 Basics on Kalman Filtering

Proposed
 Approach

0 Numerical Results

O Conclusion

But use another observation operator

Defined from the modified Constitutive Relation Error functional

$$\begin{cases} \boldsymbol{\xi}^{(k+1)} = \boldsymbol{\xi}^{(k)} + \mathbf{e}^{(k)}_{\boldsymbol{\xi}} \\ \mathbf{s}^{(k)} = \mathcal{H}^{(k)}_{m}(\boldsymbol{\xi}^{(k)}; \mathbf{s}^{(k-1:k)}) + \mathbf{e}^{(k)}_{s} \end{cases}$$

The idea ⁶ :

O Introduction

0 Basics on Kalman Filtering

 Proposed Approach

0 Numerical Results

O Conclusion

Weight the classical Constitutive Relation Error⁷ by a measurements error term

^{6.} Ladevèze et al, Updating of finite element models using vibration tests, 1994

^{7.} Ladevèze and Leguillon, Error estimate procedure in the finite element method and application, 1983

	The idea ⁶ :
O Introduction	Weight the classical Constitutive Relation Error ⁷
0 Basics on Kalman Filtering	by a measurements error term
 Proposed Approach 	Principle :
0 Numerical Results	Primal-dual formulation based on Legendre-Fenchel inequality
O Conclusion	applied to Helmholtz free energy

^{6.} Ladevèze et al, Updating of finite element models using vibration tests, 1994

^{7.} Ladevèze and Leguillon, Error estimate procedure in the finite element method and application, 1983

 o Introduction
 o Basics on Kalman Filteri
 Proposed Approach
 o Numerical Results
 o Conclusion

	The idea ⁶ :
ng	Weight the classical Constitutive Relation Error ⁷ by a measurements error term
	Principle :
	Primal-dual formulation based on Legendre-Fenchel inequality applied to Helmholtz free energy
	mCRE functional for unsteady thermal problems :

$$\mathcal{E}_m(u, \boldsymbol{q}; \boldsymbol{\xi}) = \frac{1}{2} \int_{l_t} \int_{\Omega} (\boldsymbol{q} - \mathcal{K} \nabla u) \, \mathcal{K}^{-1} \left(\boldsymbol{q} - \mathcal{K} \nabla u \right) \, \mathrm{d} \mathrm{x} \mathrm{d} t + \frac{\delta}{2} \int_{l_t} \| \boldsymbol{\Pi} u - \mathbf{s} \|^2 \mathrm{d} t$$

$$\mathcal{U} = \left\{ u \in H^1(\Omega) \otimes L^2(I_t) \setminus u = u^d \text{ on } \partial\Omega_u, \ u = u^0 \text{ at } t = t_0 \right\}$$
$$\mathcal{S}(u) = \left\{ \mathbf{q} \in [L^2(\Omega) \otimes L^2(I_t)]^d \setminus \mathbf{q} \cdot \mathbf{n} = q^d \text{ on } \partial\Omega_{\mathbf{q}}, \ \partial_t u + \nabla \cdot \mathbf{q} = f \right\}$$

6. Ladevèze et al, Updating of finite element models using vibration tests, 1994

7. Ladevèze and Leguillon, Error estimate procedure in the finite element method and application, 1983

mCRE inverse problems

Solution is defined by :

O Introduction

0 Basics on Kalman Filtering

Proposed
 Approach

0 Numerical Results

O Conclusion

 $\boldsymbol{p} = \operatorname*{argmin}_{\boldsymbol{\xi} \in \mathcal{P}_{ad}} \min_{(u, \boldsymbol{q}) \in \mathcal{U}_{ad} \times \mathcal{S}_{ad}} \mathcal{E}_m(u, \boldsymbol{q}; \boldsymbol{\xi})$

mCRE inverse problems

mCRE inverse problems

mCRE inverse problems

mCRE inverse problems

- (ii) Strong mechanical content
- (iii) Model reduction integration

nterest

O Introduction

0 Basics on Kalman Filtering

 Proposed Approach

0 Numerical Results

 $\begin{cases} \boldsymbol{\xi}^{(k+1)} = \boldsymbol{\xi}^{(k)} + \mathbf{e}^{(k)}_{\boldsymbol{\xi}} \\ \mathbf{s}^{(k)} = \mathcal{H}^{(k)}_{m} \left(\boldsymbol{\xi}^{(k)}, \mathbf{s}^{(k-1:k)} \right) + \mathbf{e}^{(k)}_{\mathbf{s}} \end{cases}$

