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DDDAS Paradigm

DDDAS 1 paradigm : a continuous exchange between

the physical system
and

its numerical model

Real system

Numerical
model

observation

identification

control

S
s

u

ξc

ξ

1. Darema, Dynamica Data Driven Applications Systems : A New Paradigm for Application Simulations and Measurements, 2003
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In this work

Objectives :

Identification process

I for time dependent systems/parameters
I fast resolution
I robust even if highly corrupted data

Tools :
Kalman filter for evolution aspect

modified Constitutive Relation Error for robustness

offline/online process based on
Proper Generalized Decomposition
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Data assimilation

Dynamical system :{
u(k+1) =M(k)u(k) + eu

(k)

s(k) = H(k)u(k) + es
(k)

Bayes theorem :

π
(

u(k)|s(k)
)

=
π
(
s(k)|u(k)

)
π
(
u(k)|s(0:k−1)

)
π
(
s(k)|s(0:k−1)

)
under the following hypothesis :

I State u(k) is a Markov process,
I Observations s(k) are statistically independent of state history
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Linear Kalman Filter

Principle
Kalman filter 2is a bayesian filter combined with Maximum a Posteriori

method in the case of Gaussian probability density functions.

Two main steps :

(a) Prediction step where is realized a priori estimation u(k+ 1
2 ) of state

system
(b) Assimilation step where is realized a posteriori estimation ua using

observations data

u

t
t(k−1) t(k) t(k+1) t(k+2) t(k+3) t(k+4)

u(•+ 1
2 )

u(•)
a

s(•)

2. Kalman, A new approach to linear filtering and prediction problems, 1960
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Inverse problems formulation

Kalman filter is a very well-known method to solve inverse problems 3

Principle : Introduce model parameters vector ξ ∈ Rnp

no a priori knowledge → stationarity hypothesis :

∂ξ

∂t ' 0 ⇒ ξ(k+1) = ξ(k) + e(k)
ξ

Two formulations

Joint Kalman Filter{
ū(k+1) = M̄(k)ū(k) + ē(k)

M
s(k) = H̄(k)ū(k) + e(k)

s

Dual Kalman filter{
ξ(k+1) = ξ(k) + e(k)

ξ

s(k) = H(k)u(k)(ξ(k)) + e(k)
s[

u(k)

ξ(k)

]
computed with another

Kalman filter

3. Kaipio and Somersalo, Statistical and Computational Inverse Problems, 2006
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s

Dual Kalman filter{
ξ(k+1) = ξ(k) + e(k)

ξ

s(k) = H(k)u(k)(ξ(k)) + e(k)
s[

u(k)

ξ(k)

]

computed with another
Kalman filter

3. Kaipio and Somersalo, Statistical and Computational Inverse Problems, 2006

SIAM UQ 2016 - Marchand et al April 5-8, 2016 7 / 30



Introduction

Basics on
Kalman Filtering

Proposed
Approach

Numerical
Results

Conclusion

Inverse problems formulation

Kalman filter is a very well-known method to solve inverse problems 3

Principle : Introduce model parameters vector ξ ∈ Rnp

no a priori knowledge → stationarity hypothesis :

∂ξ

∂t ' 0 ⇒ ξ(k+1) = ξ(k) + e(k)
ξ

Two formulations

Joint Kalman Filter{
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Resolution schemes : UKF vs EKF

The problem :

Nonlinear operator
A

Gaussian
N (x̄,Cx)

Gaussian
N (ȳ,Cy)

Two main approaches in Kalman filtering context

I First order linearization,
Extended Kalman filter 4

I Deterministic Monte-Carlo like method, Unscented Transform,
Unscented Kalman filter 5

4. Sorenson and Stubberud, Non-linear Filtering by Approximation of the a posteriori Density, 1968
5. Julier and Uhlmann, A new extension of the kalman filter to nonlinear systems, 1997
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N (ȳ,Cy)

Two main approaches in Kalman filtering context

I First order linearization,
Extended Kalman filter 4

I Deterministic Monte-Carlo like method, Unscented Transform,
Unscented Kalman filter 5

4. Sorenson and Stubberud, Non-linear Filtering by Approximation of the a posteriori Density, 1968
5. Julier and Uhlmann, A new extension of the kalman filter to nonlinear systems, 1997

SIAM UQ 2016 - Marchand et al April 5-8, 2016 8 / 30



Introduction

Basics on
Kalman Filtering

Proposed
Approach

Numerical
Results

Conclusion

Linearization vs Unscented Transform

First Order Linearization
Prior

9 10 11

9

10

11 Linearization
A = ∇xA
ȳ = A(x̄)

Cy = ACxAT

Posterior

−1 0

0

0.2

0.4

0.6

Unscented Transform
Prior

9 10 11

9

10

11 σ-points
propagation
{xi}i=1,..,2N+1
{yi} = A ({xi})

Posterior

−1 −0.5 0

0

0.2

0.4

0.6

For the same computational cost
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Why another approach ?

