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game
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Abstract. In this work, a multi-agent network flow problem is ad-
dressed, aiming at characterizing the properties of stable flows and allow-
ing their computation. Two types of agents are considered: transportation-
agents, that carry a flow of products on a given network and another
agent, either a producer or a customer, who is willing to ship (receive,
respectively) products. Every transportation-agent controls a set of arcs,
each having a capacity that can be increased up to a certain point at a
given cost. The other agent (i.e., the customer/producer) is interested in
maximizing the flow transshipped through the network. To this aim, we
assume it offers the transportation-agents a reward that is proportional
to the realized flow value. This particular multi-agent framework is re-
ferred to as a Multi-Agent network expansion game. We characterize and
find particular stable strategies (i.e., Nash equilibria) that are of interest
for this game. We particularly focus on the problem of finding a Nash
Equilibrium and a sharing policy that maximize the value of the total
flow. We prove that this problem is NP-hard in the strong sense and show
how such a strategy can be characterized considering paths in specific
auxiliary graphs. We also provide a mixed integer linear programming
(MILP) formulation to solve the problem. Computational experiments
are provided to prove the effectiveness of our approach and derive some
insights for practitioners.

Keywords: Multi-Agent Network flow, Nash Equilibria, Complexity,
Network Expansion Game, MILP.

1 Introduction

In the vast body of network flow literature, the capacity expansion problem has
received considerable attention. This problem aims at deciding where to increase
arc capacity so as to expand the network transportation capability while reducing
the overall routing cost. Many research papers addressed this problem under
various assumptions (see e.g., [14], [18] or [19] for the design of transportation
networks; [20] for the management of electric utilities or [17] and [24] for
building up robust solutions in the case demand is uncertain). In all these works,
it is basically assumed that a single agent is able to control the capacity of the
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entire network and the focus is put on the satisfaction of its own interest, which
is obviously a limitation, as many transportation problems are more and more
cooperative in essence.

Contrastingly, in this paper, a network flow involving a set of transportation-
agents is considered, each owning a part of the network routes. Every transportation-
agent can vary the capacities of its arcs at a given cost. A producer (or a cus-
tomer) is willing to ship (to receive, respectively) a product flow as high as
possible through the network. For each additional transshipped product unit,
the customer offers a reward as incentive to the transportation-agents, and it
decides how this reward is distributed among them. This framework defines a
non-cooperative network flow game where the resulting flow eventually depends
on the individual strategies of all agents. The agents’ individual strategies are
locally stable if there is no incentive for any agent to modify its own strategy in
order to improve its profit, which corresponds to the definition of a Nash equilib-
rium [21]. This stability concept is important since, in the face of a stable strat-
egy, although the agents are self-interested, none of them will be interested in
individually changing its mind, and therefore the flow value remains unchanged.
From the customer viewpoint, the problem of finding a Nash equilibrium that
maximizes the flow value is relevant, because its solution gives the highest flow
that can be reached for the customer, provided that the organization remains
stable.

For illustration, let us consider the network displayed in Fig. 1 with two
transportation-agents A1 and A2 and a customer-agent willing to transport the
largest possible flow from node A to node D. We assume it offers a per-unit flow
reward π = 120, which is shared between A1 and A2 according to the policy W =
(w1, w2) (with w1+w2 = 1). The arcs belonging to each transportation-agent are
E1 = {b = (A,C), c = (B,C), d = (B,D)} and E2 = {a = (A,B), e = (C,D)},
represented with plain and dotted arcs, respectively. The intervals of normal and
maximum capacities ([q

i,j
, qi,j ]) and the expansion cost (ci,j) are displayed on

each arc. For instance, for arc a from A to B, the interval of capacity is [0, 2]
and the cost for increasing capacity by one unit equals 50.

A D

B

C

a, ([0
,2], 50)

e, ([0
,2], 30)

c,
([0,1],

10)

b, ([0,1], 25)

d, ([0,1], 50)

Fig. 1. Example of a network expansion game
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Network flow games define an interesting research area with links to many
application fields such as transportation networks, supply chain management,
web services, production or energy management (see e.g., [8], [25]). In co-
operative flow games, arcs are owned by different players, and in their most
basic version the problem is to distribute the revenues related to a maximum
flow. It was shown [16] that core allocations correspond to minimum cuts on
the network. In [3, 27] a cooperative network flow game is studied and the cost
of stability of coalitions is analyzed. A non-cooperative network flow game is
the path player game [26], in which each players owns a set of arcs forming a
path on the network, and paths are not necessarily disjoint. This feature models
systems in which paths are owned by decision makers (network providers), as
in public transportation, energy or information networks. The decision makers
offer a certain bandwidth (capacity) to be used by the flow, like a bandwidth
of electricity, or a certain daily frequency of trains. However, capacity is not
associated with each network link, but rather there is a bound on total flow
through the network. Equilibria in this model describe a stable market situation
among competing path owners. This is perhaps the closest model to ours in the
literature.

Other closely related works are [4] and [1], dealing with the Multi-Agent
Project Scheduling, even if it is a different network problem. In this work, each
agent controls a subset of activities that make up a project, each activity having
a nominal duration and a minimum duration. The customer offers a fixed daily
reward to the agents for completing a project sooner than its nominal length and
the sharing policy is known. The problem is to find a duration for the activities
so that the resulting solution is stable, and among all stable solutions, the one
having the smallest makespan.

In this study, similarly to those cited above, we assume that the transporta-
tion network and the agents’ parameters are known and that the decision is
centralized. This situation can be viewed as unrealistic since, in many real-life
contexts, agents make their own decisions without perfect knowledge of all pa-
rameters. However, our purpose is to show that, even with this strong assump-
tion, some problems remain computationally difficult. Moreover, we believe that
the concepts introduced here can be helpful for designing more realistic, stable
cooperation mechanisms.

As we already mentioned, this paper considers the problem of finding a Nash
equilibrium that maximizes the value of network flow. In contrast with [1] and
[7], in this paper we assume that the customer is able to decide how to share the
reward among the transportation-agents, hence a somewhat more general set-
ting. The key contributions are the following. First, we show that the resulting
problem is NP-hard. Second, a necessary and sufficient condition of stability is
provided that allows the characterization of Nash equilibria in terms of paths
in a residual graph. In addition, a mixed integer linear programming (MILP)
model is given that allows finding both an optimal sharing policy and a sta-
ble agents’ strategy that maximizes the maximum flow. Last, on the basis of
experimental studies, we analyze various reward sharing policies and derive use-
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ful insights which should help practitioners to properly deal with multi-agent
capacity expansion problems.

The paper is organized as follows. Section 2 defines formally our Network
Expansion Game and introduces some basic notations and properties. There-
after, Section 3 focuses on the single transportation-agent case and shows how
profitable strategies can be characterized in terms of paths in a residual graph.
These results are generalized in Section 4, in which a necessary and sufficient
condition of stability is stated and the complexity of finding a maximum-flow
Nash equilibrium is analyzed. Section 5 and 6 are dedicated to the presenta-
tion of a MILP formulation and the analysis of our computational experiments.
Finally, conclusions and future research directions are discussed in Section 7.

2 Problem Statement

This section defines more formally the so-called Network Expansion Game (NEG).
The main focus of our analysis is on finding stable strategies or Nash equilibria,
i.e., such that no agent has any incentive to unilaterally modify its strategy.

2.1 Network Expansion Game

Network expansion games are formally defined in this section with respect to a
set of transportation-agents and a customer-agent. The producer case is quite
symmetric as it only requires to reverse the arc direction on the network. We
assume here that the sharing policy is free and part of the customer-agent’s
strategy, which differentiates this work from [7] and [6]. The concepts of a multi-
agent network and a strategy vector are introduced first.

Definition 1. Multi-agent network
A Multi-agent network (MAN) is defined by a tuple < G,Q,Q, C,A, π > such that:

– G = (V, E) is a network composed of a set V of nodes (s, t ∈ V referring to
the source and the sink nodes of the network, respectively) and a set E of
arcs, an arc e ∈ E from node i to node j being denoted (i, j);

– Q = (q
i,j

)(i,j)∈E and Q = (qi,j)(i,j)∈E are the vectors of normal (i.e., mini-

mum) and maximum arc capacities, respectively;
– C = (ci,j)(i,j)∈E is the vector of unitary expansion costs ;
– A = {A1, . . . , Au, . . . , Am, Am+1} is the set of m+ 1 agents where Am+1 is

the customer-agent and Au, u ≤ m, is transportation-agent u owning a set
of mu arcs, denoted Eu (with Em+1 = ∅ and Eu ∩ Ev = ∅, ∀(Au, Av) ∈ A2,
u 6= v) ;

– π is the reward given by customer-agent Am+1 to the transportation-agents
for every additional circulating unit of flow.