O Introduction

0 Basics on Kalman Filtering

 Proposed Approach

0 Numerical Results

$$\begin{cases} \boldsymbol{\xi}^{(k+1)} = \boldsymbol{\xi}^{(k)} + \mathbf{e}_{\boldsymbol{\xi}}^{(k)} \\ \mathbf{s}^{(k)} = \mathcal{H}_{m}^{(k)} \left(\boldsymbol{\xi}^{(k)}, \mathbf{s}^{(k-1:k)} \right) + \mathbf{e}_{\mathbf{s}}^{(k)} \end{cases}$$

Two steps for $\mathcal{H}_{m}^{(k)} \left(\boldsymbol{\xi}^{(k)}, \mathbf{s}^{(k-1:k)} \right)$

O Introduction

0 Basics on Kalman Filtering

Proposed
 Approach

0 Numerical Results

O Conclusion

$$\begin{cases} \boldsymbol{\xi}^{(k+1)} = \boldsymbol{\xi}^{(k)} + \mathbf{e}_{\boldsymbol{\xi}}^{(k)} \\ \mathbf{s}^{(k)} = \mathcal{H}_{m}^{(k)} \left(\boldsymbol{\xi}^{(k)}, \mathbf{s}^{(k-1:k)} \right) + \mathbf{e}_{\mathbf{s}}^{(k)} \end{cases}$$

Two steps for
$$\mathcal{H}_m^{(k)}\left(\boldsymbol{\xi}^{(k)}, \mathbf{s}^{(k-1:k)}\right)$$

Step 1 : admissible fields computation

$$\mathbf{u}^{(k)} = \mathcal{G}_{mCRE}(\boldsymbol{\xi}^{(k)}, \mathbf{s}^{(k-1:k)})$$

O Introduction

0 Basics on Kalman Filtering

Proposed
 Approach

0 Numerical Results

O Conclusion

$$\begin{cases} \boldsymbol{\xi}^{(k+1)} = \boldsymbol{\xi}^{(k)} + \mathbf{e}_{\boldsymbol{\xi}}^{(k)} \\ \mathbf{s}^{(k)} = \mathcal{H}_{m}^{(k)} \left(\boldsymbol{\xi}^{(k)}, \mathbf{s}^{(k-1:k)} \right) + \mathbf{e}_{\mathbf{s}}^{(k)} \end{cases}$$

Two steps for
$$\mathcal{H}_m^{(k)}\left(\boldsymbol{\xi}^{(k)}, \mathbf{s}^{(k-1:k)}\right)$$

$$\mathbf{u}^{(k)} = \mathcal{G}_{mCRE}(\boldsymbol{\xi}^{(k)}, \mathbf{s}^{(k-1:k)})$$

Step 2:projectionTypically using boolean matrix

 $\mathcal{H}:=\Pi$

$$\mathcal{H}_m(\boldsymbol{\xi}^{(k)}, \mathbf{s}^{(k)}) = \mathcal{H} \circ \mathcal{G}_{mCRE}(\boldsymbol{\xi}^{(k)}, \mathbf{s}^{(k-1:k)})$$

Dual Kalman filter based identification can be seen as the minimization of

$$J(\boldsymbol{\xi}) = \sum_{k=0}^{n_t} \left(\mathbf{s}^{(k)} - \mathcal{H}^{(k)} \boldsymbol{u}^{(k)}(\boldsymbol{\xi}^{(k)}) \right)^T \mathbf{C}_{\mathbf{s}}^{(k)-1} \left(\mathbf{s}^{(k)} - \mathcal{H}^{(k)} \boldsymbol{u}^{(k)}(\boldsymbol{\xi}^{(k)}) \right)$$

Approach O Numerical Results

O Introduction

O Basics on Kalman FilteringProposed

State estimation

O Introduction

0 Basics on Kalman Filtering

Proposed
 Approach

 $(u_{ad}, \boldsymbol{q}_{ad}) = \operatorname*{argmin}_{(u, \boldsymbol{q}) \in \mathcal{U}_{ad} \times S_{ad}} \mathcal{E}_m(u, \boldsymbol{q}; \boldsymbol{\xi}^{(k)})$

Admissible fields :