Kalman Filter based methods well-adapted for evolution problems
and DDDAS paradigm

But :

methods very costly
if degrees of freedom/parameters increase

Identification quality strongly depends on measurement noise
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Principle of the method

Keep the dual formulation

{
ξ(k+1) = ξ(k) + e(k)

ξ

s(k) = H(k)u(k)(ξ(k)) + e(k)
s

But use another observation operator

{
ξ(k+1) = ξ(k) + e(k)

ξ

s(k) = H(k)
m (ξ(k); s(k−1:k)) + e(k)

s

Classically computed using
a Kalman Filter

Defined from the modified
Constitutive Relation Error

functional
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MCRE framework

The idea 6 :

Weight the classical Constitutive Relation Error 7

by a measurements error term

Principle :

Primal-dual formulation based on Legendre-Fenchel inequality
applied to Helmholtz free energy

mCRE functional for unsteady thermal problems :

Em(u, q; ξ) =
1
2

∫
It

∫
Ω

(q −K∇u)K−1 (q −K∇u) dxdt +
δ

2

∫
It

‖Πu − s‖2dt

U =
{

u ∈ H1(Ω)⊗ L2(It ) \ u = ud on ∂Ωu , u = u0 at t = t0
}

S(u) =
{

q ∈ [L2(Ω)⊗ L2(It )]d \ q · n = qd on ∂Ωq , ∂tu +∇ · q = f
}

6. Ladevèze et al, Updating of finite element models using vibration tests, 1994
7. Ladevèze and Leguillon, Error estimate procedure in the finite element method and application, 1983
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6. Ladevèze et al, Updating of finite element models using vibration tests, 1994
7. Ladevèze and Leguillon, Error estimate procedure in the finite element method and application, 1983

SIAM UQ 2016 - Marchand et al April 5-8, 2016 13 / 30



Introduction

Basics on
Kalman Filtering

Proposed
Approach

Numerical
Results

Conclusion

mCRE inverse problems

Solution is defined by :
p = argmin

ξ∈Pad

min
(u,q)∈Uad×Sad

Em(u,q; ξ)

In
te

re
st (i) Robustness of the method with highly corrupted data

(ii) Strong mechanical content
(iii) Model reduction integration

Admissible fields
Constrained minimizationParameters minimization

Gradient based methods

Fixed
point
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The Modified Kalman Filter

{
ξ(k+1) = ξ(k) + e(k)

ξ

s(k) = H(k)
m

(
ξ(k), s(k−1:k)

)
+ es

(k)

Hm(ξ(k), s(k)) = H ◦ GmCRE (ξ(k), s(k−1:k))

Two steps for H(k)
m

(
ξ(k), s(k−1:k)

)
Step 1 : admissible fields computation

u(k) = GmCRE (ξ(k), s(k−1:k))

Step 2 : projection
Typically using boolean matrix

H := Π
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Optimization point of view

Dual Kalman filter based identification
can be seen as the minimization of

J(ξ) =
nt∑

k=0

(
s(k) −H(k)u(k)(ξ(k))

)T
Cs

(k)−1 (
s(k) −H(k)u(k)(ξ(k))

)

min
U

∥∥∥s(k) −H(k)u(k)
∥∥∥

Cs(k)−1

Classical

min
U×S
‖q −∇u‖K−1,I(k)

t
+
δ

2‖Πu − s‖I(k)
t

mCRE based

Observations data
strongly imposed

Observations data
weakly imposed
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Technical points
State estimation

Admissible fields :

(uad ,qad ) = argmin
(u,q)∈Uad×Sad

Em(u,q; ξ(k))

t(0) t(nt−1)t(k−1) t(k)

Kalman time scale

I
(k)
t

mCRE time scale

τ
(0)
k τ

(ns−1)
kτ

(i−1)
k τ

(i)
k

λ lagrange multiplier field and stationarity conditions

After FE discretization :[
C 0
0 −C

] [
u̇
λ̇

]
+

[
K −K

δΠT Π K

] [
u
λ

]
=

[
Fext
δΠT s

]
∀t

with
u(τ

(0)
k ) = u(k−1) and λ(τ

(ns−1)
k ) = 0

Coupled forward-backward problem in time
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PGD based model reduction

Find u ∈ X = X1 ⊗ · · · ⊗ XD such that B(u, v) = L(v) ∀v ∈ X

Principle :
Low-rank tensor approximation

u ' um =
m∑

i=1
w1

i ⊗w2
i ⊗ · · · ⊗wD

i ; um ∈ Xm ⊂ X

Construction : many strategies 8 ; progressive Galerkin approach

Gree
dyFixe

d point
B1(w1, w?) = L(w?) − B1(uM−1, w?)
...
BD(wD , w?) = L(w?) − BD(uM−1, w?)