Definition 2. Strategy Vector
Given a MAN, a strategy vector S = (S1, . . . , Sm, Sm+1) gathers the individual
agents’ strategies so that:
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– if u ≤ m, then Su = (qi,j)(i,j)∈Eu corresponds to the strategy of transportation-
agent Au, qi,j ∈ [q

i,j
, qi,j ] being the arc capacity chosen for (i, j) by Au;

– if u = m + 1, then Sm+1 = (wu)u=1,...,m is the strategy of customer-agent
Am+1, wu being the part of reward π allocated by Am+1 to Au, with

∑m
u=1 wu =

1.

We denote by S any particular strategy for which qi,j = q
i,j

, ∀(i, j) ∈ E ,

whatever the strategy of customer-agent Sm+1.
Given a strategy S, F(S) = (fi,j)(i,j)∈E denotes a maximum flow vector,

which respects the current values of capacities (i.e., fi,j ≤ qi,j , ∀(i, j) ∈ E). The
maximum flow value is F (S) =

∑
(s,j)∈E fs,j (of course, considering one specific

strategy S, F(S) and F (S) can be computed in polynomial time using the well-
known Edmonds-Karp or Dinic algorithms [11, 12]). We further refer to v as the
maximum flow value under a strategy S (in other words, v is the largest possible
flow value at zero cost).

Definition 3. Network Expansion Game
A NEG is defined by a MAN, a strategy vector S and a profit vector Z(S) =
(Z1(S), . . . , Zm(S), Zm+1(S)) , so that:

– if u ≤ m, Zu(S) = wuπ(F (S) − v) −
∑

(i,j)∈Eu ci,j(qi,j − qi,j) is the profit

of transportation-agent Au, which equals the difference between its part of
reward and spending;

– if u = m + 1, then Zm+1(S) = F (S) is the profit of customer-agent Am+1,
which equals the value of the maximum flow.

2.2 Nash equilibria and poor strategies

We next define some important concepts used throughout the paper. Given a
strategy vector S = (S1, . . . , Sm+1), we denote by S−u the set of strategies played
by the m agents except Au, i.e., S−u = (S1, . . . , Su−1, Su+1, . . . Sm+1). Focusing
on a particular agent Au, S can also be written as the pair (Su,S−u).

A strategy vector is a Nash equilibrium and is said to be stable if there is no
incentive for any agent to unilaterally modify its strategy in order to improve
its profit (see [21], [22], [23] and [28]). More formally:

Definition 4. Nash equilibria
Given a NEG, a strategy vector S = (S1, . . . , Sm, Sm+1) is a Nash equilibrium if
and only if for any agent Au ∈ A, choosing any another strategy S′u would not
increase its profit. That is:

∀Au ∈ A,∀S′u 6= Su, Zu(Su,S−u) ≥ Zu(S′u,S−u). (1)

Clearly, the customer-agent is interested in finding the highest stable flow
(hence, gain) it can expect for a given reward π. We can therefore define the
problem addressed in this paper as follows.
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Definition 5. Problem MaxNash
Given a NEG, find a strategy vector S∗ such that

F (S∗) = max{F (S) : S is a Nash equilibrium}.

We refer to SN as the set of Nash equilibria. Let us now define another
concept which turns out useful for properly characterizing Nash equilibria.

Definition 6. Poor strategy
A strategy vector S with flow value F (S) > v is said poor if there exists an agent
Au having an alternative strategy S′u with flow value F (S′u,S−u) = F (S) such
that Zu(S′u,S−u) > Zu(S).

In other words, because the customer-agent cannot increase its profit as
F (S ′) = F (S), a strategy vector is poor when one transportation-agent is able
to find a better strategy, while keeping the network flow value unchanged. We
denote the set of non-poor strategies as Snp. Obviously, a poor strategy cannot
be a Nash equilibrium, i.e., SN ⊆ Snp.

Proposition 1. Given a non-poor strategy vector S and a corresponding maxi-
mum flow F(S), for each arc (i, j) ∈ E, either fi,j = qi,j or qi,j = q

i,j
.

Proof. If in F(S) an arc (i, j) is not saturated and qi,j > q
i,j

, the agent owning

arc (i, j) can profitably decrease the arc capacity until it reaches max{fi,j , qi,j},
without affecting the flow value F (S). This implies that S is a poor strategy. ut

2.3 Mathematical model

Problem MaxNash can be formulated as the following mathematical program.

Max F
s.c.

(i)
∑

(i,j)∈E+i
fi,j −

∑
(j,i)∈E−i

fj,i =

0 , ∀i 6= s, t
F , i = s
−F , i = t

(ii) 0 ≤ fi,j ≤ qi,j , ∀(i, j) ∈ E
(iii) q

i,j
≤ qi,j ≤ qi,j , ∀(i, j) ∈ E

(iv)
∑

Au∈A wu = 1

(v) S =
(
(qi,j)(i,j)∈E , (wu)u=1,...,m)

)
is a Nash equilibrium

qi,j ∈ N, fi,j ∈ N, ∀(i, j) ∈ E
wu ∈ R, ∀Au ∈ A
F ∈ N

(2)

Constraints (i) and (ii) are classical flow conservation and capacity con-
straints, where E+

i and E−i respectively denote the set of outgoing and ingoing
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arcs from node i. Constraints (iii) impose restrictions on capacity values. Con-
straint (iv) enforces wu to be a sharing policy. We observe that constraints
(i) − (iv) are linear. Eventually, the complex and non-explicit constraint (v)
enforces the strategy S to be a Nash equilibrium.

In Section 5, we show how the previous mathematical program can be mod-
eled as a Mixed Integer Linear Program (MILP), replacing constraint (v) by a
series of primal-dual linear constraints.

2.4 Illustrative example

Let us get back to the previous example (see figure 1). We consider two different
sharing policies W (1) = (1

2 ,
1
2 ) and W (2) = (1

4 ,
3
4 ). In this network, when all

the capacities are normal (q
i,j

= 0), the maximum flow that can circulate is 0,

which corresponds to the strategy vector S. Under such strategy, the value of
the maximum flow is 3.

Let us consider the strategy vector S0 = S (see figure 2(a)) and the first
sharing policy W (1). The reward to each agent is 60 for each unit increase in the
flow. It is possible to increase the arc capacities along the path {(A,C), (C,D)},
which leads to strategy S1 = (0, 1, 0, 0, 1,W (1)) (see Figure 2(b)), leading to the
maximum flow value F (S1) = 1 and Z1(S1) = 35 and Z2(S1) = 30. From this
strategy, it is still possible to increase the arc capacities, hence the flow, along
the path {(A,B), (B,D)}, which leads to strategy vector S2 = (1, 1, 0, 1, 1,W (1))
(see Figure 2(c)), with maximum flow value F (S2) = 2 and profits Z1(S2) = 45
and Z2(S2) = 40. Nevertheless, we observe that strategy S2 is not stable since
the capacities can be unilaterally decreased along path {(D,B), (B,C), (C,A)}
by agent A1, leading to strategy vector S3 = (1, 0, 1, 0, 1,W (1)) (see Figure 2(d))
with maximum flow value F (S3) = 1, which gives A1 a higher profit (i.e.,
Z1(S3) = 50 > Z1(S2)), to the detriment of A2 (Z2(S3) = −20). Consequently,
although with strategy S2 all agents (including the customer) get a better profit
than under strategy S1, S2 is not a Nash equilibrium. Eventually, one can observe
that only strategy S1 is a Nash equilibrium (under sharing policy W (1)).