0 Numerical Results

State estimation

State estimation

O Conclusion

 λ lagrange multiplier field **and** stationarity conditions

State estimation

 $\begin{bmatrix} \mathbf{C} & \mathbf{0} \\ \mathbf{0} & -\mathbf{C} \end{bmatrix} \begin{bmatrix} \dot{\mathbf{u}} \\ \dot{\boldsymbol{\lambda}} \end{bmatrix} + \begin{bmatrix} \mathbf{K} & -\mathbf{K} \\ \delta \mathbf{\Pi}^T \mathbf{\Pi} & \mathbf{K} \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \boldsymbol{\lambda} \end{bmatrix} = \begin{bmatrix} \mathbf{F}_{ext} \\ \delta \mathbf{\Pi}^T \mathbf{s} \end{bmatrix} \quad \forall t$

$$oldsymbol{u}(au_k^{(0)}) = oldsymbol{u}^{(k-1)}$$
 and $oldsymbol{\lambda}(au_k^{(n_s-1)}) = oldsymbol{0}$

with

State estimation

 $\begin{bmatrix} \mathbf{C} & \mathbf{0} \\ \mathbf{0} & -\mathbf{C} \end{bmatrix} \begin{bmatrix} \dot{\mathbf{u}} \\ \dot{\boldsymbol{\lambda}} \end{bmatrix} + \begin{bmatrix} \mathbf{K} & -\mathbf{K} \\ \delta \mathbf{\Pi}^{T} \mathbf{\Pi} & \mathbf{K} \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \boldsymbol{\lambda} \end{bmatrix} = \begin{bmatrix} \mathbf{F}_{\text{ext}} \\ \delta \mathbf{\Pi}^{T} \mathbf{s} \end{bmatrix} \quad \forall t$

with

$$oldsymbol{u}(au_k^{(0)}) = oldsymbol{u}^{(k-1)}$$
 and $oldsymbol{\lambda}(au_k^{(n_s-1)}) = oldsymbol{0}$

Coupled forward-backward problem in time

PGD based model reduction

Find $\mathbf{u} \in \mathcal{X} = \mathcal{X}_1 \otimes \cdots \otimes \mathcal{X}_D$ such that $B(\mathbf{u}, \mathbf{v}) = L(\mathbf{v}) \ \forall \mathbf{v} \in \mathcal{X}$

O Introduction

0 Basics on Kalman Filtering

Proposed
 Approach

0 Numerical Results

^{8.} Nouy, A priori model reduction through Proper Generalized Decomposition for solving time-dependent partial differential equations, 2010

PGD based model reduction

Find $\mathbf{u} \in \mathcal{X} = \mathcal{X}_1 \otimes \cdots \otimes \mathcal{X}_D$ such that $B(\mathbf{u}, \mathbf{v}) = L(\mathbf{v}) \ \forall \mathbf{v} \in \mathcal{X}$ Principle : Low-rank tensor approximation

O Basics on Kalman FilteringProposed

O Introduction

Approach

0 Numerical Results

$$\mathbf{u} \simeq \mathbf{u}_m = \sum_{i=1}^m \mathbf{w}_i^1 \otimes \mathbf{w}_i^2 \otimes \cdots \otimes \mathbf{w}_i^D$$
; $\mathbf{u}_m \in \mathcal{X}_m \subset \mathcal{X}_m$

^{8.} Nouy, A priori model reduction through Proper Generalized Decomposition for solving time-dependent partial differential equations, 2010

Approach

Results

PGD based model reduction

Find $\mathbf{u} \in \mathcal{X} = \mathcal{X}_1 \otimes \cdots \otimes \mathcal{X}_D$ such that $B(\mathbf{u}, \mathbf{v}) = L(\mathbf{v}) \ \forall \mathbf{v} \in \mathcal{X}$ Principle : O Introduction Low-rank tensor approximation O Basics on Kalman Filtering $\mathbf{u} \simeq \mathbf{u}_m = \sum_{i \in \mathcal{I}} \mathbf{w}_i^1 \otimes \mathbf{w}_i^2 \otimes \cdots \otimes \mathbf{w}_i^D \; ; \; \mathbf{u}_m \in \mathcal{X}_m \subset \mathcal{X}$ Proposed O Numerical Construction : many strategies 8 ; progressive Galerkin approach O Conclusion

^{8.} Nouy, A priori model reduction through Proper Generalized Decomposition for solving time-dependent partial differential equations, 2010

