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GENERAL-ORDER OBSERVATION-DRIVEN MODELS

By Tepmony Sim∗, Randal Douc† and François Roueff‡

Institute of Technology of Cambodia∗, Télécom SudParis† and Télécom
ParisTech‡

The class of observation-driven models (ODMs) includes the
GARCH(1, 1) model as well as integer-valued time series models such
as the log-linear Poisson GARCH of order (1, 1) and the NBIN-
GARCH(1, 1) models. In this contribution, we treat the case of
general-order ODMs in a similar fashion as the extension of the
GARCH(1, 1) model to the GARCH(p, q) model. More precisely, we
establish the stationarity and the ergodicity as well as the consistency
and the asymptotic normality of the maximum likelihood estimator
(MLE) for the class of general-order ODMs, under conditions which
are easy to verify. We illustrate these results with specific observation-
driven time series, namely, the log-linear Poisson GARCH of order
(p, q) and the NBIN-GARCH(p, q) models. An empirical study is also
provided.

1. Introduction. Since the introduction by Cox (1981), observation-
driven models (ODMs) have been receiving renewed interest in recent years.
These models are widely applied in various fields ranging from economics
(see Pindyck and Rubinfeld (1998)), environmental study (see Bhaskaran
et al. (2013)), epidemiology and public health study (see Zeger (1988);
Davis, Dunsmuir and Wang (1999); Ferland, Latour and Oraichi (2006)),
finance (see Liesenfeld and Richard (2003); Rydberg and Shephard (2003);
Fokianos and Tjøstheim (2011); Francq and Zakoian (2011)) and popula-
tion dynamics (see Ives et al. (2003)). The celebrated GARCH(1, 1) model
introduced in Bollerslev (1986) as well as most of the models derived from
this one are typical examples of ODMs; see Bollerslev (2008) for a list of
some of them. A list of contributions on this class of models specifically deal-
ing with discrete data includes Streett (2000); Davis, Dunsmuir and Streett
(2003); Heinen (2003); Ferland, Latour and Oraichi (2006); Fokianos, Rah-
bek and Tjøstheim (2009); Franke (2010); Fokianos and Tjøstheim (2011);
Henderson, Matteson and Woodard (2011); Neumann (2011); Davis and
Liu (2012); Doukhan, Fokianos and Tjøstheim (2012); Douc, Doukhan and
Moulines (2013); Fokianos et al. (2013); Christou and Fokianos (2014, 2015)
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and Douc, Roueff and Sim (2015).
ODMs have the nice feature that the computations of the associated (con-

ditional) likelihood and its derivatives are easy, the parameter estimation is
hence relatively simple, and the prediction, which is a prime objective in
many time series applications, is straightforward. However, it turns out that
the asymptotic properties of the maximum likelihood estimator (MLE) for
this class can be cumbersome to establish, except when they can be de-
rived using computations specific to the studied model (the GARCH(1, 1)
case being one of the most celebrated example). The literature concerning
the asymptotic theory of the MLE when the observed variable has Pois-
son distribution includes Fokianos, Rahbek and Tjøstheim (2009); Fokianos
and Tjøstheim (2011, 2012) and Wang et al. (2014). For a more general
case where the model belongs to the class of one-parameter exponential
ODMs, such as the Bernoulli, the exponential, the negative binomial (with
known frequency parameter) and the Poisson autoregressive models, the
consistency and the asymptotic normality of the MLE have been derived
in Davis and Liu (2012). However, the one-parameter exponential family is
inadequate to deal with models such as multi-parametric, mixture or mul-
tivariate ODMs (the negative binomial with all unknown parameters and
mixture Poisson ODMs are examples of this case). A more general consis-
tency result, yet not the asymptotic normality, has been obtained recently
in Douc, Doukhan and Moulines (2013). This general result allows the ob-
served process to admit various forms of distribution and to take values in
any Borel space, and allows the hidden process to assume values in any lo-
cally compact Polish space endowed with the associated Borel σ-field. This
result has later been extended and refined in Douc, Roueff and Sim (2015).
However, most of the results obtained so far have been derived only under
the framework of GARCH(1, 1)-type or first-order ODMs, yet less is known
for the GARCH(p, q)-type discrete ODMs, as highlighted as a remaining
unsolved problem in Tjøstheim (2015).

In this contribution, we consider among others (see Streett (2000); Heinen
(2003)) a general class of ODMs that is capable to account for several
lagged variables of both hidden and observation processes. Namely, we de-
velop theory and inference for the class of general-order ODMs parallel to
the GARCH(p, q) family, under the assumption of well-specified models.
For the development on the GARCH(p, q) model, see for example Francq
and Zakoian (2004, 2011) and for multivariate case, see Comte and Lieber-
man (2003). We extend the approaches introduced in Douc, Doukhan and
Moulines (2013) and later used in Douc, Roueff and Sim (2015) to estab-
lish the consistency of the MLE and the ergodicity for the models in this
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general context. These results can in principle be obtained by embedding
the studied model into the corresponding first-order one and then applying
the results obtained therein to the embedded model. By appropriate ad-
justments, the consistency of the MLE for the general-order ODM can be
derived. Yet for ergodicity, the generalized result seems not trivial; it turns
out that more general assumptions are required, compared to the usual first-
order ODMs. In either Douc, Doukhan and Moulines (2013) or Douc, Roueff
and Sim (2015), the ergodicity of the usual first-order ODMs is obtained by
showing the uniqueness of invariant probability measure for the hidden pro-
cess, which is by its own right a Markov chain. In these papers, showing
the existence of the invariant probability measure for the hidden process
relies on the Foster-Lyapunov-type assumption; however, for general ODMs
or embedded ones, this assumption may be replaced by the iterative Foster-
Lyapunov-type assumption instead (see Assumption (AG-4) of Section 3.4).
The asymptotic normality of the MLE is also investigated in this general set-
ting. In this study, we restrict our consideration to the special yet important
case where the current hidden state variable is expressed as a linear func-
tion with respect to its own past variables. This class is rich enough to cover
most of the familiar ODMs, such as the GARCH(p, q), the log-linear Pois-
son autoregression of order (p, q) and the NBIN-GARCH(p, q) models, and
other instances such as multi-parametric, mixture or multivariate ODMs. To
establish the asymptotic normality, we follow the classical approach by first
approximating the score function by the stationary version of it and then
developing the stationary score function around the true parameter through
a Taylor expansion. By appropriate assumptions, the central limit theorem
for Martingale difference applies and the stationary score function can then
be shown to be asymptotically Gaussian. Then assuming invertibility of the
asymptotic Fisher information matrix, the asymptotic normality follows. All
the results are presented under sufficient and easy-to-check conditions. As a
demonstration, they are then applied to the log-linear Poisson autoregres-
sion of order (p, q) and the NBIN-GARCH(p, q) models. Finally, we provide
an empirical study suggesting that in some circumstance higher-order model
may fit the data better than the first-order one if the class of ODMs is used.

This paper is structured as follows. Specific definitions and notation are
introduced in Section 2. Section 3 presents the main results of consistency
and asymptotic normality of the maximum likelihood estimator (MLE) as
well as ergodic solution for the model. We apply these results to some specific
models in Section 4. Numerical experiments is given in Section 5. Finally,
Section 6 contains the postponed proofs.
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2. Definitions and Notation. Let (X,dX) be a complete and separa-
ble metric space endowed with the associated Borel σ-field X and (Y,Y)
be a Borel space. Let (Θ,∆), the set of parameters, be a compact metric
space equipped with the metric ∆, {Gθ : θ ∈ Θ} be a family of probability
kernels on X × Y and p, q be two positive integers. The observation-driven
time series model can be formally defined as follows.

Definition 1. A time series {Yk : k ≥ −q+1} valued in Y is said to be
distributed according to an observation-driven model of order (p, q) (here-
after, ODM(p, q)) with parameter θ ∈ Θ if there exist a family of measurable
functions {(x1:p, y1:q) 7→ ψθy1:q

(x1:p) : θ ∈ Θ} from (Xp × Yq,X⊗p ⊗ Y⊗q) to
(X,X ) and a process {Xk : k ≥ −p+ 1} on (X,X ) such that for all k ∈ Z+,

Xk+1 = ψθYk−q+1:k
(Xk−p+1:k),

Yk+1 | Fk ∼ Gθ(Xk+1; ·),
(2.1)

where Fk = σ (X−p+1:k+1, Y−q+1:k) and u`:m := (u`, . . . , um) for ` ≤ m.
Moreover, we say that the model is dominated by some σ-finite measure ν
on (Y,Y) if for all x ∈ X, the probability kernel Gθ(x; ·) is dominated by ν.
In this case we denote by gθ(x; ·) its Radon–Nikodym derivative, gθ(x; y) =
dGθ(x;·)

dν (y), and we always assume that for all (x, y) ∈ X × Y and for all
θ ∈ Θ,

gθ(x; y) > 0 .

One of the most popular examples of this class is the general GARCH(p, q)
model introduced by Bollerslev (1986), where X = (0,∞), Y = R, Gθ(x; ·)
is the centered Gaussian distribution of variance x, the deterministic func-
tion ψθy1:q

(x1:p) = ω +
∑p

i=1 aixi +
∑q

i=1 biy
2
i and θ = (ω, a1:p, b1:q) with

ω > 0 and a1:p, b1:q ≥ 0. This model was then extensively studied by, for
example, Bougerol and Picard (1992); Francq and Zakoian (2004); Francq
and Zaköıan (2009); Lindner (2009); Francq and Zakoian (2011) and the
references therein. For other GARCH examples of this class, see Bollerslev
(2008).

Remark 1. When p = q = 1, then the ODM(p, q) defined by (2.1) col-
lapses to the first-order ODM considered in Douc, Doukhan and Moulines
(2013) and Douc, Roueff and Sim (2015). Note also that setting r :=
max(p, q) and defining ϕθ : Xr × Yr → X by, for all (x−r+1:0, y−r+1:0) ∈
Xr × Yr,

ϕθy−r+1:0
(x−r+1:0) := ψθy−q+1:0

(x−p+1:0),
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then the ODM(p, q) can be generally embedded in an ODM(r, r). Thus with-
out loss of generality, we can always assume that p = q.

The inference about the model parameter is performed by rely-
ing on the conditional likelihood of the observations (Y1, . . . , Yn) given
(X−p+1:0, Y−q+1:0) = (x−p+1:0, y−q+1:0) := z for an arbitrary z ∈ Xp × Yq.
The corresponding conditional density function with respect to ν⊗n is, under
parameter θ ∈ Θ, for all z = (x−p+1:0, y−q+1:0) ∈ Xp × Yq,

(2.2) y1:n 7→
n−1∏
k=0

gθ
(
ψθ〈y−q+1:k〉(x−p+1:0); yk+1

)
,

where, for any vector y0:k, the function ψθ〈y0:k〉 : Xp×Yq → X is successively
defined by, for all k ∈ Z+,

(2.3) ψθ〈y−q+1:k〉(x−p+1:0)

:= ψθyk−q+1:k

(
ψθ〈y−q+1:k−p〉(x−p+1:0), . . . , ψθ〈y−q+1:k−1〉(x−p+1:0)

)
with the convention, for 1 ≤ j ≤ p,

ψθ〈y−q+1:−j〉(x−p+1:0) := x−j+1.

Then, the corresponding (conditional) maximum likelihood estimator
(MLE) θ̂z,n of the parameter θ, with z = (x−p+1:0, y−q+1:0), is defined by

(2.4) θ̂z,n ∈ argmax
θ∈Θ

Lθz,n,

where

(2.5) Lθz,n := n−1
n−1∑
k=0

ln gθ
(
ψθ〈y−q+1:0, Y1:k〉(x−p+1:0);Yk+1

)
.

In this contribution, we investigate the convergence of θ̂z,n as n → ∞ for
some (well-chosen) value of z under the assumption that the model is well
specified and the observations are in a steady state. That is, we assume that
the observations {Yk : k ∈ Z+} are distributed according to P̃θ? with some
θ? ∈ Θ, where, for all θ ∈ Θ, P̃θ denotes the stationary distribution of the
observation-driven time series corresponding to the parameter θ. However,
whether such a distribution is well defined is not always obvious. Let us now
detail how this probability distribution can be obtained.
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For simplicity, we assume that p = q and that p ≥ 2 and let Z = Xp×Yp−1

and Z = X⊗p ⊗ Y⊗(p−1). Let Ψθ : Z × Y → Z be defined by, for all z =
(z1:2p−1) ∈ Z and y ∈ Y,

Ψθ
y(z) :=

(
z2, . . . , zp, ψ

θ
zp+1:2p−1,y(z1:p), zp+2, . . . , z2p−1, y

)
(2.6)

The function Ψθ is indeed measurable on (Z × Y,Z ⊗ Y). Moreover, for
any vector y1:k ∈ Yk, we define Ψθ〈y1:k〉 as a Z → Z function obtained by
the successive composition of Ψθ

y1
, Ψθ

y2
, ..., and Ψθ

yk
,

(2.7) Ψθ〈y1:k〉 = Ψθ
yk
◦Ψθ

yk−1
◦ · · · ◦Ψθ

y1
.

with the convention Ψθ〈y1:0〉(z) = z. By letting Zk = (Xk−p+1:k, Yk−p+1:k−1)
and observing that Fk = σ (Z0:k+1, Y0:k), Model (2.1) can be replaced by:
for all k ∈ Z+,

Zk+1 = Ψθ
Yk

(Zk),

Yk+1 | FZ,Yk ∼ Hθ(Zk+1; ·),
(2.8)

where, for all z = (z1:2p−1) ∈ Z,

(2.9) Hθ(z; ·) := Gθ(Πp(z); ·)

and, for all j ∈ {1, . . . , 2p − 1}, Πj(z) = zj . By this representation, the
ODM(p, p) is thus imbedded in an ODM(1, 1). This in principle allows us to
apply the same results obtained for the class of ODMs(1, 1) to the broader
class of ODMs(p, p). As an ODM(1, 1), the bivariate process {(Zk, Yk) : k ∈
Z+} is a Markov chain on the space (Z × Y,Z ⊗ Y) with transition kernel
Kθ satisfying, for all (z, y) ∈ Z× Y, A ∈ Z and B ∈ Y,

(2.10) Kθ((z, y);A×B) =

∫∫
1A×B(z′, y′)δΨθy(z)(dz

′)Gθ(Πp(z); dy
′).

Note also that, by itself, the process {Zk : k ∈ Z+} is a Markov chain on
(Z,Z) with transition kernel Rθ satisfying, for all z ∈ Z and A ∈ Z,

(2.11) Rθ(z;A) =

∫
1A(Ψθ

y(z))H
θ(z; dy) =

∫
1A(Ψθ

y(z))G
θ(Πp(z); dy).

Nevertheless, to apply known results to this embedded ODM(1, 1), some
generalizations are needed. First we assume that (Y, dY) is a locally compact,
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complete and separable space equipped with the metric dY. Then, since
(X, dX) is a locally compact, complete and separable space, this implies that
the space (Z, dZ) is also locally compact, complete and separable with the
metric dZ appropriately defined as a function of dX and dY so that Z is the
associated Borel σ-field. Throughout this paper, let us assume the following
ergodicity assumption.

(AG-1) For all θ ∈ Θ, the transition kernel Kθ of the complete chain admits a
unique stationary distribution πθ on Z× Y.

With this assumption, we can now define P̃θ. The following notation and
definitions will be used throughout the paper.

Definition 2. Under Assumption (AG-1), we denote by πθ1 and πθ2 the
marginal distributions of πθ on Z and Y, respectively, and by Pθ and P̃θ the
probability distributions defined respectively as follows.

a) Pθ denotes the extension of Pθ
πθ

on the whole line (Z× Y)Z.

b) P̃θ is the corresponding projection on the component YZ.

We also use the symbols Eθ and Ẽθ to denote the expectations corresponding
to Pθ and P̃θ, respectively. Moreover, for all θ, θ′ ∈ Θ, we write θ ∼ θ′ if and
only if P̃θ = P̃θ′ . This defines an equivalence relation on the parameter set
Θ and the corresponding equivalence class of θ is denoted by [θ] := {θ′ ∈
Θ : θ ∼ θ′}.

The equivalence relationship ∼ was introduced by Leroux (1992) as an
alternative to the classical identifiability condition.

For any probability distribution ξ on Z × Y, we denote by Pθξ the distri-

bution of the Markov chain {(Zk, Yk) : k ∈ Z+} with kernel Kθ and initial
probability mesure ξ.