Let us consider now sharing policy W (2) and the initial strategy vector
S0. It is possible to increase the flow by two units using respectively paths
{(A,C), (C,D)} and {(A,B), (B,C), (C,D)}, which leads to the strategies S ′1 =
(0, 1, 0, 0, 1,W (2)) (see Figure 3(a)) and S ′2 = (1, 1, 1, 0, 2,W (2)) (see Figure 3(b)),
respectively. The transportation-agent profits equal Z1(S ′2) = 25 and Z2(S ′2) =
70. Now, strategy S ′2 is stable since no agent can unilaterally and profitably
modify its arc capacities. Moreover, it is also a best Nash equilibrium with re-
spect to the the flow value, as there does not exist obviously any other stable
strategy vector providing a higher flow value. For the customer-agent, the shar-
ing policy W (2) is preferable to W (1) since it allows him/her to reach a better
Nash equilibrium.
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A D

B

C

a, ([0
,2], 50)

qA,B
=

0

e,
([0

,2], 30)qC,D
=

0

c,
([0

,1
],

1
0
)

q
B

,C
=

0b, ([0,1], 25)

qA,C =
0

d, ([0,1], 50)qB,D =
0

(a) Strategy S0

A D

B

C

a, ([0
,2], 50)

qA,B
=

0

e,
([0

,2], 30)qC,D
=

1

c,
([0

,1
],

1
0
)

q
B

,C
=

0b, ([0,1], 25)

qA,C =
1

d, ([0,1], 50)qB,D =
0

(b) Strategy S1

A D

B

C

a, ([0
,2], 50)

qA,B
=

1

e,
([0

,2], 30)qC,D
=

1

c,
([0

,1
],

1
0
)

q
B

,C
=

0b, ([0,1], 25)

qA,C =
1

d, ([0,1], 50)qB,D =
1

(c) Strategy S2

A D

B

C

a, ([0
,2], 50)

qA,B
=

1

e,
([0

,2], 30)qC,D
=

1

c,
([0

,1
],

1
0
)

q
B

,C
=

1b, ([0,1], 25)

qA,C =
0

d, ([0,1], 50)qB,D =
0

(d) Strategy S3

Fig. 2. Strategies with W (1)

A D

B

C

a, ([0
,2], 50)

qA,B
=

1

e,
([0

,2], 30)qC,D
=

1

c,
([0

,1
],

1
0
)

q
B

,C
=

1b, ([0,1], 25)

qA,C =
0

d, ([0,1], 50)qB,D =
0

(a) Strategy S ′1

A D

B

C

a, ([0
,2], 50)

qA,B
=

1

e,
([0

,2], 30)qC,D
=

2

c,
([0

,1
],

1
0
)

q
B

,C
=

1b, ([0,1], 25)

qA,C =
1

d, ([0,1], 50)qB,D =
0

(b) Strategy S ′2

Fig. 3. Strategies with W (2)

2.5 Basic properties

Proposition 2. Given any strategy S ∈ Snp having flow value F (S), the customer-
agent Am+1 cannot unilaterally improve its profit.

Proof. The only way for the customer-agent to unilaterally improve its profit is
to increase the flow, which is impossible since F (S) is maximum by definition.

ut

Proposition 2 allows to restrict Definition 4 of a Nash equilibrium as follows:

Corollary 1. Given a NEG instance, a strategy S = (S1, . . . , Sm, Sm+1) is a
Nash equilibrium if and only if S ∈ Snp and, for any transportation-agent Au ∈
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A, u ≤ m, with strategy Su, the following inequation holds:

Zu(Su,S−u) ≥ Zu(S′u,S−u), ∀S′u 6= Su.

3 The Single Transportation-agent Case

This section focuses on the particular network expansion game involving a single
transportation-agent and a single customer-agent. In this case, all the arcs belong
to the same transportation-agent A1, who receives the entire reward (i.e., w1 =
1). We next consider how the total flow can be either increased or decreased
profitably for the transportation-agent, using properly defined increasing and
decreasing paths in terms of capacities. These notions will be generalized in
Section 4 to the multi-transportation-agents case.

3.1 Residual graph

In order to characterize the flow variation in this single-agent network expansion
game, we define below the notion of a residual graph. Arcs of the residual graph
represent the possibility of varying the capacity and the flow through that arc,
given a current strategy and the corresponding maximum flow vector.

Definition 7. Residual graph
Given a NEG instance defined by a MAN < G,Q,Q, C,A, π > and given a non-
poor strategy vector S and a maximum flow vector F(S) = (fi,j)(i,j)∈E of value
F (S), the corresponding residual graph Gr(F(S)) = (V, EF , EB) is defined as
follows: for each arc (i, j) ∈ E, having a capacity qi,j and traversed by the flow
fi,j in G, there are two arcs in Gr : a forward arc (i, j) ∈ EF and a backward
arc (j, i) ∈ EB.

– The forward arc (i, j) has cost di,jF and residual capacity ri,jF = qi,j − qi,j if

fi,j = qi,j(≥ qi,j) or ri,jF = q
i,j
− fi,j if fi,j < q

i,j
.

– The backward arc (j, i) has cost dj,iB and residual capacity rj,iB = qi,j − qi,j if

fi,j = qi,j(≥ qi,j) or rj,iB = fi,j if fi,j < q
i,j

.

The costs di,jF and dj,iB of forward and backward arc, respectively, in the resid-
ual graph Gr(F(S)) are defined as follows:

di,jF =


+∞ if fi,j = qi,j = qi,j
ci,j if fi,j = qi,j < qi,j
0 if fi,j < qi,j = q

i,j

(3)

dj,iB =


+∞ if fi,j = 0
−ci,j if fi,j = qi,j > q

i,j

0 if 0 < fi,j ≤ qi,j = q
i,j

(4)
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Costs and residual capacities correspond to all possibilities of varying the flow
through the arcs of the network, while maintaining the strategy vector non-poor.

A forward cost di,jF is incurred when we want to increase the flow on arc
(i, j) ∈ G by one unit. Recall that if qi,j > q

i,j
, the arc is saturated (see Prop-

erty 1). Hence, if arc (i, j) ∈ G is already at its maximum capacity, no further
flow increase is possible, so ri,jF = 0 and di,jF = +∞. If qi,j < qi,j , flow can be

increased by at most ri,jF = qi,j − qi,j , by increasing the capacity at a unit cost

of di,jF = ci,j .
If arc (i, j) ∈ G is not saturated, it is possible to increase its flow at no cost

until q
i,j

is reached. Since S is non-poor, this can only occur when qi,j = q
i,j

(see Property 1), so the residual capacity is indeed q
i,j
− fi,j .

Similarly, a backward cost di,jB is incurred when we want to decrease the flow
on arc (i, j) ∈ G by one unit. Obviously, if an arc (i, j) ∈ G is empty, no decrease
can occur, so ri,jB = 0 and di,jB = +∞. If 0 < fi,j ≤ qi,j , then from Property 1
qi,j = q

i,j
, and hence the flow in the corresponding arc of G can be decreased

(by at most fi,j) but this brings no benefit (di,jB = 0). Finally, if (i, j) ∈ G is
saturated and qi,j > q

i,j
, the transportation-agent can save ci,j by decreasing

the arc capacity, which is possible until the capacity reaches its normal value
q
i,j

.

In what follows, with no loss of generality, we assume that arcs having 0
residual capacity are discarded from Gr(F(S)).

3.2 Modification of the Network flow

In this section, we address the following problem. Given a current strategy vector
S and a current maximum flow vector F(S), what is the most profitable set of
arcs’ capacities to modify in order to increase or decrease the overall flow by one
unit, given that all capacities are integers?

Let us consider the residual graph Gr(F(S)), with residual costs specified by
equations (3)-(4). The problem of finding an optimal minimal modification of
the network flow can be formulated as a linear program as follows:

min
∑

(i,j)∈E(ai,jd
i,j
F + bi,jd

j,i
B )

s.t.

(i)
∑

(i,j)∈E+i
ϕi,j −

∑
(j,i)∈E−i

ϕj,i = ±

0 ∀i 6= s, t
1 , i = s
−1 , i = t

(ii) ϕi,j = ai,j − bi,j , ∀(i, j) ∈ E
ai,j ≥ 0, ∀(i, j) ∈ E
bi,j ≥ 0, ∀(i, j) ∈ E

(5)

Variables ϕi,j (for (i, j) ∈ E) represent flow variation, with respect to the current
value fi,j on the original graph G. Variables ai,j and bi,j denote the value of flow
increase and decrease of arc (i, j) with respect to fi,j , respectively. The objective
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function expresses the cost of modifying the flow by one unit in the network.
Recall that the information concerning the current strategy vector S (capacities
and flows) is recorded into the parameters di,jF and di,jB .

Constraints (i) express flow conservation at each node in the network when
increasing (if ”+” is selected in the right-hand-side of the constraint) or decreas-
ing (if ”−” is selected in the right-hand-side of the constraint) the overall flow
by one unit.

Constraints (ii) express flow modification on each arc as the difference be-
tween increase and decrease.

A feasible solution to the linear program (5) defines a set of arcs such that,
modifying their flows according to the values ai,j and bi,j , the overall flow in-
creases (if ”+” is selected) or decreases (if ”−” is selected).