O Basics on

 Proposed Approach

Results

PGD based model reduction

Find $\mathbf{u} \in \mathcal{X} = \mathcal{X}_1 \otimes \cdots \otimes \mathcal{X}_D$ such that $B(\mathbf{u}, \mathbf{v}) = L(\mathbf{v}) \ \forall \mathbf{v} \in \mathcal{X}$ Principle : O Introduction Low-rank tensor approximation Kalman Filtering $\mathbf{u} \simeq \mathbf{u}_m = \sum \mathbf{w}_i^1 \otimes \mathbf{w}_i^2 \otimes \cdots \otimes \mathbf{w}_i^D \; ; \; \mathbf{u}_m \in \mathcal{X}_m \subset \mathcal{X}$ O Numerical Construction : many strategies 8 ; progressive Galerkin approach O Conclusion \mathbf{u}_{M-1} known $\mathsf{B}_1(\mathsf{w}^1,\mathsf{w}^\star) = L(\mathsf{w}^\star) - \mathsf{B}_1(\mathsf{u}_{M-1},\mathsf{w}^\star)$ $\bigoplus_{i=1}^{D} B_{D}(\mathbf{w}^{D}, \mathbf{w}^{*}) = L(\mathbf{w}^{*}) - B_{D}(\mathbf{u}_{M-1}, \mathbf{w}^{*}) = L(\mathbf{w}^{*}) - B_{D}(\mathbf{u}_{M-1}, \mathbf{w}^{*}) = L(\mathbf{w}^{*}) - L(\mathbf{w}^{*}) - L(\mathbf{w}^{*}) - L(\mathbf{w}^{*}) = L(\mathbf{w}^{*}) - L(\mathbf{w}^{*}) - L(\mathbf{w}^{*}) + L(\mathbf{w}^{*}) - L(\mathbf{w}^{*}) - L(\mathbf{w}^{*}) - L(\mathbf{w}^{*}) = L(\mathbf{w}^{*}) - L(\mathbf{w}^{*})$ Orthogonalization and update $\mathbf{u}_{M} = \mathbf{u}_{M-1} + \mathbf{w}^{1} \otimes \cdots \otimes \mathbf{w}^{D}$

> 8. Nouy, A priori model reduction through Proper Generalized Decomposition for solving time-dependent partial differential equations, 2010

PGD-mCRE

Two fields problem : u and λ

O Introduction

0 Basics on Kalman Filtering

Proposed
 Approach

0 Numerical Results

O Conclusion

Two PGD decompositions simultaneously computed

Two fields problem : u and λ

O Introduction

0 Basics on Kalman Filtering

 Proposed Approach

0 Numerical Results

O Conclusion

Two PGD decompositions simultaneously computed Many parameters to consider as extra-coordinates

	Two fields problem $: u$ and λ		
O Introduction	Two PGD decompositions simultaneously computed		
0 Basics on Kalman Filtering	Many parameters to consider as extra-coordinates		
Proposed Approach			
o Numerical Results O Conclusion	space, time		
	\blacktriangleright parameters to identify ξ		
	 observations data 		
	 initial condition 		

Two fields problem : u and λ

O Introduction

0 Basics on Kalman Filtering

Proposed
 Approach

0 Numerical Results

O Conclusion

Two PGD decompositions simultaneously computed Many parameters to consider as extra-coordinates

- space, time
- parameters to identify $\boldsymbol{\xi}$
- observations data
- initial condition

Projection into a reduced basis

$$u_0^{(k)} = \sum_{i=0}^{n_{init}} \alpha_i \psi_i(\mathbf{x})$$

Two fields problem	: \emph{u} and λ
--------------------	----------------------------

- O Introduction
- 0 Basics on Kalman Filtering
- Proposed
 Approach
- 0 Numerical Results
- O Conclusion

- Two PGD decompositions simultaneously computed Many parameters to consider as extra-coordinates
- space, time
- parameters to identify ξ
- observations data
- initial condition

Projection into a reduced basis

$$u_0^{(k)} = \sum_{i=0}^{n_{init}} \alpha_i \psi_i(\mathbf{x})$$

$$\begin{split} \boldsymbol{u}_{PGD} &= \sum_{i=1}^{m} \phi_{i}^{u} \otimes \psi_{i}^{u} \bigotimes_{j=1}^{n_{p}} \chi_{j,i}^{u} \bigotimes_{k=1}^{n_{obs}} \theta_{k,i}^{u} \bigotimes_{m=1}^{n_{obs}} \eta_{m,i}^{u} \bigotimes_{q=1}^{n_{init}} \varphi_{q,i}^{u} \\ \boldsymbol{\lambda}_{PGD} &= \sum_{i=1}^{m} \phi_{i}^{\lambda} \otimes \psi_{i}^{\lambda} \bigotimes_{j=1}^{m} \chi_{j,i}^{\lambda} \bigotimes_{k=1}^{n_{obs}} \theta_{k,i}^{\lambda} \bigotimes_{m=1}^{n_{obs}} \eta_{m,i}^{\lambda} \bigotimes_{q=1}^{n_{init}} \varphi_{q,i}^{\lambda} \end{split}$$