3. Main Results.

3.1. Preliminaries. In well-specified setting, a general result on the con-
sistency of the MLE for a class of first-order ODMs has been obtained in
Douc, Doukhan and Moulines (2013). This result has been later extended in
Douc, Roueff and Sim (2015) to a wider class of first-order ODMs, but the
latter has been derived under a handy set of assumptions which appear to
be quite direct and easy when checking. The approach used to establish the
convergence of the MLE θ̂z,n in these references and in our contribution is
briefly described as follows.
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First, we establish that, as the number of observations n → ∞, the nor-
malized log-likelihood Lθz,n defined in (2.5), for some well-chosen z ∈ Z, can
be approximated by

n−1
n∑
k=1

ln pθ(Yk|Y−∞:k−1),

where pθ(·|·) is a P̃θ?-a.s. finite real-valued measurable function defined on
(YZ,Y⊗Z). To define pθ(·|·), we usually set, for all y−∞:1 ∈ YZ− , whenever
the following limit is well defined,
(3.1)

pθ (y1 | y−∞:0) =

 lim
m→∞

gθ
(

Πp(Ψ
θ〈y−m:0〉(z)); y1

)
if the limit exists,

∞ otherwise.

By (AG-1), the observed process {Yk : k ∈ Z} is ergodic under P̃θ? and
provided that

Ẽθ?
[
ln+ pθ(Y1|Y−∞:0)

]
<∞,

it then follows that

lim
n→∞

Lθz,n = Ẽθ?
[
ln pθ(Y1|Y−∞:0)

]
, P̃θ?-a.s.

Finally, we show that with probability tending to one, the MLE θ̂z,n even-
tually lies in a neighborhood of the set

(3.2) Θ? = argmax
θ∈Θ

Ẽθ?
[
ln pθ(Y1|Y−∞:0)

]
,

which only depends on θ?, establishing that

(3.3) lim
n→∞

∆(θ̂z,n,Θ?) = 0, P̃θ?-a.s.,

where ∆ is the metric endowing the parameter space Θ.
In Douc, Roueff and Sim (2015), their easy-to-check conditions also induce

that for all θ, θ? ∈ Θ, there exists a P̃θ?-a.s. finite measurable function Ψθ〈·〉 :
ZZ− → Z such that for some appropriate value z ∈ Z,

lim
m→∞

Ψθ〈Y−m:0〉(z) = Ψθ〈Y−∞:0〉, P̃θ?-a.s.(3.4)

Z1 = Ψθ?〈Y−∞:0〉, Pθ?-a.s.(3.5)

and that

pθ(Y1|Y−∞:0) = gθ
(

Πp(Ψ
θ〈Y−∞:0〉);Y1

)
, P̃θ?-a.s.(3.6)

In addition, it is shown that for all θ, θ? ∈ Θ,
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(i) If θ 6= θ?, y 7→ pθ(y|Y−∞:0) is a density function P̃θ?-a.s.
(ii) Under P̃θ? , the function y 7→ pθ?(y|Y−∞:0) is the conditional density

function of Y1 given Y−∞:0.

Under these same conditions, Douc, Roueff and Sim (2016) further showed
that the maximizing set Θ? defined in (3.2) indeed reduces to the equivalence
class of θ? through the equivalence relation defined in Definition 2. Then,
the convergence in (3.3) yields a so-called equivalence-class consistency :

(3.7) lim
n→∞

∆(θ̂z1,n, [θ?]) = 0, P̃θ?-a.s.,

for some well-chosen z1 ∈ Z. From (3.7) the (strong) consistency of the
MLE θ̂z,n will immediately follow if one can show that [θ?] reduces to the
singleton {θ?}, which is often referred to as solving identifiability problem.
In this contribution, this issue is also investigated. We will show that if
moreover the probability density kernel Gθ and the measurable function
Ψθ〈Y−∞:0〉 defined in (3.4) and (3.5) satisfy some certain conditions (similar
to the conditions in (Douc, Doukhan and Moulines, 2013, Proposition 21)),
then the strong consistency holds.

3.2. Convergence of the MLE. We always assume in this part that As-
sumption (AG-1) holds throughout. Note that every ODM of any order p ≥ 1
can be embedded in a first-order ODM. Therefore, the approach used to de-
rive the convergence of the MLE in the class of first-order models can be
applied to the class of higher-order ones up to some necessary adaptations.
The following is a list of additional assumptions sufficient for obtaining the
convergence of the MLE for a class of higher-order ODMs.

(AG-2) There exists a function V̄ : Z→ R+ such that, for all θ ∈ Θ, πθ1(V̄ ) <∞.

Remark 2. Assumption (AG-2) is usually obtained as a byproduct of
the proof of Assumption (AG-1); see Section 3.4. It is here stated as an
assumption for convenience.

The following set of conditions can readily be checked on gθ, ψθ and Ψθ.

(BG-1) For all y ∈ Y, the function (θ, x) 7→ gθ(x; y) is continuous on Θ× X.
(BG-2) For all y1:p ∈ Y, the function (θ, x1:p) 7→ ψθy1:p

(x1:p) is continuous on
Θ× Xp.

The function V̄ appearing in (BG-3)(viii) below is the same one as in As-
sumption (AG-2). Moreover, in this condition and in what follows, we write
f . V for a real-valued function f and a nonnegative function V defined
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on the same space Z, whenever there exists a positive constant c such that
|f(z)| ≤ cV (z) for all z ∈ Z.

(BG-3) There exist z1 ∈ Z, a set Z1 ⊆ Z such that Πp(Z1) is closed, % ∈ (0, 1),
C ≥ 0 and measurable functions Ψ̄ : Z → R+, H : R+ → R+ and
φ̄ : Y → R+ such that the following assertions hold.

(i) For all θ ∈ Θ and (z, y) ∈ Z× Y, Πp(Ψ
θ
y(z)) ∈ Z1.

(ii) sup
(θ,z,y)∈Θ×Z1×Y

gθ(Πp(z); y) <∞.

(iii) For all θ ∈ Θ, n ∈ Z+, z ∈ Z, and y1:n ∈ Yn,

(3.8) dZ

(
Ψθ〈y1:n〉(z1),Ψθ〈y1:n〉(z)

)
≤ %n Ψ̄(z),

(iv) Ψ̄ is locally bounded.

(v) For all θ ∈ Θ and y ∈ Y, Ψ̄(Ψθ
y(z1)) ≤ φ̄(y).

(vi) For all θ ∈ Θ and (z, z′, y) ∈ Z1 × Z1 × Y,

(3.9)

∣∣∣∣ln gθ(Πp(z); y)

gθ(Πp(z′); y)

∣∣∣∣ ≤ H(dZ(z, z′)) eC (dZ(z1,z)∨dZ(z1,z′)) φ̄(y),

(vii) H(u) = O(u) as u→ 0.

(viii) If C = 0, then, for all θ ∈ Θ,

(3.10) Gθ ln+ φ̄ . V̄ ;

otherwise, for all θ ∈ Θ,

(3.11) Gθφ̄ . V̄ .

Let us now state the equivalence-class consistency of the MLE for the higher-
order ODMs. The proof can be adapted and easily follows from (Douc, Roueff
and Sim, 2015, Theorem 1) and is thus omitted here.

Theorem 3. Assume that (AG-1), (AG-2), (BG-1), (BG-2) and (BG-3)
hold. Then, letting z1 ∈ Z as in (BG-3), the convergence (3.7) of the MLE
holds.

The strong consistency of the MLE follows from the following theorem.

Theorem 4. Assume that (AG-1), (AG-2), (BG-1), (BG-2) and (BG-3)
hold. Suppose in addition that
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(a) for all θ = (ϑ, r), θ′ = (ϑ′, r′) ∈ Θ and x, x′ ∈ X,

Gθ(x; ·) = Gθ
′
(x′; ·) implies r = r′ and x = x′,

(b) for all θ = (ϑ, r), θ? = (ϑ?, r?) ∈ Θ, P̃θ?-a.s.,

Πp(Ψ
(ϑ,r)〈Y−∞:0〉) = Πp(Ψ

(ϑ?,r)〈Y−∞:0〉) implies ϑ = ϑ?,

where Ψθ〈Y−∞:0〉 is defined by (3.4) and (3.5). Then, letting z1 ∈ Z as
in (BG-3),

(3.12) lim
n→∞

∆(θ̂z1,n, θ?) = 0, P̃θ?-a.s.

Proof. From Theorem 3, we have Θ? = [θ?], where Θ? is given in (3.2).
Now let θ = (ϑ, r) ∈ [θ?] and write θ? = (ϑ?, r?). The Kulback-Leibler
divergence implies, P̃θ?-a.s.,

G(ϑ,r)
(

Πp(Ψ
(ϑ,r)〈Y−∞:0〉); ·

)
= G(ϑ?,r?)

(
Πp(Ψ

(ϑ?,r?)〈Y−∞:0〉); ·
)
.

Then from (a), we obtain
r = r?

and
Πp(Ψ

(ϑ,r)〈Y−∞:0〉) = Πp(Ψ
(ϑ?,r?)〈Y−∞:0〉), P̃θ?-a.s.

From (b), we also have ϑ = ϑ?. Thus the proof follows.

3.3. Asymptotic Normality of the MLE. In this section, we treat a special
but an important case of ODMs where the space Z is a subset of a finite-
dimensional vector space; Θ is a compact subset of Rd, for some positive
integer d; and the function Ψθ

y(z) defined in (2.6) admits the following form:
for all (z, y, θ) ∈ Z× Y ×Θ,

(3.13) Ψθ
y(z) = a(θ, y)z + b(θ, y),

where a(θ, y) and b(θ, y) are two matrices with appropriate dimensions, and
for all θ ∈ Θ, y 7→ a(θ, y) and y 7→ b(θ, y) are measurable maps on (Y,Y).
The underlying model is assumed to be well-specified and θ? ∈ Θ denotes the
true parameter. As in Section 3.2, Assumption (AG-1) is supposed to hold
throughout this section. Assumption (CG-1) below guarantees the existence
of Ψθ〈·〉 satisfying (3.4) and (3.5), and its differentiability on Θ. In what
follows, we denote by | · | a vector norm on Rd and by ‖ · ‖ a matrix norm.

(CG-1) We have the following.
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(i) For all y ∈ Y, θ 7→ a(θ, y) and θ 7→ b(θ, y) are twice continuously
differentiable on Θ.

(ii) There exist constants C > 0 and ρ ∈ (0, 1) such that for all θ ∈ Θ
and y1:n ∈ Y, ∥∥∥∥∥

n∏
`=1

a(θ, y`)

∥∥∥∥∥ ≤ Cρn.
(iii) Ẽθ? [supθ∈Θ ‖b(θ, Y1)‖] <∞.

(iv) For all i ∈ {1, . . . , d},

Ẽθ?
[
sup
θ∈Θ

∥∥∥∥∂a(θ, Y1)

∂θi

∥∥∥∥]+ Ẽθ?
[
sup
θ∈Θ

∥∥∥∥∂b(θ, Y1)

∂θi

∥∥∥∥] <∞.
(v) For all i, j ∈ {1, . . . , d},

Ẽθ?
[
sup
θ∈Θ

∥∥∥∥∂2a(θ, Y1)

∂θi∂θj

∥∥∥∥]+ Ẽθ?
[
sup
θ∈Θ

∥∥∥∥∂2b(θ, Y1)

∂θi∂θj

∥∥∥∥] <∞.
Lemma 5. Assume (AG-1) and (CG-1). Then for all θ ∈ Θ, there exists a

P̃θ?-a.s. finite measurable function Ψθ〈·〉 : ZZ− → Z satisfying (3.4) and (3.5)
for all z ∈ Z. The function θ 7→ Ψθ〈Y−∞:0〉 is P̃θ?-a.s. twice continuously
differentiable on Θ and uniformly on Θ, we have P̃θ?-a.s.,

∂Ψθ〈Y−∞:0〉
∂θ

= lim
m→∞

∂Ψθ〈Y−m:0〉(z)
∂θ

(3.14)

∂2Ψθ〈Y−∞:0〉
∂θT∂θ

= lim
m→∞

∂2Ψθ〈Y−m:0〉(z)
∂θT∂θ

.(3.15)

Moreover,

Ẽθ?
[
sup
θ∈Θ

∥∥∥Ψθ〈Y−∞:0〉
∥∥∥] <∞,(3.16)

Ẽθ?
[
sup
θ∈Θ

∥∥∥∥∂Ψθ〈Y−∞:0〉
∂θ

∥∥∥∥] <∞,(3.17)

Ẽθ?
[
sup
θ∈Θ

∥∥∥∥∂2Ψθ〈Y−∞:0〉
∂θT∂θ

∥∥∥∥] <∞.(3.18)

Proof. The proof is postponed to Section 6.1 for convenience.

(CG-2) For all y ∈ Y, the function (θ, x) 7→ gθ(x; y) twice continuously differen-
tiable on Θ× X.
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For stating further assumptions, the following notation may be needed.
For all k ∈ Z∗+, θ ∈ θ and z ∈ Z, let

`θz,k := ln gθ
(

Πp(Ψ
θ〈Y1:k−1〉(z));Yk

)
.

Then for all n ∈ Z∗+, it follows that Lθz,n defined by (2.5) can be rewritten as

(3.19) Lθz,n = n−1
n∑
k=1

`θz,k

For all k ∈ Z∗+, θ ∈ θ and z ∈ Z, let

`θk := ln gθ
(

Πp(Ψ
θ〈Y−∞:k−1〉);Yk

)
,

which is P̃θ?-a.s. well defined by Lemma 5. Note that from (3.6), we have for
all k ∈ Z∗+, θ ∈ θ, `θk = ln pθ(Yk|Y−∞:k−1). Now for all n ∈ Z∗+ and θ ∈ Θ,
define

(3.20) Lθn := n−1
n∑
k=1

`θk.

Remark 3. Note that by Lemma 5, (AG-1), (CG-1) and (CG-2) imply
that the functions θ 7→ `θz,k and θ 7→ `θk are twice continuously differentiable

on some neighborhood V(θ?) of θ?, P̃θ?-a.s.

Assumptions (AG-1), (CG-1) and (CG-2) together with the following set of
assumptions, (CG-3)–(CG-7), are sufficient to yield the asymptotic normality
of θ̂z,n for arbitrary z ∈ Z.

(CG-3) The true parameter θ? lies within the interior of Θ.
(CG-4) The strong consistency holds, that is, limn→∞ θ̂z,n = θ?, P̃θ?-a.s.
(CG-5) There exist a constant α > 1/2 and a P̃θ?-a.s. finite random variable

C > 0 such that for all k ≥ 1,

sup
θ∈V(θ?)

∣∣∣∣∣∂`θz,k∂θ
−
∂`θk
∂θ

∣∣∣∣∣ ≤ Ck−α, P̃θ?-a.s.,

where V(θ?) is a neighborhood of θ?.
(CG-6) The exists a neighborhood V(θ?) of θ? such that

(i) Ẽθ?
[
supθ∈V(θ?)

∣∣∣∂`θ1∂θ ∣∣∣2] <∞.
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(ii) Ẽθ?
[
supθ∈V(θ?)

∥∥∥ ∂2`θ1
∂θT ∂θ

∥∥∥] <∞.

(iii) Ẽθ?
[
supθ∈V(θ?)

∣∣ ∂
∂θg

θ
(
Πp(Ψ

θ〈Y−∞:0〉);Y1

)∣∣] <∞.

(iv) Ẽθ?
[
supθ∈V(θ?)

∥∥∥ ∂2

∂θT ∂θ
gθ
(
Πp(Ψ

θ〈Y−∞:0〉);Y1

)∥∥∥] <∞.

(CG-7) The matrix Σ? = −Ẽθ?
[
∂2`θ?1
∂θT ∂θ

]
is invertible.

Note that if Assumptions (AG-1), (CG-1) and (CG-2) hold, then by Re-
mark 3, θ 7→ Lθz,n and θ 7→ Lθn respectively given by (3.19) and (3.20) are

twice continuously differentiable on some neighborhood V(θ?) of θ?, P̃θ?-a.s.
If in addition Assumption (CG-5) holds, the following fact is obtained.