Proposition 3. Given a non-poor strategy vector S, linear program (5) has
either a finite optimal solution or no solution.

Proof. We show the proof for the case in which ”+” is selected in problem (5),
the other case being perfectly symmetric.

Note that if no path exists from the source to the sink in Gr(F(S)), problem
(5) is infeasible, which means that the flow cannot be increased anymore. Oth-
erwise, (5) always admits a feasible solution. Suppose now by contradiction that
problem (5) is unbounded. Then, there exists a set E of arcs such that either
ai,j or bi,j goes to infinity. With no loss of generality, we can express these values
as ai,j = ai,jM and bi,j = bi,jM , where M is arbitrarily large. If the problem is
unbounded, it means that∑

(i,j)∈E

ai,jd
i,j
F +

∑
(i,j)∈E

bi,jd
j,i
B < 0. (6)

However, even if some variables go to infinity, the net flow increase from s to
t is 1, due to constraints (i) written for s and t. As a consequence, there must
be at least one S and F(S) on G that allow increasing by ε the flow on all arcs
(i, j) ∈ E such that, (i, j) ∈ EF ∩ E in Gr, and decrease by ε the flow on all
arcs (i, j) ∈ E such that (j, i) ∈ EB ∩ E in Gr. In this case one would get a new
flow having the same value F (S), but the transportation-agent would increase
its profit, because of (6). However, this can only occur if S is a poor strategy. ut

The dual of linear program (5) is:

max ±(τt − τs)
s.t.

(i) τj − τi ≤ di,jF , ∀(i, j) ∈ E
(ii) τi − τj ≤ dj,iB , ∀(i, j) ∈ E

τi ∈ R, ∀i ∈ V

(7)

We note that the dual (7) can be interpreted as a shortest path problem on
the residual graph. In fact, for each arc (i, j) ∈ E , there is a pair of constraints
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(i) − (ii). Now associate with each (i, j) ∈ E a forward edge (i, j) ∈ EF and
a backward edge (j, i) ∈ EB , having weights di,jF and dj,iB , respectively. More
precisely, if we are interested in increasing the network flow at minimum cost,
the dual objective function is τt − τs, and hence, viewing variables τi as node
potentials (see [9, p.26]), linear program (7) is exactly the problem of finding the
shortest path from s to t on the residual graph. Viceversa, if we wish to decrease
network flow maximizing the saving, then the dual objective function becomes
τs − τt, and the problem is therefore to find the shortest path from t to s on the
residual graph. In both cases, the optimal solution to (5) is specified by a path,
and the length of the path on the residual graph equals the cost of modifying by
one unit the flow throughout the network. This justifies the following definitions.

Definition 8. Increasing path
Given a non-poor strategy vector S and a maximum flow vector F(S), an in-
creasing path is a path P in Gr(F(S)) from the source node s to the sink node
t.

In fact, consider a strategy vector S and the corresponding maximum flow vector
F(S). If one increases the flow on the arcs of G corresponding to forward arcs
in Gr by the amount q, and decreases the flow on the arcs of G corresponding
to backward arcs in Gr by the same amount q, we obtain a new strategy S ′
such that F (S ′) = F (S) + q. The greatest flow increase that can be achieved
using a certain increasing path P is θ = min{ri,jF , ri,jB : (i, j) ∈ P}. Denoting
forward and backward arcs in P as P+ and P− respectively, the cost cost(P ) of
increasing the flow by one unit using an increasing path P ∈ P is given by:

cost(P ) =
∑

(i,j)∈P+

di,jF +
∑

(i,j)∈P−
di,jB (8)

Note that such increasing operation entails adjusting the capacities of the arcs so
that the resulting strategy vector is also non-poor. Of course, if t is not reachable
from s on Gr, then no increasing path exists and hence no flow increase can be
carried out.

Symmetrical considerations hold if we want to decrease the flow on G.

Definition 9. Decreasing path
Given a non-poor strategy vector S and a maximum flow vector F(S), a decreas-
ing path is a path P̄ in Gr(F(S)) from the the sink node t to the source node
s.

Again, decreasing by q the flow on the arcs of G corresponding to backward
arcs in Gr, and increasing by the same amount q the flow on the arcs of G
corresponding to forward arcs in Gr, we obtain a new strategy S ′ such that
F (S ′) = F (S)− q. The greatest flow decrease that can be achieved using a path
P̄ is again given by θ̄ = min{ri,jF , ri,jB : (i, j) ∈ P̄}.

Denoting forward and backward arcs in P̄ as P̄+ and P̄− respectively, the
saving sav(P ) attained from decreasing the flow by one unit using a decreasing
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path P̄ is given by:

sav(P̄ ) = −

 ∑
(i,j)∈P̄+

di,jF +
∑

(i,j)∈P̄−
di,jB

 (9)

The decreasing operation entails adjusting the capacities of the arcs so that
the resulting strategy is still non-poor. If s is not reachable from t on Gr, then
no decreasing path exists and hence no flow decrease can be carried out, which
obviously occurs only when F (S) = 0.

In any case, finding the most profitable increasing or decreasing path consists
in solving a shortest path problem, and can be therefore done in polynomial time.
Moreover, notice that if P ∗ and P̄ ∗ are the optimal increasing and decreasing
paths respectively, one has that cost(P ∗) ≥ 0 and sav(P̄ ∗) ≥ 0.

3.3 Example

Consider the network G(V, E), displayed in Fig. 4, composed of the node set
V = {s, 1, 2, 3, 4, t} and the arc set E = {a, b, c, d, e, f, g}, belonging to a single
transportation-agent. For each arc, the values [q

i,j
, qi,j ] and ci,j are reported. We

assume a customer-agent’s reward π = 215, smaller than the cost of a longest
path, which equals 220. In order to increase the flow, an increasing path P such
that cost(P ) ≤ 215 has to be found.

s t

1

2

3

4

[1,
5]

100

[1,
5]

100

[1, 5]

20

[1, 5]

20

[1
, 5

]

10

[1, 5]

(100)

[1, 5]
100

Fig. 4. A single transportation-agent network expansion game

Consider the initial strategy vector S0 = S described in Fig. 5(a). The value
of the maximum flow that circulates in the network at zero cost is F (S0) = 2. The
only profitable way to increase the flow in the network is to use the increasing
path P = ((s, 2), (2, 3), (3, t)) with cost cost(P ) = 210 ≤ π. The capacity of arcs
(s, 2) and (3, t) is increased by 4 units, while the capacity of (2, 3) is increased
by 3 units. In fact, notice that for arc (2, 3) the first unit increase is free (since
q

2,3
= 1). It yields the new strategy S1 = (1, 5, 1, 4, 1, 5, 1) (see Figure 5(b)) with

F (S1) = 6 and cost 830. Let us remark that path P ′ = (s, 2), (2, 4), (4, t) is not
profitable as cost(P ′) = 220 > π.
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(a) Strategy S0: Flow at zero cost
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(b) strategy S1

Fig. 5. Flow variation in the network of Fig.4

4 The Multi Transportation-agents Case

In what follows, we extend some of the concepts reviewed for the single-agent
case to the multi-agent case. We first introduce a multi-agent residual graph,
then use it to define agent-specific increasing and decreasing paths, and finally
we characterize Nash equilibria.

In a NEG involving several transportation-agents, any agent Au may increase
(or decrease) its arc capacities if it improves its profit Zu. Since Am+1 can never
unilaterally improve its profit Zm+1 (see proposition 2), the focus is only on
transportation-agents. Therefore, for simplicity in this section we use the term
agent to refer to a transportation-agent, unless otherwise specified.

4.1 Multi-agent residual graph

In the multi-agent case, we define a multi-agent residual graph such that the
arcs have the same residual capacities as in the single-agent case, but different
residual costs, as they now depend on the considered agent Au.

Definition 10. Multi-agent residual graph
Given a NEG instance defined by a MAN < G,Q,Q, C,A, π >, a non-poor strategy
vector S ∈ Snp, a flow vector F(S), a multi-agent residual graph GAr (F(S)) =
(V, EAF , EAB ) is defined as follows. For each arc (i, j) ∈ E, there are two arcs,
namely a forward arc (i, j) ∈ EAF and a backward arc (j, i) ∈ EAB . The for-

ward arc (i, j) (backward arc (j, i), resp.) is associated with a cost vector ∆i,j
F =

(δi,j,uF )u=1,...,m (∆j,i
B = (δj,i,uB )u=1,...,m,resp.) and the residual capacity ri,jF (rj,iB ,

resp.). The equations that give the residual capacities of forward and backward
arcs are identical to those of the single-agent case, i.e.:

◦ ri,jF = qi,j − qi,j if fi,j = qi,j(≥ qi,j) or ri,jF = q
i,j
− fi,j if fi,j < q

i,j
;

◦ rj,iB = qi,j − qi,j if fi,j = qi,j(≥ qi,j) or rj,iB = fi,j if fi,j < q
i,j

.