uM−1 known

Orthogonalization and update
uM = uM−1 + w1 ⊗ · · · ⊗wD

8. Nouy, A priori model reduction through Proper Generalized Decomposition for solving time-dependent partial differential equa-
tions, 2010
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PGD-mCRE

Two fields problem : u and λ

Two PGD decompositions simultaneously computed

Many parameters to consider as extra-coordinates
I space, time
I parameters to identify ξ
I observations data
I initial condition

Projection into a reduced basis

u(k)
0 =

ninit∑
i=0

αiψi (x)

uPGD =

m∑
i=1

φu
i ⊗ ψ

u
i

np⊗
j=1

χu
j,i

nobs⊗
k=1

θu
k,i

nobs⊗
m=1

ηu
m,i

ninit⊗
q=1

ϕu
q,i

λPGD =

m∑
i=1

φλi ⊗ ψ
λ
i

np⊗
j=1

χλj,i

nobs⊗
k=1

θλk,i

nobs⊗
m=1

ηλm,i

ninit⊗
q=1

ϕλq,i

np + 2 · nobs + ninit / 20

SIAM UQ 2016 - Marchand et al April 5-8, 2016 19 / 30



Introduction

Basics on
Kalman Filtering

Proposed
Approach

Numerical
Results

Conclusion

PGD-mCRE

Two fields problem : u and λ

Two PGD decompositions simultaneously computed

Many parameters to consider as extra-coordinates

I space, time
I parameters to identify ξ
I observations data
I initial condition

Projection into a reduced basis

u(k)
0 =

ninit∑
i=0

αiψi (x)

uPGD =

m∑
i=1

φu
i ⊗ ψ

u
i

np⊗
j=1

χu
j,i

nobs⊗
k=1

θu
k,i

nobs⊗
m=1

ηu
m,i

ninit⊗
q=1

ϕu
q,i

λPGD =

m∑
i=1

φλi ⊗ ψ
λ
i

np⊗
j=1

χλj,i

nobs⊗
k=1

θλk,i

nobs⊗
m=1

ηλm,i

ninit⊗
q=1

ϕλq,i

np + 2 · nobs + ninit / 20

SIAM UQ 2016 - Marchand et al April 5-8, 2016 19 / 30



Introduction

Basics on
Kalman Filtering

Proposed
Approach

Numerical
Results

Conclusion

PGD-mCRE

Two fields problem : u and λ

Two PGD decompositions simultaneously computed

Many parameters to consider as extra-coordinates
I space, time
I parameters to identify ξ
I observations data
I initial condition

Projection into a reduced basis

u(k)
0 =

ninit∑
i=0

αiψi (x)

uPGD =

m∑
i=1

φu
i ⊗ ψ

u
i

np⊗
j=1

χu
j,i

nobs⊗
k=1

θu
k,i

nobs⊗
m=1

ηu
m,i

ninit⊗
q=1

ϕu
q,i

λPGD =

m∑
i=1

φλi ⊗ ψ
λ
i

np⊗
j=1

χλj,i

nobs⊗
k=1

θλk,i

nobs⊗
m=1

ηλm,i

ninit⊗
q=1

ϕλq,i

np + 2 · nobs + ninit / 20

SIAM UQ 2016 - Marchand et al April 5-8, 2016 19 / 30



Introduction

Basics on
Kalman Filtering

Proposed
Approach

Numerical
Results

Conclusion

PGD-mCRE

Two fields problem : u and λ

Two PGD decompositions simultaneously computed

Many parameters to consider as extra-coordinates
I space, time
I parameters to identify ξ
I observations data
I initial condition

Projection into a reduced basis

u(k)
0 =

ninit∑
i=0

αiψi (x)

uPGD =

m∑
i=1

φu
i ⊗ ψ

u
i

np⊗
j=1

χu
j,i

nobs⊗
k=1

θu
k,i

nobs⊗
m=1

ηu
m,i

ninit⊗
q=1

ϕu
q,i

λPGD =

m∑
i=1

φλi ⊗ ψ
λ
i

np⊗
j=1

χλj,i

nobs⊗
k=1

θλk,i

nobs⊗
m=1

ηλm,i

ninit⊗
q=1

ϕλq,i

np + 2 · nobs + ninit / 20

SIAM UQ 2016 - Marchand et al April 5-8, 2016 19 / 30



Introduction

Basics on
Kalman Filtering

Proposed
Approach

Numerical
Results

Conclusion

PGD-mCRE

Two fields problem : u and λ

Two PGD decompositions simultaneously computed

Many parameters to consider as extra-coordinates
I space, time
I parameters to identify ξ
I observations data
I initial condition