Lemma 6. Assume (AG-1), (CG-1), (CG-2) and (CG-5), then

lim
n→∞

sup
θ∈V(θ?)

n1/2

∣∣∣∣∣∂Lθz,n
∂θ
− ∂Lθn

∂θ

∣∣∣∣∣ = 0, P̃θ?-a.s.,

Proof. We have from (CG-5), P̃θ?-a.s.,

sup
θ∈V(θ?)

n1/2

∣∣∣∣∣∂Lθz,n
∂θ
− ∂Lθn

∂θ

∣∣∣∣∣ ≤ 1

n1/2

n∑
k=1

sup
θ∈V(θ?)

∣∣∣∣∣∂`θz,k∂θ
−
∂`θk
∂θ

∣∣∣∣∣ ≤ C

n1/2

n∑
k=1

1

kα
.

To complete, observe that the rightmost term of the above inequalities con-
verges to 0 as n→∞ whenever α > 1/2.

Theorem 7. Assume that (AG-1) and (CG-1)–(CG-7) hold. Then, for
any z ∈ Z,

(3.21)
√
n(θ̂z,n − θ?) θ? N (0,Σ−1

? ),

where the symbol  θ? means weak convergence under P̃θ?, and N (0,Σ−1
? )

stands for the centered Gaussian distribution with covariance matrix Σ−1
? .

Proof. From Lemma 6, we have

lim
n→∞

n1/2 sup
θ∈V(θ?)

∣∣∣∣∣∂Lθz,n
∂θ
− ∂Lθn

∂θ

∣∣∣∣∣ = 0, P̃θ?-a.s.

Since for sufficiently large n, θ̂z,n ∈ V(θ?) and
∂L
θ̂z,n
z,n

∂θ = 0, then

n1/2∂L
θ̂z,n
n

∂θ
= n1/2∂L

θ̂z,n
z,n

∂θ
+ oP (1) = oP (1).
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Note that we also have,

n1/2∂L
θ̂z,n
n

∂θ
= n1/2∂Lθ?n

∂θ
+

(
∂2Lθ?n
∂θT∂θ

+ εn

)
n1/2(θ̂z,n − θ?),

where

(3.22) εn =

∫ 1

0

∂2L
θ?+t(θ̂z,n−θ?)
n

∂θT∂θ
− ∂2Lθ?n
∂θT∂θ

 dt.

Thus,

n1/2∂Lθ?n
∂θ

= −
(
∂2Lθ?n
∂θT∂θ

+ εn

)
n1/2(θ̂z,n − θ?) + oP (1).

Note that from (CG-6)(ii) and by ergodicity, Birkhoff ergodic theorem applies
and we have

lim
n→∞

∂2Lθ?n
∂θT∂θ

= lim
n→∞

n−1
n∑
k=1

∂2`θ?k
∂θT∂θ

= −Σ?, P̃θ?-a.s.

Thus to complete the proof, we only need to show that

(a) n1/2 ∂L
θ?
n
∂θ  θ? N (0,Σ?) and

(b) εn = oP (1).

Let us now we show (a). Note that we can write

n1/2∂Lθ?n
∂θ

= n−1/2
n∑
k=1

∂`θ?k
∂θ

.

Let ξk =
∂`θ?k
∂θ , k ∈ Z+. From (CG-6)(iii), it readily follows that

Ẽθ? [ξk|Y−∞:k−1] =

∫
Y

∂gθ?
(
Πp(Ψ

θ?〈Y−∞:k−1〉); y
)

∂θ
ν(dy)

=
∂

∂θ

∫
Y
gθ
(

Πp(Ψ
θ〈Y−∞:k−1〉); y

)
ν(dy)

∣∣∣∣
θ=θ?

=
∂

∂θ
1

∣∣∣∣
θ=θ?

= 0,
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so that the sequence {ξk : k ∈ Z+} is a stationary and ergodic Martingale
difference with respect to F−∞:k = σ(Y−∞:k) in L2(P̃θ?). By (CG-6) and (CG-
7), its covariance matrix is equal to Σ?. To see this, observe that P̃θ?-a.s.,

Ẽθ?
[
ξkξ

T
k

∣∣F−∞:k−1

]
=

∫
Y

1

gθ?
(
ψθ?k ; y

)
∂gθ?

(
ψθ?k ; y

)
∂θ

∂gθ?
(
ψθ?k ; y

)
∂θ

T

ν(dy)

=

∫
Y

∂2gθ?
(
ψθ?k ; y

)
∂θT∂θ

−
∂2 ln gθ?

(
ψθ?k ; y

)
∂θT∂θ

gθ?
(
ψθ?k ; y

) ν(dy),

with ψθ?k := Πp(Ψ
θ?〈Y−∞:k−1〉). By (CG-6)(iv), we have

∫
Y

∂2gθ?
(
ψθ?k ; y

)
∂θT∂θ

= 0, P̃θ?-a.s.

Since P̃θ?-a.s.,

Ẽθ?
[
∂2`θ?k
∂θT∂θ

∣∣∣∣∣F−∞:k−1

]
=

∫
Y

∂2 ln gθ?
(
ψθ?k ; y

)
∂θT∂θ

gθ?
(
ψθ?k ; y

)
ν(dy),

it then follows that

Ẽθ?
[
ξkξ

T
k

∣∣F−∞:k−1

]
= −Ẽθ?

[
∂2`θ?k
∂θT∂θ

∣∣∣∣∣F−∞:k−1

]
, P̃θ?-a.s.

Taking the expectation on both sides, then using tower property and us-
ing (CG-7), the claim thus follows. By ergodicity and from (CG-6)(i), we
have

lim
n→∞

n−1
n∑
k=1

Ẽθ?
[
ξkξ

T
k

∣∣F−∞:k−1

]
= Σ?, P̃θ?-a.s.
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Moreover, for ε > 0,

lim
n→∞

n−1

∥∥∥∥∥
n∑
k=1

Ẽθ?
[
ξkξ

T
k 1(|ξk| > ε

√
n)
∣∣F−∞:k−1

]∥∥∥∥∥
≤ lim

n→∞
n−1

n∑
k=1

Ẽθ?
[
|ξk|2 1(|ξk| > ε

√
n)
∣∣∣F−∞:k−1

]
≤ lim

n→∞
n−1

n∑
k=1

Ẽθ?
[
|ξk|2 1(|ξk| > M)

∣∣∣F−∞:k−1

]
= Ẽθ?

[
|ξ1|2 1(|ξ1| > M)

]
, P̃θ?-a.s.,

where M > 0. Since M is arbitrary, letting M →∞, we have

lim
n→∞

n−1
n∑
k=1

Ẽθ?
[
ξkξ

T
k 1(|ξk| > ε

√
n)
∣∣F−∞:k−1

]
= 0, P̃θ?-a.s.

Thus by martingale central limit theorem, see, for instance, Hall and Heyde
(1980),

n1/2∂Lθ?n
∂θ

= n−1/2
n∑
k=1

ξk  θ? N (0,Σ?).

Now it remains to show (b). Let ρ > 0 such that B(θ?, ρ) ⊂ V(θ?). Since
P̃θ?-a.s., θ̂z,n → θ? as n → ∞, then there exists a P̃θ?-a.s. finite integer N0

such that for all n ≥ N0, P̃θ?-a.s., θ? + t(θ̂z,n − θ?) ∈ B(θ?, ρ). Then from
(3.22), P̃θ?-a.s., for all n ≥ N0,

‖εn‖ ≤
∫ 1

0

∥∥∥∥∥∥∂
2L
θ?+t(θ̂z,n−θ?)
n

∂θT∂θ
− ∂2Lθ?n
∂θT∂θ

∥∥∥∥∥∥dt

≤ sup
θ∈B(θ?,ρ)

∥∥∥∥ ∂2Lθn
∂θT∂θ

− ∂2Lθ?n
∂θT∂θ

∥∥∥∥
≤ n−1

n∑
k=1

sup
θ∈B(θ?,ρ)

∥∥∥∥∥ ∂2`θk
∂θT∂θ

−
∂2`θ?k
∂θT∂θ

∥∥∥∥∥ .
By (CG-6)(ii), B(θ?, ρ) ⊂ V(θ?) and Birkhoff ergodic theorem, we get that

lim sup
n→∞

‖εn‖ ≤ Ẽθ?
[

sup
θ∈B(θ?,ρ)

∥∥∥∥∥ ∂2`θ1
∂θT∂θ

− ∂2`θ?1
∂θT∂θ

∥∥∥∥∥
]
, P̃θ?-a.s.
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Here ρ is an arbitrary positive number, provided that B(θ?, ρ) ⊂ V(θ?). By
dominated convergence and Remark 3, the right-hand side of the previous
display can be made arbitrarily close to zero by letting ρ tend to zero. Hence
we get (b), and the proof is complete.

Remark 4. From the proof of Theorem 7, it is also shown that

Σ? = Ẽθ?

(∂`θ?1
∂θ

)(
∂`θ?1
∂θ

)T .
Thus, to obtain (CG-7), that is showing that Σ? is invertible, it is sufficient
to show that for all a ∈ Rd,

aT
∂`θ?1
∂θ

= 0, P̃θ?-a.s., =⇒ a = 0.(3.23)

3.4. Ergodicity. In this section, we provide conditions that yield station-
arity and ergodicity of the Markov chain {(Zk, Yk) : k ∈ Z+}. We will set θ
to be an arbitrary value in Θ and since this is a “for all θ (...)” condition, to
save space and alleviate the notational burden, we will drop the superscript
θ from, for example, Gθ, Rθ and ψθ and respectively write G, R and ψ,
instead.

Ergodicity of Markov chains are usually studied using ϕ-irreducibility.
This approach is well known to be quite efficient when dealing with fully
dominated models; see Meyn and Tweedie (2009). It is not at all the same
picture for integer-valued observation-driven models, where other tools need
to be invoked; see Fokianos and Tjøstheim (2011); Douc, Doukhan and
Moulines (2013); Douc, Roueff and Sim (2015). Our result here is obtained
in the same fashion as in Douc, Roueff and Sim (2015), which is inspired
by the approach in Douc, Doukhan and Moulines (2013). The following is
the list of assumptions to obtain our main result on ergodicity. We should
mention that some of our assumptions (for instance, Assumption (AG-4))
are more general than those derived in Douc, Doukhan and Moulines (2013)
and Douc, Roueff and Sim (2015).

(AG-3) The measurable space (Z, dZ) is a locally compact, complete and separable
metric space and its associated σ-field Z is the Borel σ-field.

(AG-4) There exists a positive integer q such that the Markov kernel Rq is weak
Feller, that is, for any continuous and bounded function f defined on
X, Rqf is continuous and bounded on X. Moreover, there exist (λ, β) ∈
(0, 1) × R+ and a measurable function V : Z → R+ such that RqV ≤
λV + β and {V ≤M} is a compact set for any M > 0.
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(AG-5) The Markov kernel R admits a reachable point, that is, there exists z0 ∈ Z
such that, for any z ∈ Z and any neighborhood N of z0, Rm(z;N ) > 0
for at least one positive integer m.

(AG-6) There exists a positive integer ` such that

(3.24) sup
(z,z′,y1:`)∈Z2×Y`

z 6=z′

dZ(Ψ〈y1:`〉(z),Ψ〈y1:`〉(z′))
dZ(z, z′)

< 1,

and

(3.25) sup
(z,z′,y)∈Z2×Y

z 6=z′

dZ(Ψy(z),Ψy(z
′))

dZ(z, z′)
<∞.

(AG-7) There exist a measurable function α from Z2 to [0, 1], a measurable func-
tion φ : Z2 → X = Πp(Z) and a measurable function W : Z2 → [1,∞)
such that the following assertions hold.

(i) For all (z, z′) ∈ Z2 and y ∈ Y,

(3.26) min
{
g(Πp(z); y), g(Πp(z

′); y)
}
≥ α(z, z′)g

(
φ(z, z′); y

)
.

(ii) For all z ∈ Z, W (z, ·) is finitely bounded in a neighborhood of z,
that is, there exists γz > 0 such that sup

z′∈B(z,γz)
W (z, z′) <∞.

(iii) For all (z, z′) ∈ Z2, 1− α(z, z′) ≤ dZ(z, z′)W (z, z′).

(iv) There exist an integer m > 0 and a real number D > 0 such that

sup
(z,z′)∈Z2

(
Jm((z, z′);W )−W (z, z′)

)
<∞

and
sup

(z,z′)∈Z2

(
J1((z, z′);W )−DW (z, z′)

)
<∞,

where for any positive integer n, (z, z′) ∈ Z2 and measurable func-
tion f : Z2 → R,

Jn((z, z′); f) :=

∫
f
(
Ψ〈y1:n〉(z),Ψ〈y1:n〉(z′)

)
×

n∏
k=1

G
(
φ(Ψ〈y1:k−1〉(z),Ψ〈y1:k−1〉(z′)); dyk

)
.
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Remark 5. Assumption (AG-3) holds if the measurable metric spaces
(X, dX) and (Y, dY) are locally compact, complete and separable and their
associated σ-field X and Y are the Borel σ-fields. In this case, the metric dZ

can be appropriately defined as a function of dX and dY.

Remark 6. Note that if the Markov kernel R is weak Feller, then the
Markov kernel Rq is also weak Feller.

Lemma 8. Assume (AG-3) and (AG-4). Then R admits an invariant
probability distribution π̃; moreover, π̃V <∞.

Proof. From Assumptions (AG-3) and (AG-4) and by Remark 6, the
transition kernel Rq admits an invariant probability distribution denoted by
πq. Let π̃ be defined by, for all A ∈ Z,

π̃(A) =
1

q

q∑
k=1

πqR
k(A).

Obviously, we have π̃R = π̃, which shows that R admits an invariant prob-
ability distribution π̃. Now let M > 0. Then we have for all n ∈ Z+,

π̃(V ∧M) = π̃Rnq(V ∧M)

≤ π̃Rnq(V ) ∧M

≤ λnπ̃(V ) ∧M +
β

1− λ
∧M.

Letting n→∞, we then obtain

π̃(V ∧M) ≤ β

1− λ
∧M.

Finally, since M is arbitrary, by letting M → ∞ and by monotone conver-
gence theorem, we get π̃V <∞ as desired.

We can now state the main ergodicity result.

Theorem 9. Conditions (AG-3), (AG-4), (AG-5), (AG-6) and (AG-7)
imply that K admits a unique stationary distribution π on Z×Y. Moreover,
π1V̄ <∞ for every V̄ : X→ R+ such that V̄ . V .

For convenience, we postponed the proof of Theorem 9 to Section 6.2.
The first conclusion of Theorem 9 can directly be applied for all θ ∈ Θ to
check (AG-1).
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Assumptions (AG-4) and (AG-5) have to be checked directly on the Markov
kernel R defined by (2.11). To this end, it can be useful to define, for any
given z ∈ Z, the distribution

(3.27) P̄z := Pδz⊗G(Πp(z);·)

on (Z × Y)Z+ , where Pξ is defined for any distribution ξ on Z × Y as in
Definition 2. Then the first component process {Zk : k ∈ Z+} associated to
P̄z is a Markov chain with Markov kernel R and initial distribution δz.

The following lemma provides a general way for constructing the instru-
mental functions α and φ that appear in (AG-7). The proof can be easily
adapted from (Douc, Roueff and Sim, 2015, Lemma 1) and is thus omitted.

Lemma 10. Suppose that Πp(Z) = X = CS for some measurable space
(S,S) and C ⊆ R. Thus for all x ∈ X, we write x = (xs)s∈S, where xs ∈ C for
all s ∈ S. Suppose moreover that for all x = (xs)s∈S ∈ X, we can express the
conditional density g(x; ·) as a mixture of densities of the form j(xs)h(xs; ·)
over s ∈ S. This means that for all t ∈ C, y 7→ j(t)h(t; y) is a density with
respect to ν and there exists a probability measure µ on (S,S) such that

(3.28) g(x; y) =

∫
S
j(xs)h(xs; y)µ(ds), y ∈ Y .

We moreover assume that h takes nonnegative values and that one of the
two following assumptions holds.

(H’-1) For all y ∈ Y, the function h(·; y) : t 7→ h(t; y) is nondecreasing.
(H’-2) For all y ∈ Y, the function h(·; y) : t 7→ h(t; y) is nonincreasing.

For all (x, x′) ∈ X2, we denote x ∧ x′ := (min{xs, x′s})s∈S and x ∨ x′ :=
(max{xs, x′s})s∈S and we define α(z, z′) and φ(z, z′) by: for all (z, z′) ∈ Z2,
letting x = Πp(z) and x′ = Πp(z

′),
α(z, z′) = inf

s∈S

{
j(xs ∨ x′s)
j(xs ∧ x′s)

}
and φ(z, z′) = x ∧ x′ under (H’-1);

α(z, z′) = inf
s∈S

{
j(xs ∧ x′s)
j(xs ∨ x′s)

}
and φ(z, z′) = x ∨ x′ under (H’-2).