The cost vectors are calculated as follows:
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◦ ∆i,j
F :

• if 0 ≤ fi,j < q
i,j

, then δi,j,uF = 0;

• if q
i,j
≤ qi,j = fi,j < qi,j , then δi,j,uF = ci,j whether (i, j) ∈ Eu, +∞

otherwise;
• if fi,j = qi,j , then δi,j,uF = +∞;

◦ ∆j,i
B :

• if fi,j = 0, then δj,i,uB = +∞;

• if 0 < fi,j ≤ qi,j , then δj,i,uB = 0;

• if q
i,j

< qi,j = fi,j ≤ qi,j , then δj,i,uB = −ci,j whether (i, j) ∈ Eu, 0

otherwise.

The residual costs still reflect the possibility to use forward and backward
arcs in order to increase or decrease the flow. An arc having residual cost equal
to +∞ can indeed be discarded from the residual network.

For forward arcs, a cost δi,j,uF = ci,j reflects the fact that the arc belonging
to agent Au can have its flow locally increased at cost ci,j by expanding qi,j (i.e.,
qi,j < qi,j). A cost of +∞ occurs if either the arc belongs to agent Au and it
is no longer possible to increase the flow (i.e., fi,j = qi,j), or the arc does not
belong to agent Au and it is not possible to increase the flow at zero cost (i.e.,
q
i,j
≤ fi,j ≤ qi,j). A forward arc having cost equal to 0 models the fact that

one can increase the flow with zero cost since the arc (i, j) is not saturated (i.e.,
0 ≤ fi,j < qi,j), no matter if the arc belongs to the agent or not. For a non-poor
strategy vector, this can only occur when qi,j = q

i,j
.

Similarly, a backward arc having null cost indicates that the flow in the
corresponding arc of G can be decreased but this brings no benefit, since the
arc capacity cannot be decreased. If the arc belongs to agent Au, this happens if
one can decrease the flow (fi,j 6= 0) with no cost (i.e., 0 < fi,j ≤ qi,j). If the arc

does not belong to agent Au, this happens as long as we can decrease the flow
(fi,j 6= 0). A cost −ci,j reflects the fact that Au can locally make a saving ci,j
by decreasing qi,j . This occurs when the arc (i, j) belongs to Au, it is saturated
(i.e., fi,j = qi,j) and the capacity can still be decreased (i.e., qi,j > q

i,j
). Finally,

setting the cost to ∞ models the impossibility of using this arc to decrease the
flow (i.e., fi,j = 0). As the definition of the residual capacities in GAr (F(S))
is the same as for Gr(F(S), the notions of an increasing and decreasing path
remain valid (see definitions (8) and (9)). An increasing or decreasing path still
reflects a way to increase (decrease, resp.) the flow by modifying the capacity of
the arcs of the path. However, as the arcs may now belong to different agents,
their cost now depends on the agent considered.

4.2 Increasing the flow profitably

An augmenting path P from s to t in GAr (F(S)) consists of a set of forward and
backward arcs P = {P+, P−} such that, by simultaneously increasing qi,j by
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one unit ∀(i, j) ∈ P+ and decreasing qi,j by one unit ∀(i, j) ∈ P−, the overall
flow increases by one unit. The cost of such modification is:

costu(P ) =
∑

(i,j)∈P+

δi,j,uF +
∑

(i,j)∈P−
δi,j,uB (10)

Let us now introduce the notion of a profitable increasing path.

Definition 11. Profitable increasing path
Given a non-poor strategy vector S and a maximum flow vector F(S), a prof-
itable increasing path is a path P in GAr (F(S)) from the source node s to
the sink node t such that, for every Au, the expansion cost is strictly lower
than the payoff, i.e., costu(P ) < wuπ.

4.3 Decreasing the flow profitably

A decreasing path P̄ in GAr (F(S)) from t to s consists of a set of forward and
backward arcs P̄ = {P̄+, P̄−} such that by simultaneously increasing qi,j by one
unit ∀(i, j) ∈ P̄+ and decreasing qi,j by one unit ∀(i, j) ∈ P̄−, it is the overall
flow decreases by one unit. The saving induced by such a modification depends
on the considered agent and can be defined as follows:

savu(P̄ ) = −

 ∑
(i,j)∈P̄+

δi,j,uF +
∑

(i,j)∈P̄−
δi,j,uB

 (11)

Considering a transportation-agent Au, the saving savu(P ) generated by de-
creasing the flow by one unit through a decreasing path P is defined as follows.

Definition 12. Profitable decreasing path
Given a non-poor strategy vector S and a maximum flow vector F(S), a prof-
itable decreasing path is a path P̄ in GAr (F(S)) from the sink node t to the
source node s such that, for every agent Au, the saving is greater than the
reward loss, i.e.,

savu(P̄ ) ≥ wuπ.

With no loss of generality we can make the realistic assumption that any agent
Au making no loss or gain (i.e., such that savu(P̄ ) = wuπ) will not participate
in any flow increase/decrease.

Let us consider the strategy depicted in the example of figure 2(c). The
residual graphs of agents A2 and A1 corresponding to this strategy are given in
figures 6(a) and 6(b), respectively. For A2 (dotted arcs), the cost of the shortest
path from D to A being equal to +∞, there is obviously no existing profitable
decreasing path. In contrast, for A1 (plain arcs), the shortest path from D to A
having a length of −65 (path D-B-C-A) and leading so to a saving 65 greater
than 60 (part of reward allocated to A1), there exists a decreasing profitable
path (i.e., the flow is not stable).
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Fig. 6. Residual graphs for strategy S2 of figure 2(c)

4.4 Stable strategies

We refer to the set of increasing and decreasing paths in GAr (F(S)) as PA and
P̄A, respectively.

Proposition 4. Nash Equilibrium strategy
Given a non-poor strategy vector S and the multi-agent reduced graph GAr (F(S)),
S is a Nash Equilibrium if and only if:

– ∀P ∈ PA :
@Au ∈ A such that costu(P ) < wuπ; (12)

– and ∀P̄ ∈ P̄A :
@AuinA such that savu(P̄ ) ≥ wuπ. (13)

Proof. From Proposition 2 and Corollary 1, the customer-agent Am+1 cannot
unilaterally increase the value of the flow. Therefore, only the case of transportation-
agents is of interest. Consider a strategy vector S and a transportation-agent Au.
If S is poor, then S is not a Nash equilibrium. If S is non-poor, Au can only
improve its situation by either increasing or decreasing the flow, and S is not
stable. If it is possible, it means that there exists a profitable, either increasing
(P ) or decreasing (P̄ ) path, in GAr (F(S)). On the one hand, if such a profitable
increasing path P exists, then it will mean that costu(P ) < wuπ which contra-
dicts Condition (12). On the other hand, if a decreasing profitable path P̄ exists,
then savu(P̄ ) ≥ wuπ, which is in contradiction with Condition (13). ut

4.5 Complexity issues

Finding a Nash equilibrium that maximizes the flow in the network in the special
multi-agent case where each arc is managed by a specific agent was proved to be
polynomial by Chaabane et al. in [7]. Finding a Nash equilibrium that maximizes
the flow in the network when the profit sharing has been predefined is known to
be NP-hard in the strong sense (see [6]). The proof was based on a reduction from
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3-Partition, which assumed an equal sharing of the reward among the agents.
We prove below that also the problem in which sharing coefficients have to be
decided is NP-hard in the strong sense.

Proposition 5. Problem MaxNash is strongly NP-hard.