O Introduction

0 Basics on Kalman Filtering

 Proposed Approach

O Numerical Results O Conclusion Т

vo fields problem $: u$ and λ				
Two PGD decompositions simultaneously computed				
Many parameters to consider as extra-coordinates				
 space, time 		Projection into a reduced basis		
 parameters to 	identify ξ	n _{init}		
 observations d 	ata	$u_0^{(k)} = \sum lpha_i \psi_i(\mathbf{x})$		
initial conditio	n	i=0		

$$\begin{split} \boldsymbol{u}_{PGD} &= \sum_{i=1}^{m} \phi_{i}^{u} \otimes \psi_{i}^{u} \bigotimes_{j=1}^{n_{p}} \chi_{j,i}^{u} \bigotimes_{k=1}^{n_{obs}} \theta_{k,i}^{u} \bigotimes_{m=1}^{n_{obs}} \eta_{m,i}^{u} \bigotimes_{q=1}^{n_{init}} \varphi_{q,i}^{u} \\ \boldsymbol{\lambda}_{PGD} &= \sum_{i=1}^{m} \phi_{i}^{\lambda} \otimes \psi_{i}^{\lambda} \bigotimes_{j=1}^{m} \chi_{j,i}^{\lambda} \bigotimes_{k=1}^{n_{obs}} \theta_{k,i}^{\lambda} \bigotimes_{m=1}^{n_{obs}} \eta_{m,i}^{\lambda} \bigotimes_{q=1}^{n_{init}} \varphi_{q,i}^{\lambda} \end{split}$$

$$\wedge$$

O Introduction

0 Basics on Kalman Filtering

 Proposed Approach

O Numerical Results

^{8.} Marchand et al, Real-time updating of structural mechanics models using Kalman filtering, modified Constitutive Relation Error and Proper Generalized Decomposition, 2016

Synthesis

O Introduction

0 Basics on Kalman Filtering

illie of

Proposed
 Approach

0 Numerical Results

O Conclusion

PGD admissible fields computation

^{8.} Marchand et al, Real-time updating of structural mechanics models using Kalman filtering, modified Constitutive Relation Error and Proper Generalized Decomposition, 2016

Synthesis

O Introduction

0 Basics on Kalman Filtering

Proposed
 Approach

0 Numerical Results

O Conclusion

PGD admissible fields computation

at each time step

eline,

- Project current initial condition in reduced basis
- Evaluate PGD parametric solution for set of σ -points
- Project state into observation space
- Kalman parameters update

^{8.} Marchand et al, Real-time updating of structural mechanics models using Kalman filtering, modified Constitutive Relation Error and Proper Generalized Decomposition, 2016

O Introduction

0 Basics on Kalman Filtering

0 Proposed Approach

 Numerical Results

O Conclusion

Basics on Kalman Filtering

🏺 Numerical Results

Example 1

Problem setting

0 Proposed Approach

 Numerical Results

O Conclusion

Time stepping for observation : 1000Time stepping for identification : 100Noise level : 20%

PGD modes

Exemple 1 : Neumann B.C. identification

Results

O Introduction

0 Basics on Kalman Filtering

O Proposed Approach

 Numerical Results

O Conclusion

sensor location

Space modes

Time stepping for observation \pm 1000 Time stepping for identification \pm 100 Noise level \pm 10%

Exemple 2 : conductivity identification

Example 3

Exemple 3 : source localization

Results

O Introduction

0 Basics on Kalman Filtering

O Proposed Approach

 Numerical Results

O Conclusion

Time stepping for observation \pm 1000 Time stepping for identification \pm 100 Noise level \pm 10%

Results not compared to UKF since this problem requires to solve **5000** problems at each time step with the UKF approach

Exemple 3 : source localization

Limits of PGD here

O Introduction

0 Basics on Kalman Filtering

O Proposed Approach

O Numerical Results

Conclusion

Proposed Approach

Basics on Kalman Filtering

🖗 Conclusion

Conclusion and future works

Conclusion and future works

O Proposed Approach

O Numerical Results

Proper Generalized Decomposition

Extension to field identification

Number of parameters significantly increases

split state and parameters meshes adaptive strategy 9