Then α and φ defined above satisfy (AG-7)(i).

4. Examples. In this section, we apply our main results derived above
to two models of interest, namely, the log-linear Poisson GARCH(p, p) and
the NBIN-GARCH(p, p) models. To the best of our knowledge, the station-
arity and ergodicity as well as the asymptotic properties of the MLE for
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the general log-linear Poisson GARCH(p, p) and NBIN-GARCH(p, p) mod-
els have not been derived so far. In the sequel, A, b and ω always denote,
respectively, the matrix

0 1 0 0 · · · 0 0 0 · · · 0 0
0 0 1 0 · · · 0 0 0 · · · 0 0
0 0 0 1 · · · 0 0 0 · · · 0 0
...

...
...

...
. . .

...
...

...
. . .

...
...

0 0 0 0 · · · 1 0 0 · · · 0 0
ap ap−1 ap−2 ap−3 · · · a1 bp bp−1 · · · b3 b2
0 0 0 0 · · · 0 0 1 · · · 0 0
0 0 0 0 · · · 0 0 0 · · · 0 0
...

...
...

...
. . .

...
...

...
. . .

...
...

0 0 0 0 · · · 0 0 0 · · · 0 1
0 0 0 0 · · · 0 0 0 · · · 0 0



,

the vector b1δp+δ2p−1, with for all j ∈ {1, . . . , 2p−1}, δj = (δij)i∈{1,...,2p−1},
δij being the Kronecker delta, and the vector ωδp. We also de-
note by A?, b? and ω? the corresponding values of A, b and ω at
(ω, a1:p, b1:p) = (ω?, a?1:p, b

?
1:p), respectively. For any matrix M, we denote its

transpose by MT . For any real numbers a and b, we denote their maximum
value by a ∨ b or max{a, b} and their minimum value by a ∧ b or min{a, b}.

Now, let In be the identity matrix of order n and denote the characteristic
polynomial of the matrix A + bδTp by P (λ) = det

(
λI2p−1 − (A + bδTp )

)
.

For any square matrix M, denote the spectral radius of M by |λ|max(M).
Straightforward computation shows that

(4.1) P (λ) = λp−1

(
λp −

p∑
k=1

(ak + bk)λ
p−k

)
.

The following lemma which is useful for the next example is immediate.

Lemma 11. Let a1:p ≥ 0, b1:p ≥ 0. Then
∑p

i=1(ai+ bi) < 1 if and only if

|λ|max(A + bδTp ) < 1.

Proof. The proof is postponed to Section 6.3.

Remark 7. It is well known that for any nonnegative matrices M =
(mij) and N = (nij) such that M ≥ N, that is for all i, j, mij ≥ nij , we
have |λ|max(M) ≥ |λ|max(N). Thus for our matrices A and A + bδTp , we

have |λ|max(A) ≤ |λ|max(A + bδTp ).
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4.1. Log-linear Poisson GARCH(p, p) Model.

Example 1 (Definition of the log linear Poisson GARCH(p, p)). Con-
sider the log-linear Poisson GARCH of order (p, p), p ∈ Z∗+, which is defined
as follows: for all k ∈ Z+,

Xk+1 = ω +

p∑
i=1

aiXk−i+1 +

p∑
i=1

bi ln(1 + Yk−i+1),

Yk+1 | Fk ∼ P
(
eXk+1

)
,

(4.2)

where

– the parameter space

θ = (ω, a1:p, b1:p) ∈ Θ ⊂ R2p+1,

– Fk = σ (X−p+1:k+1, Y−p+1:k),
– X = R, X = B(X), Y = Z+, Y = B(Y) and the metrics on X and Y are

the same usual metric on R.

By setting for all k, Uk = ln(1 + Yk) (hence U = ln(1 + Z+), U = B(U)
and dU is the usual metric on R), then Model (4.2) can be embedded in
Model (4.3) below:

Xk+1 = ψθUk−p+1:k
(Xk−p+1:k),

Uk+1 | Fk ∼ Gθ(Xk+1; ·),
(4.3)

where for all (x1:p, u1:p) ∈ Xp ×Up,

(4.4) ψθuk−p+1:k
(xk−p+1:k) := ω +

p∑
i=1

aixp−i+1 +

p∑
i=1

biup−i+1

and Gθ(x; ·) is the conditional law of Uk given Xk = x defined by

(4.5) Gθ(x;A) =
∑
u∈A

e−ex ex(eu−1)

(eu − 1)!
, A ∈ U .

The density gθ of Uk conditionally on Xk = x with respect to the counting
measure on U is given by, for all u ∈ U,

(4.6) gθ(x;u) = e−ex ex(eu−1)

(eu − 1)!
> 0.
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By Definition 1, Model (4.3) is an ODM(p, p) and is dominated by the count-
ing measure on U. Now let Z = Xp×Up−1 and Z = X⊗p⊗U⊗(p−1) and define
the measurable function Ψθ similarly as in (2.6). The function Ψθ then take
a simple linear form

(4.7) Ψθ
u(z) = ω + Az + ub, (z, u) ∈ Z×U.

Moreover, denoting Zk = (Xk−p+1:k, Uk−p+1:k−1) for all k, the process {Zk :
k ∈ Z+} is a Markov chain on (Z,Z) whose transition kernel Rθ is given by
(2.11) with Gθ and Ψθ defined in (4.5) and (4.7), respectively.

In this section, we will use the vector and the matrix norms defined re-
spectively on R2p−1 and the space of (2p− 1)× (2p− 1) matrices as follows:

|z|∞ =

2p−1∨
i=1

|δTi z| =
2p−1∨
i=1

|zi|,

‖M‖∞ =

2p−1∨
i=1

2p−1∑
j=1

|Mi,j | = sup
|z|∞≤1

|Mz|∞ .

For notational convenience, we will also denote A1 = A and A2 = A+bδTp .

Proposition 12. Suppose that θ ∈ Θ satisfies

(4.8)
∨

(i1,...,ip)∈{1,2}p

∥∥∥∥∥
p∏
`=1

Ai`

∥∥∥∥∥
∞

< 1.

Then we have the following.

(i) Theorem 9 holds with the function V̄ : Z → R+ defined by, for all
z ∈ Z,

(4.9) V̄ (z) = eτ |z|∞ , τ > 0.

(ii) Theorem 3 holds with any z1 ∈ Z. If the true parameter θ? =
(ω?, a?1:p, b

?
1:p) moreover satisfies, for all k ∈ Z∗+,

(4.10) (Ak −Ak
?)b? = 0 implies A = A?,

then Theorem 4 also holds.
(iii) If the true parameter θ? lies in the interior of Θ and satisfies (4.10),

then Theorem 7 holds.
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Remark 8. When p = 1, then A1 = A and A2 = A + bδTp correspond
to a1 and a1 + b1, respectively. Condition (4.8) then reduces to

|a1| ∨ |a1 + b1| < 1.

This condition is weaker than the one derived in Douc, Doukhan and
Moulines (2013) where |b1| < 1 is also imposed.

Remark 9. To check (4.10), it suffices to check that there exists k ∈ Z+

such that the determinant

det
(
Ak
?b?,A

k+1
? b?, . . . ,A

k+2p−2
? b?

)
6= 0.

Remark 10. When p = 1, (4.10) holds if and only if b? 6= 0.

Before proving Proposition 12, let us show the following fact.

Lemma 13. If Y ∼ P(ζ) with ζ > 0, then for any ϑ ∈ R, there exist
constants c1 = c1(ϑ), c2 = c2(ϑ) > 0 such that

(4.11) E[(1 + Y )ϑ] ≤ c1 + c2ζ
ϑ
1{ϑ > 0}.

Proof. The proof is postponed to Section 6.4.

Proof. Proof of Proposition 12–(i). Now set V (z) = V̄ (z) = eτ |z|∞ ,
z ∈ Z. From Theorem 9, we need to show that (AG-3), (AG-4), (AG-5), (AG-
6) and (AG-7) hold. Assumption (AG-3) holds with the metric dZ defined by,
for all (z, z′) ∈ Z2,

(4.12) dZ(z, z′) =

2p−1∨
i=1

|zi − z′i| = |z − z′|∞.

The fact that R is weak Feller follows from the continuity of the density g
with respect to the x component in (4.6) and the continuity of Πp(·). We
will show that, with V defined in (4.9), then we have RpV ≤ λV + β for
some (λ, β) ∈ (0, 1) × R+. Note that Lemma 13 implies that, for all ϑ ∈ R
and ζ > 0, ∫

eϑuG (ζ; du) ≤ c1 + c2eϑζ1{ϑ > 0},(4.13)
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where c1 and c2 are some positive constants. Note further that for all z ∈ Z
and τ > 0, we have

V (z) = eτ |z|∞ ≤
∑

σ∈{−1,1}

2p−1∑
k=1

eστzk ≤ 2(2p− 1)eτ |z|∞(4.14)

Without loss of generality, let us assume for the moment that τ = 1. Now,
using (4.13) and (4.14) and noting that, for all z ∈ Z, zk = δTk z, Πp(z) = δTp z

and 1
{
σδTk b > 0

}
≤ 1, we have

RV (z) ≤
∑

σ∈{−1,1}

2p−1∑
k=1

∫
eσδ

T
k (ω+Az+ub)G

(
δTp z; du

)
≤

∑
σ∈{−1,1}

2p−1∑
k=1

eσδ
T
k (ω+Az)

∫
eσδ

T
k buG

(
δTp z; du

)
≤

∑
σ∈{−1,1}

2p−1∑
k=1

eσδ
T
k (ω+Az)

(
γ1 + γ2eσδ

T
k bδ

T
p z
)
,

where γ1 and γ2 are some positive constants. This further yields that, with
A1 = A and A2 = A + bδTp ,

RV (z) ≤
∑

σ∈{−1,1}

2p−1∑
k=1

(
β1eσδ

T
kAz + β2eσδ

T
k (A+bδTp )z

)

≤
∑

σ∈{−1,1}

2p−1∑
k=1

(
β1eσδ

T
kA1z + β2eσδ

T
kA2z

)
,

where β1 and β2 are some positive constants. By iteration, Rm+1V =
R(RmV ), we obtain that, for all m ∈ Z∗+,
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RmV (z) ≤
∑

σ∈{−1,1}

2p−1∑
k=1

∑
(i1,...,ip)∈{1,2}m

βi1,...,imeσδ
T
k (
∏m
`=1 Ai`)z

(4.15)

≤
∑

(i1,...,im)∈{1,2}m
βi1,...,im

∑
σ∈{−1,1}

2p−1∑
k=1

eσδ
T
k (
∏m
`=1 Ai`)z

≤
∑

(i1,...,im)∈{1,2}m
βi1,...,im

∑
σ∈{−1,1}

2p−1∑
k=1

e‖
∏p
`=1 Ai`‖∞|z|∞

≤ 2(2p− 1)
∑

(i1,...,im)∈{1,2}m
βi1,...,ime‖

∏m
`=1 Ai`‖∞|z|∞

≤

2(2p− 1)
∑

i1,...,im∈{1,2}

βi1,...,im

 e
∨
i1,...,im∈{1,2}‖

∏m
`=1 Ai`‖∞|z|∞ ,

where, for all (i1, . . . , im) ∈ {1, 2}m, βi1,...,im are positive constants. Thus,
for all z ∈ Z, with m = p, we get

RpV (z) ≤ γpeηp|z|∞ ,

where
γp := 2(2p− 1)

∑
(i1,...,ip)∈{1,2}p

βi1,...,ip > 0

and

ηp :=
∨

(i1,...,ip)∈{1,2}p

∥∥∥∥∥
p∏
`=1

Ai`

∥∥∥∥∥
∞

< 1.

Since

lim
|z|∞→∞

eηp|z|∞

V (z)
= 0

and for all M > 0,
sup
|z|∞≤M

RpV (z) <∞,

then there exists a pair (λ, β) ∈ (0, 1) × R+ such that RpV ≤ λV + β,
and hence (AG-4) holds. Note that when m = p − 1 and τ = 1, we have
e|Πp(z)| ≤ γp−1R

p−1V (z) for some γp−1 > 0. We now turn to prove (AG-5).
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Note that from (4.8), there exist δ ∈ (0, 1) and c > 0 such that, for any
k ≥ 1,

(4.16)
∥∥∥Ak

∥∥∥
∞
≤ c δk.

Hence, (I2p−1 − A)−1 = I2p−1 +
∑

k≥1 Ak is well defined. Now, set z∞ =

(I2p−1 − A)−1ω. Let N∞ be an open neighborhood of z∞ and let z ∈ Z.
Define recursively the sequence {zk : k ∈ Z+} with z0 = z and for all k ≥ 1,
zk = ω + Azk−1. From (4.16), this so-defined sequence admits a unique
limiting point limn→∞ zn = z∞. Thus, there exists some n ∈ Z∗+ such that
for all k ≥ n, zk ∈ N∞. For such n, we have

Rn(z;N∞) = P̄z(Zn ∈ N∞) ≥ P̄z(Zk = zk for all k = 1, . . . , n)

= P̄z(U0 = · · · = Un−1 = 0) > 0.

Next we prove (AG-6). We have for all n ≥ 1, u0:n−1 ∈ Un and z ∈ Z,

(4.17) Ψ〈u0:n−1〉(z) = Anz +

n−1∑
j=0

Aj(ω + un−1−jb).

Then for all (z, z′) ∈ Z2, u0:p−1 ∈ Up,

dZ(Ψu0(z),Ψu0(z′)) = |A(z − z′)|∞
≤ ‖A‖∞|z − z′|∞
≤ DdZ(z, z′),

and

dZ(Ψ〈u0:p−1〉(z),Ψ〈u0:p−1〉(z′)) = |Ap(z − z′)|∞
≤ ‖Ap‖∞|z − z′|∞
≤ ρdZ(z, z′),

where D = ‖A‖∞ > 0 and ρ = ‖Ap‖∞ < 1 from (4.8), showing (AG-6). To
show (AG-7), we rely on Lemma 10. Let us set C = R = X and S = {1},
then the probability measure µ boils down the Dirac mass on S. For all

(x, u) ∈ X×U, let j(x) = e−ex and h(x;u) = ex(eu−1)

(eu−1)! . Indeed, h satisfies (H’-

1). Hence, from Lemma 10, the instrumental functions α and φ are obtained
by setting: for all z, z′ ∈ Z,

α(z, z′) =
e−eΠp(z)∨Πp(z′)

e−eΠp(z)∧Πp(z′) = e
−
∣∣∣eΠp(z)−eΠp(z′)

∣∣∣
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and φ(z, z′) = Πp(z) ∧ Πp(z
′). These so-defined functions α and φ indeed

satisfy (AG-7)(i). For (z, z′) ∈ Z2, we have

1− α(z, z′) = 1− e
−
∣∣∣eΠp(z)−eΠp(z′)

∣∣∣ ≤ ∣∣∣eΠp(z) − eΠp(z′)
∣∣∣

≤ e|Πp(z)|∨|Πp(z′)| ∣∣Πp(z)−Πp(z
′)
∣∣

≤W (z, z′) dZ(z, z′),

where W is defined by, for all z, z′ ∈ Z,

W (z, z′) := γp−1

(
Rp−1V1(z) +Rp−1V1(z′)

)
and V1(z) = e|z|∞ . Obviously, this so-defined function W satisfies (AG-7)(ii)
and (AG-7)(iii). To complete the proof of Proposition 12–(i), it remains to
show (AG-7)(iv). Note that (AG-4) holds with V (z) = eτ |z|∞ for any τ > 0,
thus it also holds with V1. For all z, z′ ∈ Z,

J1((z, z′);W ) =

∫
W (Ψu(z),Ψu(z′))G

(
φ(z, z′); du

)
=γp−1

∫
Rp−1V1(Ψu(z))G

(
φ(z, z′); du

)
+ γp−1

∫
V1(Ψu(z′))G(φ(z, z′); du).

From (4.15), with m = p− 1, we have

(4.18)

∫
Rp−1V1(Ψu(z))G

(
φ(z, z′); du

)
≤

∑
σ∈{−1,1}

2p−1∑
k=1

∑
(i1,...,ip−1)∈{1,2}p−1

βi1,...,ip−1×∫
eσδ

T
k (
∏p−1
`=1 Ai`)(ω+Az+ub)G

(
φ(z, z′); du

)
.