Proof. Let us consider the decision variant of MaxNash: is it possible to find a
stable strategy vector S and a corresponding reward sharing policy such that
F (S) > ϕ, ϕ being an arbitrary integer value? The proof is based on a reduction
from 3-Partition problem, which is known to be NP-complete in the strong sense
[15]. A 3-partition problem consists in deciding whether a set ζ = {a0, . . . , aK−1}
of K = 3k positive integers, such that

∑K−1
l=0 al = kB and al ∈]B/4, B/2], can be

partitioned into k subsets ζ1, . . . , ζk such that the sum of integers in each subset
equals B (note that, due to the bounds on the integer values, |ζi| = 3 in any
YES-instance). Obviously, MaxNash is in NP since, given a strategy vector S,
F (S) can be determined in polynomial time using classical Max-Flow algorithms.
From a 3-partition problem instance, we build up a network G with kK arcs and
K + 1 nodes. The network considers k agents. An agent Au ∈ A = {A1, . . . , Ak}
owns K arcs. The tail of an arc ei is Vi divK , its head is V(i divK)+1. Between
any nodes Vi divK and Vi divK+1, there are k parallel arcs, indexed from i to
(i + K) step k, each of them belonging to a specific agent: arc ei belongs to
Ai divK . The cost of arc ei is cei = aimodK . In other words, for each positive
integer al ∈ ζ, we define k parallel arcs with same head and tail, maximum
capacity qei = 1 and cost al. The total reward is set to π = (B + ε)k, ε being
an arbitrary small positive value. In addition, an extra path from source node
V0 to sink node VK is considered. It consists of k arcs starting from node V0,
each arc belonging to a specific agent Au ∈ A, having capacity qi,j ∈ [0, 1] and
cost ci,j = B. An illustration of this reduction is provided in Figure 7 with
ζ = {7, 7, 7, 7, 8, 8, 9, 9, 10}, k = 3 and B = 24. We want to establish whether a
stable strategy exists having flow value greater or equal to ϕ = k + 1. We first
show that a feasible MaxNash solution can be associated with a YES-instance
of 3-Partition. First, it should be observed that the maximum flow value in the
MaxNash instance is k + 1 (one unit of flow traverses every arc). Consequently,
in any feasible solution, the extra path is also traversed by one unit of flow and,
since this path must be profitable, it enforces wu = 1/m. One should now find k
profitable increasing paths using the remaining part of the network, respecting
the constraint that costu(P ) < B + ε, ∀P . Therefore, any profitable path will
necessarily traverse 3 arcs per agent such that the sum of the expansion costs of
these arcs equals B, which specifies the solution to the 3-Partition instance. Let
us consider now a NO-MaxNash Instance. Clearly, as the maximum flow equals
k + 1, there is not any Nash equilibrium with such a flow value. It means that
there does not exist any path P such that costu(P ) < B + ε, which implies the
infeasibility of the 3-Partition instance. ut
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Fig. 7. Reduction from 3-PARTITION with ζ = {7, 7, 7, 7, 8, 8, 9, 9, 10}, k = 3 and
B = 24

5 Mathematical formulation

In this section, we show how Proposition 4 can be exploited to solve the problem.
We resume mathematical formulation (2) of section 2, but we are now going
to explicitly specify the constraints that a feasible solution must be a Nash
equilibrium. As in (2), variables qi,j indicate the capacity and fi,j the flow in
arc (i, j) respectively, while F is the value of the flow. The first four constraint
sets (i)−−(iv) are identical to (2), and express flow conservation and capacity
limitations. Thereafter, we must add the constraints that the feasible solution
be a Nash equilibrium. To this aim, from Proposition 4 we require that no
profitable decreasing path P̄ exists in GAr (F(S)), as dictated by condition (13) of
proposition 4. In other words, for all decreasing paths P̄ on the residual graph,
the saving savu(P̄ ) expressed by (11) must be smaller than the missed reward
wuπ:

Max F −
∑
∀(i,j)∈E ci,j(qi,j−q

i,j
)

1+
∑
∀(i,j)∈E ci,j(qi,j−qi,j)

s.c.

(i)
∑

(i,j)∈E+i
fi,j −

∑
(j,i)∈E−i

fj,i =

0 ∀i 6= s, t
F , i = s
−F , i = t

(ii) 0 ≤ fi,j ≤ qi,j , ∀(i, j) ∈ E
(iii) q

i,j
≤ qi,j ≤ qi,j , ∀(i, j) ∈ E

(iv)
∑

Au∈A wu = 1
(v) savu(P̄ ) < wuπ, ∀Au ∈ A, ∀P̄ ∈ GAr (F(S))

qi,j ∈ N, fi,j ∈ N, ∀(i, j) ∈ E
wu ∈ R, ∀Au ∈ A
F ∈ N

(14)
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Note that we do not consider condition (12) in the above formulation. Indeed,
it is implicitly taken into account in the optimization verse of the objective func-
tion. As the flow is maximized, the graph GAr (F(S∗)) associated to an optimal
strategy S∗ cannot contain any profitable increasing path without contradiction.

In the objective function, the second positive term (which is strictly lower
than 1) enforces a strategy vector to be non-poor as it minimizes the cost of
the additional capacity. Consequently, all the conditions that make S stable (see
proposition 4) are met.

Formulation (14) cannot be straightforwardly used, since the number of pos-
sible decreasing paths in the multi-agent residual graph can grow exponentially.
Moreover, since P̄A depends on the strategy, constraints (v) are clearly non-
linear. The remainder of this section focuses on the linearization of these con-
straints. More precisely, we show how to express savu(P̄ ) using a finite number
of primal-dual constraints.

First of all, let us introduce the new binary variables xi,j and yi,j such that
xi,j = 1 (yi,j = 1, resp.) if the capacity qi,j of an arc (i, j) ∈ E can be increased
(decreased resp.) and 0 otherwise. We also introduce the binary variables αi,j

and βi,j such that αi,j = 1 (βi,j = 1, resp.) if flow on (i, j) ∈ E can be increased
at zero cost (decreased at zero saving, resp.), 0 otherwise.

Variables xi,j and yi,j are linked with the other variables through the follow-
ing linear constraints, to be added into the MILP formulation:

xi,j ≤ qi,j − qi,j ≤ (qi,j − qi,j)xi,j , ∀(i, j) ∈ E (15)

yi,j ≤ qi,j − qi,j ≤ (qi,j − qi,j)yi,j , ∀(i, j) ∈ E (16)

Let us now consider variables αi,j and βi,j . Since αi,j = 1 must imply that
the flow on arc (i, j) can be increased at zero cost, the following constraints are
stated:

(xi,j −αi,j)qi,j + (1− xi,j)qi,j ≤ fi,j ≤ (1−αi,j)qi,j − εxi,j + q
i,j
αi,j , ∀(i, j) ∈ E

(17)
where ε > 0 is a suitable small integer. Similarly, variables βi,j are linked with
the other variables by the following constraints:

βi,jε+ (q
i,j

+ ε)yi,j ≤ fi,jfi,j ≤ βi,jqi,j + yi,jqi,j ,∀(i, j) ∈ E (18)

As mentioned above, only non-poor strategies are of interest. For this reason,
we add the constraints:

αi,j ≤ xi,j ,∀(i, j) ∈ E (19)

Note that (19) forbids the combination αi,j = 1 and xi,j = 0, which corre-
sponds to the case where 0 ≤ fi,j < q

i,j
, and qi,j = qi,j , which is a poor strategy

since arc (i, j) is not full (fi,j < q
i,j

) while the capacity is set to its maximum

value.
yi,j + βi,j ≤ 1,∀(i, j) ∈ E (20)
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Similarly, we forbid the combination βi,j = 1 and yi,j = 1. This case corre-
sponds to 0 < fi,j ≤ q

i,j
and qi,j > q

i,j
, which means that the arc (i, j) is not

full while its capacity is greater than its minimal value (a poor strategy).
We now want to express the cost vectors as a function of the actual strategy.

To this aim, we let:

δi,j,uF = ci,j − (ci,j −M)(1− xi,j)− ci,jαi,j , ∀(i, j) ∈ E ∩ Eu, ∀Au ∈ A (21)

δi,j,uF = M(2− xi,j − αi,j) , ∀(i, j) ∈ E \ Eu, ∀Au ∈ A (22)

δj,i,uB = (1− βi,j − yi,j)M − ci,jyi,j , ∀(i, j) ∈ E ∩ Eu, ∀Au ∈ A (23)

δj,i,uB = (1− βi,j − yi,j)M , ∀(i, j) ∈ E \ Eu, ∀Au ∈ A (24)

The main idea of our MILP model lies in the determination of savu(P ) in
equation (v) by computing the shortest decreasing path in terms of cost in the
residual network GAr (F(S)).