Projection into a reduced basis

u(k)
0 =

ninit∑
i=0

αiψi (x)

uPGD =

m∑
i=1

φu
i ⊗ ψ

u
i

np⊗
j=1

χu
j,i

nobs⊗
k=1

θu
k,i

nobs⊗
m=1

ηu
m,i

ninit⊗
q=1

ϕu
q,i

λPGD =

m∑
i=1

φλi ⊗ ψ
λ
i

np⊗
j=1

χλj,i

nobs⊗
k=1

θλk,i

nobs⊗
m=1

ηλm,i

ninit⊗
q=1

ϕλq,i

np + 2 · nobs + ninit / 20

SIAM UQ 2016 - Marchand et al April 5-8, 2016 19 / 30



Introduction

Basics on
Kalman Filtering

Proposed
Approach

Numerical
Results

Conclusion

PGD-mCRE

Two fields problem : u and λ

Two PGD decompositions simultaneously computed

Many parameters to consider as extra-coordinates
I space, time
I parameters to identify ξ
I observations data
I initial condition

Projection into a reduced basis

u(k)
0 =

ninit∑
i=0

αiψi (x)

uPGD =

m∑
i=1

φu
i ⊗ ψ

u
i

np⊗
j=1

χu
j,i

nobs⊗
k=1

θu
k,i

nobs⊗
m=1

ηu
m,i

ninit⊗
q=1

ϕu
q,i

λPGD =

m∑
i=1

φλi ⊗ ψ
λ
i

np⊗
j=1

χλj,i

nobs⊗
k=1

θλk,i

nobs⊗
m=1

ηλm,i

ninit⊗
q=1

ϕλq,i

np + 2 · nobs + ninit / 20

SIAM UQ 2016 - Marchand et al April 5-8, 2016 19 / 30



Introduction

Basics on
Kalman Filtering

Proposed
Approach

Numerical
Results

Conclusion

Synthesis

I Reduced basis computation for initial condition
projection

I PGD admissible fields computation

offl
ine

at each time step
I Project current initial condition in reduced basis
I Evaluate PGD parametric solution for set of σ-points
I Project state into observation space
I Kalman parameters update

on
lin

e

8. Marchand et al, Real-time updating of structural mechanics models using Kalman filtering, modified Constitutive Relation Error
and Proper Generalized Decomposition, 2016
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Example 1
Problem setting

u = ud

ρc, κ

qd(t) =?

sensor location

Time stepping for observation : 1000
Time stepping for identification : 100
Noise level : 20%

PGD modes

SIAM UQ 2016 - Marchand et al April 5-8, 2016 22 / 30



Introduction

Basics on
Kalman Filtering

Proposed
Approach

Numerical
Results

Conclusion

Exemple 1 : Neumann B.C. identification
Results

Joint Unscented Kalman Filter Modified Kalman Filter

0 50 100

0

5

10

time step

0 50 100

0

5

10

time step

exact mean variance

Better accuracy

Tuning parameters impact

εMKF =
‖ξtrue − E [ξMKF ] ‖L2(It )

‖ξtrue‖L2(It )

10−3
10−2

10−1
100

10−310−210−1100

0.2

0.4

0.6

cξcs

ε M
K
F
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Example 2
Problem setting

u = ud

κ1 ? κ2 ? κ3 ? κ4 ?

sensor location

Time stepping for observation : 1000
Time stepping for identification : 100
Noise level : 10%

Space modes
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Exemple 2 : conductivity identification
Joint Unscented Kalman Filter Modified Kalman Filter

κ1

κref
1

0 50 100
0

0.5

1
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1.5
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κref
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Example 3
Problem setting

Thermal source :

f (x; xc ) = sinc2 (π‖x− xc (t)‖)
u
=

0

u
=

0

f(x,xc)

sensor location

To include xc as PGD’s extra-coordinate

f (x; xc ) '
N∑

i=1
Fi (x) · Gi (xc ) Using SVD
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Exemple 3 : source localization
Results

Time stepping for observation : 1000
Time stepping for identification : 100
Noise level : 10%

Modified Kalman Filter

xc identification yc identification
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Results not compared to UKF since this problem requires to
solve 5000 problems at each time step with the UKF approach
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Exemple 3 : source localization
Limits of PGD here
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PGD limits

Solution is relatively singular
involves

Initial condition should be
project on many modes

ninit � 1

but

np + 2 · nobs + ninit / 20
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Conclusion and future works

Unscented Kalman Filter Modified Kalman Filter modified CRE

Implementation

Cost

Robustness

Implementation

Robustness

Cost

Robustness

Cost

2∗Minimizations

Proper Generalized Decomposition

Extension to field identification

Number of parameters
significantly increases

split state and parameters meshes
adaptive strategy 9
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