Note that by (4.13), there exist constants c′1 and c′2 such that∫
eσδ

T
k (
∏p−1
`=1 Ai`)buG

(
φ(z, z′); du

)
≤ c′1 + c′2eσδ

T
k (
∏p−1
`=1 Ai`)b(δTp z∧δTp z′)1

{
σδTk

(
p−1∏
`=1

Ai`

)
b > 0

}
≤ c′1 + c′2eσδ

T
k (
∏p−1
`=1 Ai`)bδ

T
p z,

where we have used δTp z ∧ δTp z′ ≤ δTp z and 1

{
σδTk

(∏p−1
`=1 Ai`

)
b > 0

}
≤ 1.

Plugging this inequality into (4.18) and noting that A1 = A and A2 =
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A + bδTp , then there exist positive constants γi1,...,ip , (i1, . . . , ip) ∈ {1, 2}p,
such that∫

Rp−1V1(Ψu(z))G
(
φ(z, z′); du

)
≤

∑
σ∈{−1,1}

2p−1∑
k=1

∑
(i1,...,ip)∈{1,2}p

γi1,...,ipe
σδTk (

∏p
`=1 Ai`)z

≤

2(2p− 1)
∑

(i1,...,ip)∈{1,2}p
γi1,...,ip

 eηp|z|∞ ,

where ηp =
∨

(i1,...,ip)∈{1,2}p
∥∥∏p

`=1 Ai`

∥∥
∞ < 1. Similarly, we have

∫
Rp−1V1(Ψu(z′))G

(
φ(z, z′); du

)
≤

2(2p− 1)
∑

i1,...,ip∈{1,2}

γ′i1,...,ip

 eηp|z
′|∞

for some positive constants γ′i1,...,ip , (i1, . . . , ip) ∈ {1, 2}p. Thus, there exists

M > 0 such that for all z, z′ ∈ Z,

J1((z, z′);W ) = M
(

eηp|z|∞ + eηp|z
′|∞
)
.

Assumption (AG-7)(iv) follows by observing that

lim
|z|∞∨|z′|∞→∞

J1((z, z′);W )

W (z, z′)
= 0.

This completes the proof of Proposition 12– (i).

Proof of Proposition 12–(ii). As a consequence, we have (AG-1). As-
sumption (AG-2) directly follows. Thus, to show the first part of Proposi-
tion 12–(ii), we only need to show that Assumptions (BG-1), (BG-2) and
(BG-3) are satisfied. The second part then follows if we can moreover show
that (a) and (b) in Theorem 4 hold.

Clearly, (BG-1) and (BG-2) hold by the definitions of ψθ and gθ given by
(4.4) and (4.6), respectively. It remains to show (BG-3). Since Θ is compact,
then
(4.19)

|ω| ≤ ω, |ai| ≤ ā, |bi| ≤ b̄,
∨

(i1,...,ip)∈{1,2}p

∥∥∥∥∥
p∏
`=1

Ai`

∥∥∥∥∥
∞

≤ ρ̄, ‖A‖∞ ≤ L,
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for some (ω, ā, b, ρ̄) ∈ (0,∞)3 × (0, 1) and L > 0. We set Z1 = Z. And so
(BG-3)(i) holds. Moreover, for all (θ, z, u) ∈ Θ × Z1 × U, gθ(Πp(z); y) ≤ 1.
Thus, Condition (BG-3)(ii) holds. Now let z1 ∈ Z. Using (4.16), (4.17) and
(4.19), we get that there exist constants c̄ > 0 and δ̄ ∈ (0, 1) such that for
all z ∈ Z, u1:n ∈ Un and θ ∈ Θ,∣∣∣Ψθ〈u1:n〉(z1)−Ψθ〈u1:n〉(z)

∣∣∣
∞

= |An(z1 − z)|∞
≤ c̄ δ̄n |z1 − z|∞ .

Thus by (4.12), we get (BG-3)(iii) with

Ψ̄(z) = c |z1 − z|∞ .

Hence (BG-3)(iv) holds and since∣∣∣z1 −Ψθ
u(z1)

∣∣∣ ≤ (L+ 1) |z1|∞ + ω + (1 ∨ b̄)u,

we also get (BG-3)(v) provided that

(4.20) φ̄(u) ≥ (L+ 1) |z1|∞ + ω + (1 ∨ b̄)u.

It is straightforward to show that for all θ ∈ Θ, (x, x′) ∈ Πp(Z1) × Πp(Z1)
and u ∈ U,∣∣∣ln gθ (x;u)− ln gθ

(
x′;u

)∣∣∣ ≤ |x− x′|e|x|∨|x′|eu
≤ |x− x′|e|x−Πp(z1)|∨|x′−Πp(z1)|eu+|Πp(z1)|.

Thus for all θ ∈ Θ, (z, z′) ∈ Z1 × Z1 and u ∈ U,∣∣∣ln gθ (x;u)− ln gθ
(
x′;u

)∣∣∣ ≤ |z − z′|∞e|z−z1|∞∨|z
′−z1|∞eu+|Πp(z1)|.

We thus obtain (BG-3)(v), (BG-3)(vi) and (BG-3)(vii) by setting C = 1,

H(s) = s, s ∈ R+,

and
φ̄(u) = (L+ 1) |z1|∞ + ω + (1 ∨ b̄)u+ eu+|Πp(z1)|.

In addition, for all θ ∈ Θ, x ∈ X and τ > 0, we have∫
eτuGθ(x; du) ≤ 1 + 2τeτx .
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Hence, by letting V̄ = V and using that for all θ ∈ Θ, πθ1V < ∞, with the
above definitions, we obtain (BG-3)(viii). This establishes the equivalence-
class consistency of the MLE for the log-linear Poisson GARCH(p, p).

To conclude the strong consistency of the MLE, it remains to check (a)
and (b) in Theorem 4. Condition (a) clearly holds by the identifiability of
the Poisson distribution. Note that as a consequence of the earlier proof, we
have, for all θ ∈ Θ, P̃θ?-a.s.,

Ψθ〈U−∞:0〉 =
∞∑
k=0

Ak(ω + U−kb).

By stationarity, for all θ ∈ Θ and t ∈ Z, we have, P̃θ?-a.s.,

Ψθ〈U−∞:t〉 =
∞∑
k=0

Ak(ω + U−k+tb).

Moreover, if

Ψθ〈U−∞:0〉 = Ψθ?〈U−∞:0〉, P̃θ?-a.s.,

then by stationarity, for all t ∈ Z,

Ψθ〈U−∞:t〉 = Ψθ?〈U−∞:t〉, P̃θ?-a.s.,

and thus

(4.21)
∞∑
k=0

Ak(ω + U−k+tb) =
∞∑
k=0

Ak
?(ω? + U−k+tb?), P̃θ?-a.s.

This implies

(4.22) (b−b?)Ut =
∞∑
k=1

Ak
?(ω?+U−k+tb?)−

∞∑
k=1

Ak(ω+U−k+tb), P̃θ?-a.s.

Conditionally on σ(U−∞:t−1),
(
eUt − 1

)
is a Poisson variable with positive

intensity. Thus the left-hand side of (4.22) is P̃θ?-a.s. constant only if b = b?,
implying b?1 = b1. Then, (4.21) reduces to

(4.23)

∞∑
k=1

Ak(ω + U−k+tb) =

∞∑
k=1

Ak
?(ω? + U−k+tb?), P̃θ?-a.s.

Thus by repeating the same argument as to obtain b = b?, (4.23) and so on
yield that, for all integer k ≥ 1,

(Ak −Ak
?)b? = 0.
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And by (4.10), we have A = A?, yielding that (a1:p, b2:p) =
(
a?1:p, b

?
2:p

)
. It is

immediate from (4.21) that ω = ω?, and this is equivalent to having that
ω = ω?. The strong consistency therefore follows.

Proof of Proposition 12–(iii). By Theorem 7, it suffices to show
that (CG-1)–(CG-7) hold. From the definition of Ψθ

u(z), we have a(θ, u) = A
and b(θ, u) = ω+ub, both admitting linear forms in θ. Thus from compact-
ness of Θ and (4.8) and by noting that for all τ > 0,

(4.24) Ẽθ?
[
eτU1

]
<∞,

it follows that (CG-1) holds. Assumptions (CG-2) and (CG-3) clearly hold.
Assumption (CG-4) is immediate as the conclusion of Proposition 12-(ii)
above. We have

`θz,k = ln gθ
(

Πp(Ψ
θ〈U1:k−1〉(z));Uk

)
= (eUk − 1)δTp Ψθ〈U1:k−1〉(z)− eδ

T
p Ψθ〈U1:k−1〉(z) − ln(eUk − 1)!,

`θk = ln gθ
(

Πp(Ψ
θ〈U−∞:k−1〉(z));Uk

)
= (eUk − 1)δTp Ψθ〈U−∞:k−1〉 − eδ

T
p Ψθ〈U−∞:k−1〉 − ln(eUk − 1)!.

Then from Lemma 5, for all i, P̃θ?-a.s.,

∂`θz,k
∂θi

=
(

eUk − 1− eδ
T
p Ψθ〈U1:k−1〉(z)

)
δTp

∂

∂θi
Ψθ〈U1:k−1〉(z)

∂`θk
∂θi

=
(

eUk − 1− eδ
T
p Ψθ〈U−∞:k−1〉

)
δTp

∂

∂θi
Ψθ〈U−∞:k−1〉

Thus for all i, P̃θ?-a.s.,

∣∣∣∣∣∂`θz,k∂θi
−
∂`θk
∂θi

∣∣∣∣∣ ≤
∣∣∣∣δTp ∂

∂θi
Ψθ〈U−∞:k−1〉 − δTp

∂

∂θi
Ψθ〈U1:k−1〉(z)

∣∣∣∣ (eUk − 1)

+
∣∣∣eδTp Ψθ〈U−∞:k−1〉 − eδ

T
p Ψθ〈U1:k−1〉(z)

∣∣∣ ∣∣∣∣δTp ∂

∂θi
Ψθ〈U−∞:k−1〉

∣∣∣∣
+ e|δ

T
p Ψθ〈U1:k−1〉(z)|

∣∣∣∣δTp ∂

∂θi
Ψθ〈U−∞:k−1〉 − δTp

∂

∂θi
Ψθ〈U1:k−1〉(z)

∣∣∣∣
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Note that for all z ∈ Z and k ≥ 1, we have, P̃θ?-a.s.,

Ψθ〈U−∞:k−1〉 −Ψθ〈U1:k−1〉(z) = Ak−1
(

Ψθ〈U−∞:0〉 − z
)
,

and for all i,

∂

∂θi
Ψθ〈U−∞:k−1〉 −

∂

∂θi
Ψθ〈U1:k−1〉(z)

=
∂(Ak−1)

∂θi

(
Ψθ〈U−∞:0〉 − z

)
+ Ak−1 ∂

∂θi
Ψθ〈U−∞:0〉.

By similar arguments as in the proof of Lemma 5 (see Section 6.1) and noting
that supθ∈Θ

∣∣Ψθ〈U−∞:0〉
∣∣
∞ and supθ∈Θ

∣∣ ∂
∂θΨθ〈U−∞:0〉

∣∣
∞ are finite P̃θ?-a.s.,

there exist a constant ρ1 ∈ (0, 1) and a P̃θ?-a.s. finite random variable M̃1 =
M̃1(z) such that for all k ≥ 1, P̃θ?-a.s.,∣∣∣Ψθ〈U−∞:k−1〉 −Ψθ〈U1:k−1〉(z)

∣∣∣
∞
≤ M̃1ρ

k
1,

and for all i, P̃θ?-a.s.,∣∣∣∣ ∂∂θiΨθ〈U−∞:k−1〉 −
∂

∂θi
Ψθ〈U1:k−1〉(z)

∣∣∣∣
∞
≤ M̃1ρ

k
1.

From Lemma 5, we also have that, for all i,

Ẽθ?
[
sup
θ∈Θ

∣∣∣∣ ∂∂θiΨθ〈U−∞:0〉
∣∣∣∣
∞

]
<∞.(4.25)

Recall that for all t, t′ ∈ R,
∣∣∣et − et

′
∣∣∣ ≤ e|t|∨|t

′||t− t′|. Thus, we deduce that∣∣∣∣∣∂`θz,k∂θi
−
∂`θk
∂θi

∣∣∣∣∣
≤ eM̃1ρk1M̃1

[
eUk − 1 + e|Ψ

θ〈U−∞:k−1〉|∞
(

1 +

∣∣∣∣ ∂∂θiΨθ〈U−∞:k−1〉
∣∣∣∣
∞

)]
.

On the other hand, P̃θ?-a.s., we have

e|Ψ
θ〈U−∞:0〉|∞ ≤ esupθ∈Θ|Ψθ〈U−∞:0〉|∞ ≤ e

∑∞
k=0 supθ∈Θ|Ak(ω+U−kb)|∞ .

From (4.16) and (4.19), there exist constants c1, c2 > 0 and δ̄ ∈ (0, 1) such
that, P̃θ?-a.s.,

esupθ∈Θ|Ψθ〈U−∞:0〉|∞ ≤ c1ec2
∑∞
k=0 δ̄

kU−k ≤ c1(1− δ̄)
∞∑
k=0

δ̄kec2(1−δ̄)−1U−k ,
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and from (4.24), it follows that for any positive t > 0,

Ẽθ?
[
et supθ∈Θ|Ψθ〈U−∞:0〉|∞

]
<∞.(4.26)

Thus, by stationarity and from (4.25) and (4.26), Lemma 21 assures that
there exist a constant ρ2 ∈ (0, 1) and a P̃θ?-a.s. finite random variable M̃2 =
M̃2(z) such that for all i and for all k ≥ 1, P̃θ?-a.s.,∣∣∣∣∣∂`θz,k∂θi

−
∂`θk
∂θi

∣∣∣∣∣ ≤ ρk2M̃2.

Therefore, Assumption (CG-5) holds. We now check (CG-6). We have

`θ1 = ln gθ
(

Πp(Ψ
θ〈U−∞:0〉);U1

)
= (eU1 − 1)δTp Ψθ〈U−∞:0〉 − eδ

T
p Ψθ〈U−∞:0〉 − ln(eU1 − 1)!.

Then for all i and j, we have

∂`θ1
∂θi

=
(

eU1 − 1− eδ
T
p Ψθ〈U−∞:0〉

)
δTp

∂

∂θi
Ψθ〈U−∞:0〉

and from Lemma 5, P̃θ?-a.s.,

∂2`θ1
∂θi∂θj

=
(

eU1 − 1− eδ
T
p Ψθ〈U−∞:0〉

)
δTp

∂2

∂θi∂θj
Ψθ〈U−∞:0〉

+ eδ
T
p Ψθ〈U−∞:0〉

(
δTp

∂

∂θi
Ψθ〈U−∞:0〉

)(
δTp

∂

∂θj
Ψθ〈U−∞:0〉

)
.

Using similar arguments as the proof of Lemma 5 together with (4.24), we
can show that for all i and j, we have

Ẽθ?
[

sup
θ∈Θ

∣∣∣∣ ∂∂θiΨθ〈U−∞:0〉
∣∣∣∣2
∞

]
<∞

and

Ẽθ?
[
sup
θ∈Θ

∣∣∣∣ ∂2

∂θi∂θj
Ψθ〈U−∞:0〉

∣∣∣∣
∞

]
<∞.

By (4.26) and (4.24), we can directly show that, for all i and j,

Ẽθ?
[

sup
θ∈Θ

∣∣∣∣∂`θ1∂θi

∣∣∣∣2
]
<∞
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and

Ẽθ?
[
sup
θ∈Θ

∣∣∣∣ ∂2`θ1
∂θi∂θj

∣∣∣∣] <∞.
Thus, (CG-6)-(i) and (CG-6)-(ii) hold. Note that for all i, j, we have, P̃θ?-a.s.,

∂

∂θi
gθ
(

Πp(Ψ
θ〈U−∞:0〉);U1

)
= gθ

(
Πp(Ψ

θ〈U−∞:0〉);U1

) ∂`θ1
∂θi

and

∂2

∂θi∂θj
gθ
(

Πp(Ψ
θ〈Y−∞:0〉);U1

)
= gθ

(
Πp(Ψ

θ〈U−∞:0〉);U1

) ∂2`θ1
∂θi∂θj

+
∂

∂θi
gθ
(

Πp(Ψ
θ〈U−∞:0〉);Y1

) ∂`θ1
∂θj

Then, (CG-6)-(iii) follows by observing that for all i, P̃θ?-a.s.,∣∣∣∣ ∂∂θi gθ
(

Πp(Ψ
θ〈U−∞:0〉);U1

)∣∣∣∣ = gθ
(

Πp(Ψ
θ〈U−∞:0〉);U1

) ∣∣∣∣∂`θ1∂θi

∣∣∣∣ ≤ sup
θ∈Θ

∣∣∣∣∂`θ1∂θi

∣∣∣∣
and

Ẽθ?
[
sup
θ∈Θ

∣∣∣∣∂`θ1∂θi

∣∣∣∣] ≤
(
Ẽθ?