To compute savu(P ), we use primal-dual constraints. Given a residual graph
GAr (F(S)), the primal constraints make use of node potentials tuj . Since the dual
of a shortest path is the problem of sending one unit of flow at minimum cost
(i.e., maximum saving), we let ϕu

i,j denote a binary variable such that ϕu
i,j = 1 if

one unit of flow circulates in the residual network associated to agent Au from
t to s. Hence, we can write the following constraints.

tuj − tui ≤ δ
i,j,u
F , ∀(i, j) ∈ EAF , ∀Au ∈ A (25)

tuj − tui ≤ δ
i,j,u
B , ∀(i, j) ∈ EAB , ∀Au ∈ A (26)

∑
(i,j)∈EAF ∪EAB

ϕu
i,j −

∑
(i,j)∈EAF ∪EAB

ϕu
j,i =

0 ∀i 6= s, t
−1 , i = s
1 , i = t

, ∀i ∈ V, ∀Au ∈ A (27)

From duality, the length of a path in the residual graph is always greater or
equal to the min-cost flow, so we obtain the following equations (where 0 and
n+ 1 stand for the source and sink vertices, respectively):

tu0−tun+1 ≥
∑

(i,j)∈EAF

ϕu
i,jδ

i,j,u
F +

∑
(i,j)∈EAB

ϕu
i,jδ

j,i,u
B , ∀Au ∈ A (28)

The right-hand-side of (28) contains products of two variables, namely ϕu
i,jδ

i,j,u
F

and ϕu
i,jδ

j,i,u
B . Fortunately, since ϕu

i,j is a binary variable, both products can be
easily linearized using standard techniques.

Finally, as tu0−tun+1 is equal to −savu(P ), the absence of profitable decreasing
paths can be expressed as:

tun+1 − tu0 < wuπ, ∀Au ∈ A (29)
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The complete MILP model involves a polynomial number of variables and
constraints with respect to the number of nodes and the number of transportation-
agents. Although the model is rather huge, medium instances can be efficiently
solved using a standard MILP solver, as discussed in the next Section.

6 Experimental results

The previous MILP formulation was implemented using the C++ API for GUROBI
Optimization 6.0.0. The algorithm performance was evaluated on a PC with
Linux Ubuntu server 12.04, 8 GB of RAM and a Xeon E5-1650 processor. In the
following sections, we focus on the generation of the instances and provide an
analysis of the experimental results.

6.1 Benchmark instances

Since no standard benchmark instance exists for our problem, we built our test
set using the RanGen1 generator [10].

The first and the last nodes of the generated networks are considered as
the source and sink nodes, respectively. In the generated networks, the number
of nodes n varies in {10, 50, 70} and the number of arcs is produced by fixing
the value of the Order Strength (OS) parameter of the generator. Recall that
the OS parameter represents the number of precedence relations divided by the
theoretical maximum number of precedence relations in the network. For each
value of n, our instances were generated with an Order Strength value set to 0.5.

The number of arcs varies between 20 and 450 in our instances, depending
on the number of vertices. Each arc is randomly assigned to one transportation-
agent. For each instance, two cases were considered, either m = 2 or m = 5.
For each arc (i, j), minimal capacities were set to 0 and maximal capacities to
qi,j = q

i,j
+ rand(20), where rand(20) is a uniformly random integer number

between 0 and 20. The expansion costs ci,j were computed as random integers
in the interval [5, 30].

The reward π given by the customer agent is determined with respect to the
longest path length in G. It is a fraction α (with α ∈ {0.1, 0.3, 0.5, 0.7, 0.9}) of the
cost of the longest path from s to t in G when expansion costs (for the agent who
owns the arc) are taken as arc costs. Such length (expressed by equation (10))
represents the theoretically most expensive path that can be used to increase
the flow.

Hence, 6 sets of benchmark scenarios were obtained by combining the number
of nodes n ∈ {10, 50, 70} and the number of transportation-agents m ∈ {2, 5}.
For each scenario, 7 network instances have been generated and, for each of them,
the five different reward values (specified by parameter α) were considered, which
gives us a total of 210 instances of MaxNash.

In our experiments, for each network instance we subsequently compute the
optimal solutions for the different values of α, from α = 0.1 to α = 0.9, using the
optimal solution obtained for a certain α as an initial feasible solution for the
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next step. This allows considerable time savings (see Section 6.2). As minimal
capacities are set to 0, we consider the zero flow as an initial feasible solution
for the first step (α = 0.1). The time limit to solve each instance of MaxNash
has been fixed to 1800 seconds.

In our model, the sharing policy w is itself part of the decision. Anyhow, the
same MILP can obviously handle the special case where a sharing policy is pre-
defined, simply fixing the m variables wu. This allows an interesting comparison
between such fixed sharing policies and the policy prescribed by the solution to
MaxNash, called MaxNash policy.

In our experimental study, we consider two ’reasonable’ sharing policies. The
first is the equitable policy, that consists in equally splitting the reward among
the m agents, i.e., wu = 1/m. The second policy is based on the agents’ costs
and expansion capability, and is denoted as cost-weighted policy. It consists in

defining the share coefficient of agent Au as wu =

∑
(i,j)∈Eu ci,j×(qi,j−qi,j)∑
(i,j)∈E ci,j×(qi,j−qi,j) . Such

policy prioritizes the transportation-agents having both high expansion cost and
high expansion capacities.

6.2 Results

In what follows, we let F ∗ denote the value of the optimal solution to MaxNash,
and Fmax the value of the overall maximum flow , attained when all capacities
are at their maximum value.

The ratio F ∗/Fmax is linked to the price of stability [2]. More precisely,
F ∗/Fmax is the reciprocal of the price of stability, since ours is a maximization
problem. We preferred to report F ∗/Fmax rather than its reciprocal, since it
allows a more effective comparison among the various scenarios. Notice that this
ratio attains values ranging between 0 (unlimited price of stability) and 1 (no
price to be paid, i.e., there is a strategy having flow value Fmax which is also a
Nash equilibrium).

In all forthcoming tables, the figures represent averages over the 7 network
instances of each scenario. Tables 1 and 2 report the results obtained for 2
and 5 transportation-agents respectively, for each of the three sharing policies
considered. For each set of instances, we report the average ratio F ∗/Fmax and
the cumulative average CPU time (in seconds), i.e., for each value of α, it is the
time required to solve all instances of MaxNash problem up to that value of α.

A number of interesting facts can be observed from Tables 1 and 2. Correctly,
F ∗ increases with α, since as the reward grows, the agents have more incentive
to increase the flow. However, it may be noted that even by giving a high reward,
in most cases the Nash flow will not reach the maximum flow. Moreover, with
the MaxNash policy, a high value of flow can be attained with a small reward.
The value of F ∗ sharply grows (for all sharing policies) when α exceeds 0.3. In
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Instances Equitable Cost-weighted MaxNash

n m α F ∗/Fmax Cumul CPU F ∗/Fmax Cumul CPU F ∗/Fmax Cumul CPU

10 2 0.1 0 0.28 0.000 0.22 0.000 0.33
0.3 0.025 0.52 0.220 0.38 0.478 0.87
0.5 0.623 0.67 0.683 0.56 0.888 0.97
0.7 0.837 0.75 0.861 0.65 0.968 1.01
0.9 0.946 0.82 0.928 0.72 0.986 1.07

50 2 0.1 0.011 93.48 0.019 228.28 0.034 883.82
0.3 0.607 1231.83 0.631 1447.04 0.767 1977.52
0.5 0.869 1800.07 0.989 2293.33 0.991 2805.71
0.7 0.899 2167.24 0.993 2621.11 0.998 3135.31
0.9 0.998 2339.22 0.993 2816.74 0.999 3299.27

70 2 0.1 0.000 87.09 0.000 98.27 0.000 1046.80
0.3 0.029 1009.95 0.341 1056.75 0.540 2846.81
0.5 0.397 1986.36 0.599 1964.17 0.872 4113.68
0.7 0.400 2499.54 0.724 2567.12 0.998 5104.31
0.9 0.772 3127.01 0.808 3295.96 0.999 5163.11

Table 1. Ratio F ∗/Fmax and cumulative CPU time - 2 transportation-agents.