[
sup
θ∈Θ

∣∣∣∣∂`θ1∂θi

∣∣∣∣2
])1/2

<∞.

Similarly, (CG-6)-(iv) holds. To complete the proof of asymptotic normality,
it remains to check (CG-7). By Remark 4, it is sufficient to show that (3.23)
holds. We establish this fact by following the argument provided by Francq
and Zakoian (2004). Now let α = (α0, . . . , α2p) ∈ R2p+1 and for convenience,
write θ = (θ0, . . . , θ2p) = (ω, a1:p:,b1:p). We have, P̃θ?-a.s.,

αT
∂`θ?1
∂θ

=

2p∑
i=0

αi

(
eU1 − 1− eδ

T
p Ψθ? 〈U−∞:0〉

)
δTp
∂Ψθ?〈U−∞:0〉

∂θi
.

Since
(
eU1 − 1

)
conditionally on σ(U−∞:0) is a Poisson variable with positive

intensity, then P̃θ?-a.s., αT
∂`θ?1
∂θ = 0 implies

2p∑
i=0

αiδ
T
p

∂Ψθ?〈U−∞:0〉
∂θi

= 0, P̃θ?-a.s.
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By stationarity, we have for all t ∈ Z,

2p∑
i=0

αiδ
T
p

∂Ψθ?〈U−∞:t〉
∂θi

= 0, P̃θ?-a.s.(4.27)

In view of (4.3) and by noting that P̃θ?-a.s., Xθ
t = δTp Ψθ〈U−∞:t〉 for all θ ∈ Θ

and t ∈ Z, we have from (4.27) that for all t ∈ Z,

0 = αT
∂Xθ?

t

∂θ
= αT



1

Xθ?
t−1
...

Xθ?
t−p

Ut−1
...

Ut−p


+

p∑
i=1

aiα
T ∂X

θ?
t−i

∂θ
= αT



1

Xθ?
t−1
...

Xθ?
t−p

Ut−1
...

Ut−p


, P̃θ?-a.s.

Since
(
eUt−1 − 1

)
conditionally on σ(U−∞:t−2) is a Poisson variable with

positive intensity, we then have that αp+1 = 0. By the same reason, it can
be shown that αp+2:p+2+i = 0 if α2:2+i = 0, for i ∈ {0, . . . , p − 2}. Thus, if
α 6= 0 entails an ODM(p−1, p−1) representation, which is impossible since
the model is identifiable. Hence, α = 0 and this completes the proof.

Our next example is the NBIN-GARCH(p, p), p ∈ Z∗+, which is defined
as follows.

4.2. NBIN-GARCH(p, p) Model.

Example 2 (Definition of NBIN-GARCH(p, p)). Consider a statistical
model recursively defined by: for all k ∈ Z+,

Xk+1 = ω +

p∑
i=1

aiXk−i+1 +

p∑
i=1

biYk−i+1,

Yk+1 | Fk ∼ NB
(
r,

Xk+1

1 +Xk+1

)
,

(4.28)

where

– the parameter space

Θ ⊂ {θ = (ω, a1:p, b1:p, r) ∈ R∗+ × Rp+ × Rp+ × R∗+},



38 T. SIM, R. DOUC AND F. ROUEFF

– Fk = σ (X−p+1:k+1, Y−p+1:k),
– X = (0,∞), X = B(X), Y = Z+, Y = B(Y) and the metrics on X and

Y are any metrics on R and Z, respectively.

Denoting for all (x1:p, y1:p) ∈ Xp × Yp,

ψθy1:p
(x1:p) := ω +

p∑
i=1

aixp−i+1 +

p∑
i=1

biyp−i+1,(4.29)

Model (4.28) can be expressed as the standard form of Model (4.30) below:

Xk+1 = ψθYk−p+1:k
(Xk−p+1:k),

Yk+1 | Fk ∼ NB
(
r,

Xk+1

1 +Xk+1

)
.

(4.30)

The density gθ and the probability law Gθ of Yk conditional on Xk = x are
given by, for all y ∈ Y and A ∈ Y,

(4.31) gθ(x; y) =
Γ(r + y)

y ! Γ(r)

(
1

1 + x

)r ( x

1 + x

)y
,

and

(4.32) Gθ(x;A) =
∑
y∈A

1A(y)gθ(x; y).

According to Definition 1, Model (4.28) is an ODM(p, p) and is dominated by
the counting measure on Z. Now, let Z = Xp×Yp−1 and Z = X⊗p⊗Y⊗(p−1)

and define the measurable function Ψθ similarly as in (2.6), which is given
by, for all (z, y) ∈ Z× Y,

(4.33) Ψθ
y(z) = ω + Az + yb.

The process {Zk : k ∈ Z+}, where Zk = (Xk−p+1:k, Yk−p+1:k−1), is a
Markov chain on (Z,Z) with transition kernelRθ given by (2.11) with Ψθ and
Gθ defined in (4.32) and (4.33), respectively. Let us now state our ergodicity,
consistency and asymptotic normality results for the NBIN-GARCH(p, p)
model.

Proposition 14. Suppose that θ ∈ Θ satisfies

(4.34) |λ|max(A + rbδTp ) < 1.
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(i) Then the conclusion of Theorem 9 holds with V̄ (z) = 1T z for all z ∈ Z.
(ii) Theorem 3 holds with any z1 ∈ Z. If the true parameter θ? =

(ω?, a?1:p, b
?
1:p) moreover satisfies: for all k ∈ Z∗+,

(4.35) (Ak −Ak
?)b? = 0 implies A = A?,

then Theorem 4 also holds.

Remark 11. From Lemma 11, Condition (4.34) is equivalent to∑p
i=1(ai + rbi) < 1.

Proof. Proof of Proposition 14–(i). In this part, for convenience, let
us drop the super script θ from for example Gθ, Rθ, etc. Now set V = V̄ .
From Theorem 9, we need to show that (AG-3), (AG-4), (AG-5), (AG-6)
and (AG-7) hold. Assumption (AG-3) holds with any metric dZ associated to
a norm on the finite dimensional space Z so that Z is the associated Borel
σ-field (The precise choice of this metric is postponed to the verification
of (AG-6)). The fact that R is weak Feller follows by observing that for fixed
r > 0, as p → p′, NB(r, p) converges weakly to NB(r, p′). Moreover, we
have, for all z ∈ Z,

RV (z) =

∫
V (ω + Az + yb) G(Πp(z); dy)

= 1Tω + 1T
(
A + rbδTp

)
z.

By iteration, we obtain that for all k ∈ Z∗+,

RkV (z) = 1Tω + · · ·+ 1T
(
A + rbδTp

)k−1
ω + 1T

(
A + rbδTp

)k
z.

Since |λ|max(A + rbδTp ) < 1, then there exists a pair (q, ρ) ∈ Z∗+ × (0, 1)
such that

RqV (z) ≤ 1Tω + · · ·+ 1T
(
A + rbδTp

)q−1
ω + ρq1T z.

Hence (AG-4) holds with some q ≥ 1, λ = ρq < 1 and β = 1Tω + · · · +
1T
(
A + rbδTp

)q−1
ω ≥ 0. We now show (AG-5). Let us use the norm

‖M‖ =

2p−1∨
j=1

2p−1∑
i=1

|Mi,j | = sup
|z|≤1
|Mz|

on (2p − 1) × (2p − 1) matrices, where |z| =
∑2p−1

i=1 |zi| is a norm of z =
z1:2p−1 ∈ Z. Note that from (4.34), there exists δ ∈ (0, 1) and c > 0 such
that, for any k ≥ 1,

(4.36)
∥∥∥Ak

∥∥∥ ≤ c δk .
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Hence (I2p−1 − A)−1 = I2p−1 +
∑

k≥1 Ak is well defined and we set

z∞ = (I2p−1 − A)−1ω. Let N∞ be an open neighborhood of z∞ and
let z ∈ Z. Define recursively the sequence z0 = z and for all k ≥ 1,
zk = ω + Azk−1. From (4.36), this so-defined sequence admits a unique
limiting point limn→∞ zn = z∞. Thus, there exists some n ∈ Z∗+ such that
for all k ≥ n, zk ∈ N∞. For such n, we have

Rn(z,N∞) = P̄z(Zn ∈ N∞) ≥ P̄z(Zk = zk for all k = 1, . . . , n)

= P̄z(Y0 = · · · = Yn−1 = 0) > 0.

Next we prove (AG-6). We have

Ψy(z)−Ψy(z
′) = A(z − z′) .

Since (4.34) implies that |λ|max(A) < 1, there exists a vector norm |·|Z, which
makes A strictly contracting. Choosing the metric dZ on Z (embedded in
R2p−1) as the one derived from this norm, we get (AG-6). To show (AG-7),
we rely on Lemma 10. Let us set C = (0,∞) = X and S = {1}, then the
probability measure µ boils down the Dirac mass on S. For all (x, y) ∈ X×Y,

let j(x) = (1 + x)−r and h(x; y) = Γ(r+y)
y ! Γ(r)

(
x

1+x

)y
. Indeed, h satisfies (H’-1).

Hence, from lemma Lemma 10 we α and φ are obtained by setting: for all
z, z′ ∈ Z,

α(z, z′) =

(
1 + Πp(z) ∧Πp(z

′)

1 + Πp(z) ∨Πp(z′)

)r
and

φ(z, z′) = Πp(z) ∧Πp(z
′).

These so-defined functions α and φ indeed satisfy (AG-7)(i). For any given
r > 0, for all (z, z′) ∈ Z2, we have

1− α(z, z′) = 1−
(

1 + Πp(z) ∧Πp(z
′)

1 + Πp(z) ∨Πp(z′)

)r
≤ (1 ∨ r)

∣∣Πp(z)−Πp(z
′)
∣∣

≤W (z, z′) dZ(z, z′) ,

where dZ is the metric previously defined and W is defined by
W (z, z′) = cdZ

(1 ∨ r) with cdZ
> 0 is conveniently chosen (such a

constant exists since dZ is the metric associated to a norm and Z is a subset
of finite dimensional space). Thus, (AG-7)(ii) and (AG-7)(iii) hold and, since
for all y ∈ Y and z ∈ Z, Πp(Ψy(z)) ≥ ω, W (Ψy(z),Ψy(z

′)) is uniformly
bounded over (z, z′, y) ∈ Z × Z × Y and (AG-7)(iv) holds. This completes
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the proof.

Proof of Proposition 14–(ii). Note that (AG-2) immediately follows.
Thus, to show the first part of Proposition 12–(ii), we only need to show
that Assumptions (BG-1), (BG-2) and (BG-3) are satisfied. The second part
then follows if we can moreover show that (a) and (b) in Theorem 4 hold.

Clearly, (BG-1) and (BG-2) hold by the definitions of ψθ and gθ given
by (4.29) and (4.31), respectively. It remains to show (BG-3). Since Θ is
compact, then

(4.37) ω ≤ ω ≤ ω, 0 ≤ ai ≤ ā, 0 ≤ bi ≤ b̄, |λ|max(A+rbδTp ) ≤ ρ̄, r ≤ r ≤ r

for some (ω, ω, ā, b, r, r, ρ̄) ∈ (0,∞)6 × (0, 1).
We set Z1 = Z so that (BG-3)(i) holds. Moreover, for all (θ, z, y) ∈ Θ ×

Z1 × Y, gθ(Πp(z); y) ≤ 1. Thus, Condition (BG-3)(ii) holds. Note that we
have, for all n ∈ Z∗+ and z ∈ Z,

(4.38) Ψθ〈y0:n−1〉(z) = Anz +
n−1∑
j=0

Aj(ω + yn−1−jb).

Now let | · | be the Taxicab norm on Z and let z1 ∈ Z. Using (4.36), (4.37)
and (4.38), we get that there exist constants c̄ > 0 and δ̄ ∈ (0, 1) such that
for all z ∈ Z, y1:n ∈ Yn and θ ∈ Θ,

dZ

(
Ψθ〈y1:n〉(z1),Ψθ〈y1:n〉(z)

)
= |An(z1 − z)|Z
≤ c̄ δ̄n |z1 − z| .

Thus, we get (BG-3)(iii) with

Ψ̄(z) = c̄ |z1 − z| .

Hence (BG-3)(iv) holds and since∣∣∣z1 −Ψθ
y(z1)

∣∣∣ ≤ (L+ 1) |z1|+ ω + (1 + b̄)y,

for some L > 0, we also get (BG-3)(v) provided that for all y ∈ Y,

(4.39) φ̄(y) ≥ (L+ 1)|z1|+ ω + (1 + b̄)y.

For all θ ∈ Θ, (x, x′) ∈ Πp(Z1)×Πp(Z1) and y ∈ Y,∣∣∣ln gθ(x; y)− ln gθ(x′; y)
∣∣∣ =

∣∣(r + y)[ln(1 + x′)− ln(1 + x)] + y[lnx− lnx′]
∣∣

≤
[
(r + y)(1 + ω)−1 + y ω−1

]
|x− x′|

≤
[
r + y (1 + ω−1)

]
|x− x′| .
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We thus obtain (BG-3)(v), (BG-3)(vi) and (BG-3)(vii) by setting C = 0,
H(s) = s and φ̄(y) = ω̄ ∨ r̄+ (1 +L)|z1|+

(
b̄+ 1 + ω−1

)
y. Observe that for

all z ∈ Z,∫
ln+ y Gθ(Πp(z); dy) ≤

∫
y Gθ(Πp(z); dy) = rΠp(z) ≤ rV̄ (z).

Hence, using that for all θ ∈ Θ, πθ1V <∞, we obtain (BG-3)(viii), establish-
ing the equivalence-class consistency of the MLE for the NBIN-GARCH(p, p)
model.

To conclude the strong consistency of the MLE, it remains to check (a)
and (b) in Theorem 4. Condition (a) clearly holds by the identifiability of
the negative binomial distribution. Note that as a consequence of the earlier
proof, we have, for all θ ∈ Θ, P̃θ?-a.s.,

Ψθ〈Y−∞:0〉 =
∞∑
k=0

Ak(ω + Y−kb).

By stationarity, for all θ ∈ Θ and t ∈ Z, we have, P̃θ?-a.s.,

Ψθ〈Y−∞:t〉 =
∞∑
k=0

Ak(ω + Y−k+tb).

Moreover, if

Ψθ〈Y−∞:0〉 = Ψθ?〈Y−∞:0〉, P̃θ?-a.s.,

then by stationarity, for all t ∈ Z,

Ψθ〈Y−∞:t〉 = Ψθ?〈Y−∞:t〉, P̃θ?-a.s.,

and thus

(4.40)
∞∑
k=0

Ak(ω + Y−k+tb) =
∞∑
k=0

Ak
?(ω? + Y−k+tb?), P̃θ?-a.s.

This implies

(4.41) (b−b?)Yt =
∞∑
k=1

Ak
?(ω?+Y−k+tb?)−

∞∑
k=1

Ak(ω+Y−k+tb), P̃θ?-a.s.

Conditionally on σ(Y−∞:t−1), Yt is negative binomial variable with param-
eter (r?, p?) ∈ (0,∞) × (0, 1). Thus, the left-hand side of (4.41) is P̃θ?-a.s.
constant only if b = b?, implying b?1 = b1. Then, (4.40) reduces to

(4.42)

∞∑
k=1

Ak(ω + Y−k+tb) =

∞∑
k=1

Ak
?(ω? + Y−k+tb?), P̃θ?-a.s.
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Thus, by repeating the same argument as to obtain b = b?, (4.42) and so
on yield that, for all integer k ≥ 1,

(Ak −Ak
?)b? = 0.

And by (4.35), we have A = A?, yielding that (a1:p, b2:p) =
(
a?1:p, b

?
2:p

)
. It

is immediate from (4.40) that ω = ω?, and this is equivalent to having
that ω = ω?. Thus, (b) is satisfied and the strong consistency therefore
follows.

Proposition 15. Suppose that θ ∈ Θ satisfies

(4.43) |λ|max

(
ATA + r

(
ATbδTp + δpb

TA
)

+ r(r + 1)δpb
TbδTp

)
< 1.

In addition, assume that the true parameter θ? lies in the interior of Θ and
satisfies (4.35), then Theorem 7 holds.

Remark 12. Condition (4.43) implies Condition (4.34). Thus the sta-
tionarity and ergodicity for the model follow. If moreover (4.35) is satisfied,
then the strong consistency, that is, limn→∞ θ̂z,n = θ?, P̃θ?-a.s., holds for
any z ∈ Z.

Before proving Proposition 15, let us show the following result.

Lemma 16. Assume (4.43). Then

Ẽθ? [Y 2
1 ] <∞.(4.44)

Proof. Now, assume that (4.43) holds. To obtain (4.44) it is sufficient
to show that there exists a triplet (q, λ, β) ∈ Z+ × (0, 1) × R+ such that
RqṼ < λṼ + β with Ṽ (z) = zT z. Note first that for U ∼ NB(r, x/(1 + x)),
we have E[U ] = rx and E[U2] = r(r + 1)x2 + rx. Note also that the matrix
M := ATA+r

(
ATbδTp + δpb

TA
)

+r(r+1)δpb
TbδTp is symmetric positive

semidefinite. Thus, there exist a diagonal matrix D ≥ 0 and an orthogonal
matrix Q such that M = QDQT ; and, moreover, |λ|max(M) = |λ|max(D).

For all z ∈ Z, we have

RṼ (z) =

∫
Ṽ (ω + Az + yb)G(Πp(z); dy)

=

∫
(ω + Az + yb)T (ω + Az + yb)G(δTp z; dy)

= L1(z) + zTMz = L1(z) + zTQDQT z

≤ L1(z) + |λ|max(D)zTQQT z = L1(z) + |λ|max(M)Ṽ (z),
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where L1(z) = ωTω +
(
2ωTA + r2ωTbδTp + rbTbδTp

)
z, which is a linear

function in z. Since |λ|max(M) < 1, and

lim
|z|→∞

RṼ (z)

Ṽ (z)
≤ |λ|max(M) < 1,

then the exists (β, λ) ∈ R+ × (0, 1) such that for all z ∈ Z,

RṼ (z) ≤ λṼ (z) + β,

completing the proof.

Proof of Proposition 15. Assumption (AG-1) holds by Remark 12.
We now show that (CG-1)–(CG-7) are satisfied. From the definition of Ψθ

y(z),
we have a(θ, y) = A and b(θ, y) = ω + yb, both admitting linear forms in
θ. From compactness of Θ and by noting that (4.43) implies (CG-1)(ii) and
that (4.44) also implies

(4.45) Ẽθ? [Y1] <∞,

it follows that (CG-1) holds. Assumptions (CG-2) and (CG-3) are clearly
satisfied. Assumption (CG-4) immediately follows by Remark 12. We have

`θz,k = ln gθ
(

Πp(Ψ
θ〈Y1:k−1〉(z));Yk

)
= ln Γ(Yk + r)− (Yk + r) ln

(
1 + δTp Ψθ〈Y1:k−1〉(z)

)
+ Yk ln

(
δTp Ψθ〈Y1:k−1〉(z)

)
− ln Γ(r)− ln(Yk!),

`θk = ln gθ
(

Πp(Ψ
θ〈Y−∞:k−1〉);Yk

)
= ln Γ(Yk + r)− (Yk + r) ln

(
1 + δTp Ψθ〈Y−∞:k−1〉

)
+ Yk ln

(
δTp Ψθ〈Y−∞:k−1〉

)
− ln Γ(r)− ln(Yk!).

Then from Lemma 5, for all θ = θ0:2p+1 with θ2p+1 = r, for all i 6= 2p + 1,
P̃θ?-a.s.,

∂`θz,k
∂θi

=

(
Yk

δTp Ψθ〈Y1:k−1〉(z)
− Yk + r

1 + δTp Ψθ〈Y1:k−1〉(z)

)
δTp

∂

∂θi
Ψθ〈Y1:k−1〉(z)

∂`θz,k
∂θ2p+1

= Γ2(Yk + r)− Γ2(r)− ln
(

1 + δTp Ψθ〈Y1:k−1〉(z)
)
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and

∂`θk
∂θi

=

(
Yk

δTp Ψθ〈Y−∞:k−1〉
− Yk + r

1 + δTp Ψθ〈Y−∞:k−1〉

)
δTp

∂

∂θi
Ψθ〈Y−∞:k−1〉

∂`θk
∂θ2p+1

= Γ2(Yk + r)− Γ2(r)− ln
(

1 + δTp Ψθ〈Y−∞:k−1〉
)
,

where Γ2 is the digamma function defined by, for all u > 0,

Γ2(u) :=
d

du
ln Γ(u) =

∫∞
0 e−ttu−1 ln t dt∫∞

0 e−ttu−1dt
.

For u ≥ 3, the digamma function satisfies

|Γ2(u)| ≤
∫∞

0 e−ttu−1| ln t|dt
Γ(u)

≤
∫∞

0 e−ttu−1(t+ t−1) dt

Γ(u)

=
Γ(u+ 1) + Γ(u− 1)

Γ(u)
= u+ (u− 1)−1 ≤ u+ 1,(4.46)

where we have used that | ln t| ≤ (t+ t−1) whenever t > 0.
It is straight forward to have that, for all i, P̃θ?-a.s.,

∣∣∣∣∣∂`θz,k∂θi
−
∂`θk
∂θi

∣∣∣∣∣ ≤ ∣∣∣δTp Ψθ〈Y−∞:k−1〉 − δTp Ψθ〈Y1:k−1〉(z)
∣∣∣

+

∣∣∣∣∣ Yk + r

1 + δTp Ψθ〈Y1:k−1〉(z)
− Yk

δTp Ψθ〈Y1:k−1〉(z)
−

Yk + r

1 + δTp Ψθ〈Y−∞:k−1〉
+

Yk

δTp Ψθ〈Y−∞:k−1〉

∣∣∣∣∣
∣∣∣∣δTp ∂

∂θi
Ψθ〈Y−∞:k−1〉

∣∣∣∣
+

∣∣∣∣∣ Yk + r

1 + δTp Ψθ〈Y1:k−1〉(z)
− Yk

δTp Ψθ〈Y1:k−1〉(z)

∣∣∣∣∣
×
∣∣∣∣δTp ∂

∂θi
Ψθ〈Y−∞:k−1〉 − δTp

∂

∂θi
Ψθ〈Y1:k−1〉(z)

∣∣∣∣ .
Since δTp Ψθ〈Y1:k−1〉(z) ≥ ω and so that δTp Ψθ〈Y−∞:k−1〉 ≥ ω, we obtain that

for all i, P̃θ?-a.s.,
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∣∣∣∣∣∂`θz,k∂θi
−
∂`θk
∂θi

∣∣∣∣∣ ≤ ∣∣∣δTp Ψθ〈Y−∞:k−1〉 − δTp Ψθ〈Y1:k−1〉(z)
∣∣∣

+

(
2Yk + r

ω

) ∣∣∣∣δTp ∂

∂θi
Ψθ〈Y−∞:k−1〉

∣∣∣∣ ∣∣∣δTp Ψθ〈Y−∞:k−1〉 − δTp Ψθ〈Y1:k−1〉(z)
∣∣∣

+

(
2Yk + r

ω

) ∣∣∣∣δTp ∂

∂θi
Ψθ〈Y−∞:k−1〉 − δTp

∂

∂θi
Ψθ〈Y1:k−1〉(z)

∣∣∣∣ .
Note that for all z ∈ Z and k ≥ 1, we have, P̃θ?-a.s.,

Ψθ〈Y−∞:k−1〉 −Ψθ〈Y1:k−1〉(z) = Ak−1
(

Ψθ〈Y−∞:0〉 − z
)
,

∂
∂θ2p+1

Ψθ〈Y1:k−1〉(z) = ∂
∂θ2p+1

Ψθ〈Y−∞:k−1〉 = 0 and, for all i 6= 2p+ 1,

∂

∂θi
Ψθ〈Y−∞:k−1〉 −

∂

∂θi
Ψθ〈Y1:k−1〉(z)

=
∂(Ak−1)

∂θi

(
Ψθ〈Y−∞:0〉 − z

)
+ Ak−1 ∂

∂θi
Ψθ〈Y−∞:0〉.

By proceeding similarly as in the proof of Lemma 5 and noting that
supθ∈Θ

∣∣δTp Ψθ〈Y−∞:0〉
∣∣ and supθ∈Θ

∣∣δTp ∂
∂θΨθ〈Y−∞:0〉

∣∣ are finite P̃θ?-a.s., then

there exist a constant ρ1 ∈ (0, 1) and a P̃θ?-a.s. finite random variable
M̃1 = M̃1(z) such that for all k ≥ 1, P̃θ?-a.s.,∣∣∣δTp Ψθ〈Y−∞:k−1〉 − δTp Ψθ〈Y1:k−1〉(z)

∣∣∣ ≤ M̃1ρ
k
1,

and for all i, P̃θ?-a.s.,∣∣∣∣δTp ∂

∂θi
Ψθ〈Y−∞:k−1〉 − δTp

∂

∂θi
Ψθ〈Y1:k−1〉(z)

∣∣∣∣ ≤ M̃1ρ
k
1.

The last two inequalities imply that, for all θ ∈ Θ, i ∈ {1, . . . , 2p+ 2} and
k ∈ Z∗+, P̃θ?-a.s.,∣∣∣∣∣∂`θz,k∂θi

−
∂`θk
∂θi

∣∣∣∣∣ ≤ M̃1ρ
k
1

[
1 +

(
2Yk + r̄

ω

)(
1 + sup

θ∈Θ

∣∣∣∣δTp ∂

∂θi
Ψθ〈Y−∞:k−1〉

∣∣∣∣)] .
Note also that from Lemma 21, we have, for all i,

Ẽθ?
[
sup
θ∈Θ

∣∣∣∣δTp ∂

∂θi
Ψθ〈Y−∞:0〉

∣∣∣∣] <∞.(4.47)
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Thus, by stationarity and from (4.45) and (4.47), Lemma 21 implies that
there exist a constant ρ2 ∈ (0, 1) and a P̃θ?-a.s. finite random variable M̃2 =
M̃2(z) such that for all θ ∈ Θ, i ∈ {0, . . . , 2p+ 1} and k ≥ 1, P̃θ?-a.s.,∣∣∣∣∣∂`θz,k∂θi

−
∂`θk
∂θi

∣∣∣∣∣ ≤ ρk2M̃2.

Therefore, Assumption (CG-5) holds. We now check (CG-6). We have

`θ1 = ln gθ
(

Πp(Ψ
θ〈Y−∞:0〉);Y1

)
= ln Γ(Y1 + r)− (Y1 + r) ln

(
1 + δTp Ψθ〈Y−∞:0〉

)
− Y1 ln

(
δTp Ψθ〈Y−∞:0〉

)
− ln Γ(r)− ln(Y1!).

Write θ = θ0:2p+1. Then for all i and j such that i 6= 2p+ 1 and j 6= 2p+ 1,
we have

∂`θ1
∂θi

=

(
Y1

δTp Ψθ〈Y−∞:0〉
− Y1 + r

1 + δTp Ψθ〈Y−∞:0〉

)
δTp

∂

∂θi
Ψθ〈Y−∞:0〉,(4.48)

∂`θ1
∂θ2p+2

= Γ2(Y1 + r)− Γ2(r)− ln
(

1 + δTp Ψθ〈Y−∞:0〉
)
,(4.49)

and

∂2`θ1
∂θi∂θj

=

(
Y1

δTp Ψθ〈Y−∞:0〉
− Y1 + r

1 + δTp Ψθ〈Y−∞:0〉

)
δTp

∂2

∂θi∂θj
Ψθ〈Y−∞:0〉+(

Y1 + r

(1 + δTp Ψθ〈Y−∞:0〉)2
− Y1

(δTp Ψθ〈Y−∞:0〉)2

)
δTp
∂Ψθ〈Y−∞:0〉

∂θi
δTp
∂Ψθ〈Y−∞:0〉

∂θj
,

∂2`θ1
∂θi∂θ2p+1

= −
(

1 + δTp Ψθ〈Y−∞:0〉
)−1

δTp
∂Ψθ〈Y−∞:0〉

∂θi
,

∂2`θ1
∂θ2p+1∂θ2p+1

= Γ3(Y1 + r)− Γ3(r),

where Γ3 is the trigamma function defined by, for all u > 0,

Γ3(u) :=
d

du
Γ2(u) =

∫∞
0 e−ttu−1| ln t|2 dt

Γ(u)
− Γ2(u)2.

Note that when u ≥ 3, the trigamma function satisfies

|Γ3(u)| ≤
∫∞

0 e−ttu−1(t+ t−1)2 dt

Γ(u)
+ Γ2(u)2

=
Γ(u+ 2) + 2Γ(u) + Γ(u− 2)

Γ(u)
+ Γ2(u)2 ≤ 2(u+ 1)2 + 3.(4.50)
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Using similar lines as the proof of Lemma 5 together with (4.44), it can
be shown that, for all i and j,

Ẽθ?
[

sup
θ∈Θ

∣∣∣∣ ∂∂θiΨθ〈Y−∞:0〉
∣∣∣∣2
]
<∞(4.51)

and

Ẽθ?
[
sup
θ∈Θ

∣∣∣∣ ∂2

∂θi∂θj
Ψθ〈Y−∞:0〉

∣∣∣∣] <∞.(4.52)

From (4.48), (4.49) and (4.46), we have, for all i 6= 2p+ 1, P̃θ?-a.s.,∣∣∣∣∂`θ1∂θi

∣∣∣∣ ≤ (2Yk + r̄

ω

)
sup
θ∈Θ

∣∣∣∣δTp ∂

∂θi
Ψθ〈Y−∞:0〉

∣∣∣∣ ,∣∣∣∣ ∂`θ1
∂θ2p+2

∣∣∣∣ ≤ Y1 + C̃ + ln

(
1 + sup

θ∈Θ

∣∣∣∣δTp ∂

∂θi
Ψθ〈Y−∞:0〉

∣∣∣∣) ,
where C̃ is a positive constant. Using tower property, (4.44) and (4.51), we
obtain that for all i,

Ẽθ?
[

sup
θ∈Θ

∣∣∣∣∂`θ1∂θi

∣∣∣∣2
]
<∞.

By similar argument, we can obtain from (4.44), (4.50), (4.51) and (4.52)
that, for all i and j,

Ẽθ?
[
sup
θ∈Θ

∣∣∣∣ ∂2`θ1
∂θi∂θj

∣∣∣∣] <∞.
Thus, (CG-6)-(i) and (CG-6)-(ii) hold. Note that for all i, j, we have, P̃θ?-a.s.,

∂

∂θi
gθ
(

Πp(Ψ
θ〈Y−∞:0〉);Y1

)
= gθ

(
Πp(Ψ

θ〈Y−∞:0〉);Y1

) ∂`θ1
∂θi

and

∂2

∂θi∂θj
gθ
(

Πp(Ψ
θ〈Y−∞:0〉);Y1

)
= gθ

(
Πp(Ψ

θ〈Y−∞:0〉);Y1

) ∂2`θ1
∂θi∂θj

+
∂

∂θi
gθ
(

Πp(Ψ
θ〈Y−∞:0〉);Y1

) ∂`θ1
∂θj
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Then, (CG-6)-(iii) follows by observing that for all i, P̃θ?-a.s.,∣∣∣∣ ∂∂θi gθ
(

Πp(Ψ
θ〈Y−∞:0〉);Y1

)∣∣∣∣ = gθ
(

Πp(Ψ
θ〈Y−∞:0〉);Y1

) ∣∣∣∣∂`θ1∂θi

∣∣∣∣ ≤ sup
θ∈Θ

∣∣∣∣∂`θ1∂θi

∣∣∣∣
and

Ẽθ?
[
sup
θ∈Θ

∣∣∣∣∂`θ1∂θi

∣∣∣∣] ≤
(
Ẽθ?

[
sup
θ∈Θ

∣∣∣∣∂`θ1∂θi

∣∣∣∣2
])1/2

<∞.