Instances Equitable Cost-weighted MaxNash

n m α F ∗/Fmax Cumul CPU F ∗/Fmax Cumul CPU F ∗/Fmax Cumul CPU

10 5 0.1 0.000 0.13 0.000 0.26 0.286 0.14
0.3 0.386 0.26 0.588 0.5 0.942 0.26
0.5 0.885 0.34 0.928 0.59 1.000 0.33
0.7 0.934 0.40 0.928 0.62 1.000 0.41
0.9 1.000 0.43 0.949 0.65 1.000 0.48

50 5 0.1 0.007 922.40 0.001 1012.53 0.123 1395.50
0.3 0.759 2229.88 0.737 2467.51 0.984 2195.99
0.5 0.995 2708.25 0.920 2840.55 1.000 2206.38
0.7 0.998 2934.40 0.997 2892.73 1.000 2206.69
0.9 0.998 3159.71 1.000 2937.28 1.000 2207.01

70 5 0.1 0.000 1652.41 0.000 1296.60 0.056 1461.89
0.3 0.292 3245.49 0.340 2698.96 0.577 2872.53
0.5 0.609 4187.90 0.690 3473.13 0.999 3349.28
0.7 0.723 4578.43 0.855 3949.06 1.000 3350.34
0.9 0.800 4905.73 0.999 4087.26 1.000 3350.86

Table 2. Ratio F ∗/Fmax and cumulative CPU time - 5 transportation-agents.
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particular, for the MaxNash policy, the value of F ∗ already exceeds 80% of the
maximum flow value as α ≥ 0.5.

In terms of cumulative average CPU time, we observe that the time needed
to solve the same problem for growing values of α is increasingly smaller, for
all considered sharing policies (i.e., the cumulative CPU time appears to be
a concave function of α). This is apparently due to the fact that the optimal
solution for the previous value of α is used as an initial feasible solution for the
current value of α, which significantly speeds up computation especially when
the previous optimal flow value is already very close to the optimal value for the
current value of α. This phenomenon is especially apparent for m = 5.

An interesting insight for the customer-agent is that it is not necessary to pay
the highest reward in order to get a large value of flow. In fact, depending on the
sharing policies, endowing 50% to 70% of the maximum reward may be enough
to get a flow larger than 80% of the overall maximum flow Fmax. Moreover, as
already observed, the reward needed to reach a given value of flow is smaller for
the MaxNash sharing policy than for the other policies.

MaxNash m = 2 m = 5

n α w1 w2 w1 w2 w3 w4 w5

10 0.1 0.50 0.50 0.31 0.36 0.19 0.03 0.11
0.3 0.70 0.30 0.15 0.20 0.34 0.12 0.19
0.5 0.57 0.43 0.08 0.10 0.42 0.19 0.22
0.7 0.61 0.39 0.12 0.10 0.13 0.18 0.47
0.9 0.53 0.47 0.04 0.17 0.22 0.06 0.51

50 0.1 0.50 0.50 0.14 0.17 0.18 0.15 0.36
0.3 0.50 0.50 0.18 0.19 0.20 0.21 0.22
0.5 0.59 0.41 0.11 0.11 0.12 0.12 0.54
0.7 0.61 0.39 0.08 0.08 0.08 0.09 0.67
0.9 0.63 0.37 0.06 0.06 0.07 0.07 0.74

70 0.1 0.50 0.50 0.08 0.16 0.14 0.10 0.53
0.3 0.50 0.50 0.14 0.16 0.13 0.13 0.44
0.5 0.44 0.56 0.16 0.13 0.16 0.13 0.43
0.7 0.67 0.33 0.09 0.09 0.12 0.09 0.61
0.9 0.61 0.39 0.07 0.07 0.06 0.07 0.73

Cost-weighted m = 2 m = 5

10 0.51 0.49 0.13 0.22 0.32 0.16 0.17
50 0.49 0.51 0.17 0.21 0.23 0.19 0.20
70 0.52 0.48 0.21 0.20 0.20 0.19 0.20

Equitable m = 2 m = 5

all n 0.5 0.5 0.2 0.2 0.2 0.2 0.2
Table 3. Reward coefficients for each transportation-agent.

Table 3 shows the optimum sharing coefficients obtained with the various
sharing policies. One may observe that in MaxNash, different agents get very
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different shares of the whole reward. In particular, when m = 5, there is often
one agent who gets a very large share of the reward.

Table 3 also shows that the sharing coefficients obtained with the cost-
weighted policy are not far from the equitable coefficients. In this sense, the
equitable or cost-weighted policies may be viewed as enforcing a higher degree
of fairness with respect to MaxNash. However, Table 4 shows that when con-
sidering absolute profits attained by the agents, the superiority of MaxNash
is apparent. In fact, even if the problem objective does not directly address the
maximization of the agents’ profits, one observes that in most cases the MaxNash
sharing policy leads to a significantly larger total profit for transportation-agents
than the other sharing policies. This feature is more apparent when the network
is larger. Moreover, from Tables 3 and 4 we also notice that even if equitable and
cost-weighted policies have similar sharing coefficients, their turnout in terms of
agents’ profit is very different. This suggests that the agents’ profit is quite sen-
sitive to reward coefficients, and hence, from a practical viewpoint, it is worth
to optimally determine such coefficients, i.e., solve problem (14).

7 Conclusions

In this paper, a Multi-Agent Network expansion game has been considered where
various transportation-agents control the capacity of the arcs at a given cost,
and where a customer-agent shares a reward among the transportation-agents,
which is proportional to the transshipped flow. We show that finding a Nash
Equilibrium and a sharing policy that jointly maximize the flow is NP-Hard
in the strong sense. To address this problem, we provide a MILP formulation
that solves the problem, exploiting a graph-theoretic characterization of Nash
equilibria. The formulation uses a polynomial number of primal-dual constraints.
Although the MILP model is not trivial and quite large, we could solve instances
with up to 70 nodes, 200 arcs, and 5 agents in reasonable time. Our experiments
show that when the customer-agent is free to allocate the rewards among the
agents, she can attain a large value of transshipped flow with a relatively small
value of total reward.

Additional research efforts are needed for investigating particular cases with
remarkable graph topology or agent structure. Moreover, taking advantage of
the notions of profitable increasing or decreasing paths, more effective exact
algorithms might be designed. Finally, as the transportation-agent satisfaction
is not considered in this research, it might also be interesting to analyze other
optimization problems, as for instance finding the most profitable stable strategy
for one specific agent under the constraint that it provides a given flow value.
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Instances Equitable Cost-weighted MaxNash

n m α F ∗/Fmax Z F ∗/Fmax Z F ∗/Fmax Z

10 2 0.1 0.000 0.00 0.000 0.00 0.000 0.00
0.3 0.025 3.64 0.220 29.88 0.478 37.16
0.5 0.623 181.40 0.683 210.20 0.888 221.60
0.7 0.837 443.52 0.861 494.76 0.968 489.32
0.9 0.946 753.32 0.928 739.04 0.986 759.92

average 276.38 294.78 301.60

50 2 0.1 0.011 11.09 0.019 15.84 0.034 21.18
0.3 0.607 1595.76 0.631 1629.47 0.767 2134.13
0.5 0.869 5957.73 0.989 6757.45 0.991 6701.18
0.7 0.899 9765.09 0.993 10890.51 0.998 10897.93
0.9 0.998 15040.56 0.993 15030.39 0.999 15078.72

average 6474.05 6864.73 6966.63

70 2 0.1 0.000 0.00 0.000 0.00 0.000 0.00
0.3 0.029 213.60 0.341 1905.12 0.540 3177.32
0.5 0.397 4668.40 0.599 7332.40 0.872 11924.80
0.7 0.400 7587.08 0.724 15277.48 0.998 21435.22
0.9 0.772 21035.40 0.808 23707.72 0.999 29475.05

average 6700.90 9644.54 13202.48

10 5 0.1 0.000 0.00 0.000 0.00 0.286 34.25
0.3 0.386 401.67 0.588 534.67 0.942 753.83
0.5 0.885 1477.92 0.928 1516.67 1.000 1598.17
0.7 0.934 2304.83 0.928 2281.33 1.000 2406.67
0.9 1.000 3200.50 0.949 3100.42 1.000 3224.67

average 1476.98 1486.62 1603.52

50 5 0.1 0.007 35.16 0.001 2.91 0.123 267.88
0.3 0.759 8927.31 0.737 9153.91 0.984 12135.56
0.5 0.995 23514.34 0.920 22434.35 1.000 23497.47
0.7 0.998 34673.50 0.997 34610.50 1.000 34647.66
0.9 0.998 45806.69 1.000 45858.22 1.000 45797.85

average 22591.40 22411.98 23269.28

70 5 0.1 0.000 0.00 0.000 0.00 0.056 254.03
0.3 0.292 7147.53 0.340 7921.59 0.577 13125.59
0.5 0.609 26269.13 0.690 29454.50 0.999 43403.97
0.7 0.723 46064.66 0.855 54803.50 1.000 63849.28
0.9 0.800 67561.38 0.999 84097.32 1.000 84271.28

average 29408.54 35255.38 40980.83
Table 4. Total agents’ profit.
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