Similarly, (CG-6)-(iv) holds. For concluding, it remains to check (CG-7).
By Remark 4, it is sufficient to show that (3.23) holds. Now let α =
(α0, . . . , α2p+1) ∈ R2p+2 and for convenience, write θ = (θ0, . . . , θ2p+1) =
(ω, a1:p:,b2:p, b1, r). We have P̃θ?-a.s.,

αT
∂`θ?1
∂θ

=

(
Y1

δTp Ψθ?〈Y−∞:0〉
− Y1 + r?

1 + δTp Ψθ?〈Y−∞:0〉

)
2p∑
i=0

αiδ
T
p

∂Ψθ?〈Y−∞:0〉
∂θi

+ α2p+1

[
Γ2(Y1 + r?)− Γ2(r?)− ln

(
1 + δTp Ψθ?〈Y−∞:0〉

)]
.

Since Y1 conditionally on σ(Y−∞:0) is a negative binomial variable, then

P̃θ?-a.s., αT
∂`θ?1
∂θ = 0 implies

α2p+1

[
Γ2(r?) + ln

(
1 + δTp Ψθ?〈Y−∞:0〉

)]
= 0, P̃θ?-a.s.

Since Xθ?
1 = δTp Z

θ?
1 = δTp Ψθ?〈Y−∞:0〉 is a random variable, then α2p+1 = 0.

Thus, αT
∂`θ?1
∂θ = 0, P̃θ?-a.s., also implies

2p∑
i=0

αiδ
T
p

∂Ψθ?〈Y−∞:0〉
∂θi

= 0, P̃θ?-a.s.

The rest of the proof follows by the same argument as in the proof of Propo-
sition 12–(iii) and is thus omitted here. The proof therefore follows.

5. Empirical Study.

5.1. Sharpness of Ergodicity Condition (4.8) for the Log-linear Poisson
GARCH Model. We assess the sharpness of our general ergodicity condition
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(4.8) for the log-linear Poisson GARCH model by simulating several time
series with different values of the condition level

νL :=
∨

(k1,...,kp)∈{1,2}p

∥∥∥∥∥∥
p∏
j=1

Akj

∥∥∥∥∥∥
∞

and in the cases where p = 1 and 2. Each generated time series holds 2000
observations. Figure 1 presents three log-linear Poisson GARCH time series
of order (1, 1) with different parameters: Series ODM(1, 1)-(a) corresponds
to the model with parameter (ω, a1, b1) = (−.03,−.7, 1.2) and νL = .7; Se-
ries ODM(1, 1)-(b) corresponds to the model with parameter (ω, a1, b1) =
(−.03, .57, .38) and νL = .95; and Series ODM(1, 1)-(c) corresponds to
the model with parameter (ω, a1, b1) = (−.03, .603, .402) and νL = 1.005.
Remark that in Series ODM(1, 1)-(a), we allow the parameter b1 to be
greater than one. Figure 2 exhibits three log-linear Poisson GARCH time
series of order (2, 2) with different parameters. Series ODM(2, 2)-(a) corre-
sponds to the model with parameter (ω, a1, a2, b1, b2) = (−.02, .4, .1, .3, .1)
and νL = .9; Series ODM(2, 2)-(b) corresponds to the model with param-
eter (ω, a1, a2, b1, b2) = (−.02, .44, .11, .33, .11) and νL = .99; and Series
ODM(2, 2)-(c) corresponds to the model with parameter (ω, a1, a2, b1, b2) =
(−.02, .446, .1115, .3345, .1115) and νL = 1.0062. For both Figure 1 and Fig-
ure 2, it turns out that when the condition level νL is far away from its
boundary (νL < 1), the processes appear quite stable. However, the level
of instability seems to increase as the condition level νL gets closer to one.
When this boundary is passed, the models appear to be unstable. We should
remark that when νL < 1, the stable behavior of these processes is persistent
regardless of their starting points.
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Fig 1. Simulated time series for the log-linear Poisson GARCH of order (1, 1). Se-
ries ODM(1,1)-(a), -(b) and -(c) corresponds to the parameters (ω, a1, b1) equal to
(−.03,−.7, 1.2), (−.03, .57, .38) and (−.03, .603, .402), respectively.
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Fig 2. Simulated time series for the log-linear Poisson GARCH of order (2, 2). Se-
ries ODM(2,2)-(a), -(b) and -(c) corresponds to the parameters (ω, a1, a2, b1, b2) equal
to (−.02, .4, .1, .3, .1), (−.02, .44, .11, .33, .11) and (−.02, .446, .1115, .3345, .1115), respec-
tively.

5.2. Data Example. Our purpose here is to give some empirical evi-
dence on some particular time series data for which higher-order ODMs
may be more appropriate than the first-order ones. Our data set, provided
by U.S. Geology Survey (USGS) (downloadable on: http://earthquake.

http://earthquake.usgs.gov/earthquakes/search/
http://earthquake.usgs.gov/earthquakes/search/
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usgs.gov/earthquakes/search/), contains a time series of numbers of
earthquakes occurring hourly around the globe with magnitudes larger than
4.0 Richters (a level that is detectable by humans), consisting of 8759
observations during the year 2014, from January 1 to December 31. The
time series and its serial correlation plots are shown in Figure 3 and Fig-
ure 4, respectively, exhibiting that data possesses a long memory. In our
analysis, we used the first 8559 observations for conducting the param-
eter estimation and the last 200 observations for evaluating the predic-
tion performance of the fitted models. We fitted the data by several dif-
ferent models, by the negative binomial integer-valued GARCH (NBIN-
GARCH) and the log-linear Poisson GARCH models with different orders:
(1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 2) and (3, 3). For estimating the parame-
ters, we use the constrained nonlinear optimization function auglag (Aug-
mented Lagrangian Minimization Algorithm) from the package alabama

(Augmented Lagrangian Adaptive Barrier Minimization Algorithm) in R.
The values of AIC, BIC and average squared prediction error (ASPE),
ASPE = m−1

∑m
k=1(Yk − Ŷk)2, where Ŷk is the predictor of the observation

Yk—hence the mean process evaluated at the MLE, for these models are re-
ported in Table 1. It shows that, using either the AIC or BIC criterion, the
higher-order models are preferred for both the NBIN-GARCH and the log-
linear Poisson GARCH, opposed to their first-order counterparts. Among
the fitted models, for the NBIN-GARCH, the AIC suggests the model
of order (3, 3) corresponding to the estimator (ω̂, â1, â2, â3, b̂1, b̂2, b̂3, r̂) =
(.035, .424, .068, .222, .021, 1.036× 10−8, 5.681× 10−8, 7.431), while the BIC
favors the model of order (3, 1) corresponding to the estimated param-
eter (ω̂, â1, â2, â3, b̂1, r̂) = (.036, .414, .067, .232, .022, 7.131). We observe
that the values of b̂2 and b̂3 are so small that they might be insignif-
icant to be included. However, to discard these coefficients from the
model properly, we may need to conduct a hypothesis testing and this
is beyond the scope of this paper. Meanwhile, let us keep these terms
in the model for convenience. For the log-linear Poisson GARCH mod-
els, the AIC suggests the model of (3, 3) corresponding to the estimator
(ω̂, â1, â2, â3, b̂1, b̂2, b̂3) = (−.043, .495, .142, .091, .256, 1.084 × 10−5,−.017),
whereas the BIC picks the model with order (2, 1) corresponding to the esti-
mator (ω̂, â1, â2, b̂1) = (−.041, .471, .234, .251). The estimators for the NBIN-
GARCH(1, 1) and for the log-linear Poisson GARCH(1, 1) are (ω̂, â1, b̂1, r̂) =
(.041, .719, .019, 6.997) and (ω̂, â1, b̂1) = (−.028, .722, .226), respectively. Ta-
ble 1 also shows that the ASPE values of the models selected by either the
AIC or the BIC criterion are lower than those of the first-order ones. This
suggests that the higher-order models outperform in both cases of the NBIN-

http://earthquake.usgs.gov/earthquakes/search/
http://earthquake.usgs.gov/earthquakes/search/
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GARCH and the log-linear Poisson GARCH. However, there are barely any
differences between these values for the models selected by the AIC and
by the BIC, respectively. By comparing across the models, the selected log-
linear Poisson GARCH model seems to yield prediction performance as well
as the selected NBIN-GARCH model in our data. Figure 5 and Figure 6
respectively depict the predicted series of first-order models and the ones
chosen by AIC and BIC, compared with the real observations, for the NBIN-
GARCH and the log-linear Poisson GARCH.

Table 1
AIC, BIC and ASPE values for the NBIN-GARCH and the log-linear Poisson GARCH

models with different orders: (1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 2) and (3, 3).

NBIN-GARCH
(1, 1) (1, 2) (2, 1) (2, 2) (3, 1) (3, 2) (3, 3)

AIC 30102 30097 30083 30078 30074 30070 30065
BIC 30130 30132 30118 30120 30117 30119 30122

ASPE 1.633 1.633 1.618 1.633 1.614 1.614 1.613
Log-linear Poisson GARCH

(1, 1) (1, 2) (2, 1) (2, 2) (3, 1) (3, 2) (3, 3)
AIC 30632 30621 30616 30614 30610 30608 30607
BIC 30653 30649 30644.5 30649 30645.4 30651 30656

ASPE 1.654 1.658 1.616 1.616 1.613 1.615 1.617
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Hourly Occurrence of Earthquakes in 2014, Magnitude > 4.0
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Fig 3. Time series of numbers of earthquakes in 2014, from January 1 to December 31
(hourly).
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Fig 4. Sample autocorrelation function.
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Prediction Performance of NBIN-GARCH Model
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Fig 5. Predicted series by the NBIN-GARCH of order (1, 1) (dashed blue), by the one
selected by the AIC (long dashed red) and by the one selected by the BIC (small dotted
green), compared to the true series (black).
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Prediction Performance of Log-linear Poisson GARCH Model
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Fig 6. Predicted series by the log-linear Poisson GARCH of order (1, 1) (dashed blue), by
the one selected by the AIC (long dashed red) and by the one selected by the BIC (small
dotted green), compared to the true series (black).

6. Postponed Proofs.

6.1. Proof of Lemma 5.

Proof. From (3.13), for all n ∈ Z∗+, θ ∈ Θ, z ∈ Z, and y1:n ∈ Yn, we have
(6.1)

Ψθ〈y1:n〉(z) =

(
n∏
`=1

a(θ, yn−`+1)

)
z +

n∑
k=1

(
k−1∏
`=1

a(θ, yn−`)

)
b(θ, yn−k+1).

Then, for all m ∈ Z+, θ ∈ Θ and z ∈ Z, we get that

Ψθ〈Y−m:0〉(z) =

(
m∏
`=0

a(θ, Y−`)

)
z +

m∑
k=0

(
k−1∏
`=0

a(θ, Y−`)

)
b(θ, Y−k).

By (CG-1)(ii), we have

lim
m→∞

sup
θ∈Θ

∥∥∥∥∥
(

m∏
`=0

a(θ, Y−`)

)
z

∥∥∥∥∥ = 0, P̃θ?-a.s.

Moreover, we have
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∞∑
k=0

∥∥∥∥∥
(
k−1∏
`=0

a(θ, Y−`)

)
b(θ, Y−k)

∥∥∥∥∥ ≤ C̄
∞∑
k=0

ρk sup
θ∈Θ
‖b(θ, Y−k)‖ ,

for some positive constant C̄. By (CG-1)(iii) and Lemma 21, the right-hand
side of the the above inequality converges P̃θ?-a.s. This implies that for all
z ∈ Z, the sequence {Ψθ〈Y−m:0〉(z) : m ∈ Z+} converges uniformly on Θ

to a limit Ψθ〈Y−∞:0〉 :=
∑∞

k=0

(∏k−1
`=0 a(θ, Y−`)

)
b(θ, Y−k), P̃θ?-a.s., showing

that (3.4) is satisfied. Next we show that (3.5) is satisfied. Note that for all
m ∈ Z+

Ψθ?〈Y−m:0〉(Z−m) =

(
m∏
`=0

a(θ?, Y−`)

)
Z−m +

m∑
k=0

(
k−1∏
`=0

a(θ?, Y−`)

)
b(θ?, Y−k).

Since {Z−m : m ∈ Z+} is stationary under Pθ? so that it is bounded in
probability, and since limm→∞

∏m
`=0 a(θ?, Y−`) = 0, Pθ?-a.s., it then implies

that limm→∞ (
∏m
`=0 a(θ?, Y−`))Z−m = 0 in Pθ?-probability. From the proof

above, we have

lim
m→∞

m∑
k=0

(
k−1∏
`=0

a(θ?, Y−`)

)
b(θ?, Y−k) = Ψθ?〈Y−∞:0〉, Pθ?-a.s.

Note also that for all m ∈ Z+, Z1 = Ψθ?〈Y−m:0〉(Z−m), Pθ?-a.s. We therefore
get that

Ψθ?〈Y−∞:0〉 = Z1, Pθ?-a.s.,

showing (3.5). In addition, (CG-1)(iii) implies

Ẽθ?
[
sup
θ∈Θ

∥∥∥Ψθ〈Y−∞:0〉
∥∥∥] ≤ C̄ ∞∑

k=0

ρkẼθ?
[
sup
θ∈Θ
‖b(θ, Y−k)‖

]
≤ C̄

1− ρ
Ẽθ?

[
sup
θ∈Θ
‖b(θ, Y1)‖

]
<∞,

showing (3.16).
For any i, we have
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∂Ψθ〈Y−m:0〉(z)
∂θi

=
∂ [(
∏m
`=0 a(θ, Y−`)) z]

∂θi
+

m∑
k=0

∂
[(∏k−1

`=0 a(θ, Y−`)
)
b(θ, Y−k)

]
∂θi

=

m∑
`′=0

(
m∏
`=0

a`′,i(θ, Y−`)

)
z +

m∑
k=0

(
k−1∑
`′=0

k−1∏
`=0

a`′,i(θ, Y−`)

)
b(θ, Y−k)

+
m∑
k=0

(
k−1∏
`=0

a(θ, Y−`)

)
∂b(θ, Y−k)

∂θi
,

where for all i, `, `′,

(6.2) a`′,i(θ, Y−`) =

{
a(θ, Y−`) if ` 6= `′

∂
∂θi
a(θ, Y−`) if ` = `′.

From (CG-1)(ii), we have∥∥∥∥∥
m∑
`′=0

(
m∏
`=0

a`′,i(θ, Y−`)

)
z

∥∥∥∥∥ ≤
m∑
`′=0

∥∥∥∥∥
m∏
`=0

a`′,i(θ, Y−`)

∥∥∥∥∥ ‖z‖
≤

m∑
`′=0

C2ρm
∥∥∥∥∂a(θ, Y−`′)

∂θi

∥∥∥∥ ‖z‖
≤ C2‖z‖

(
1 + ρ

2

)m m∑
`′=0

(
2ρ

1 + ρ

)`′
sup
θ∈Θ

∥∥∥∥∂a(θ, Y−`′)

∂θi

∥∥∥∥ .
We have from (CG-1)(iv) and by Lemma 21,

∞∑
`′=0

(
2ρ

1 + ρ

)`′
sup
θ∈Θ

∥∥∥∥∂a(θ, Y−`′)

∂θi

∥∥∥∥ <∞, P̃θ?-a.s.

Thus, P̃θ?-a.s.,
∥∥∑m

`′=0

(∏m
`=0 a`′,i(θ, Y−`)

)
z
∥∥ converges uniformly (in θ) to

zero. Moreover, there exist a constant ρ1 ∈ (0, 1) and a P̃θ?-a.s. finite random
variable M̃1 > 0 with Ẽθ? [M̃1] <∞ such that for all m ∈ Z+,

(6.3)
m∑
`′=0

sup
θ∈Θ

∥∥∥∥∥
m∏
`=0

a`′,i(θ, Y−`)

∥∥∥∥∥ ≤ M̃1ρ
m
1 , P̃θ?-a.s.
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Next, we show that P̃θ?-a.s.,

m∑
k=0

(
k−1∑
`′=0

k−1∏
`=0

a`′,i(θ, Y−`)

)
b(θ, Y−k)

converges uniformly on Θ. We obtain from (6.3), P̃θ?-a.s.,

m∑
k=0

∥∥∥∥∥
(
k−1∑
`′=0

k−1∏
`=0

a`′,i(θ, Y−`)

)
b(θ, Y−k)

∥∥∥∥∥ ≤ M̃1

m∑
k=0

ρk−1
1 sup

θ∈Θ
‖b(θ, Y−k)‖

≤ M̃1

∞∑
k=0

ρk−1
1 sup

θ∈Θ
‖b(θ, Y−k)‖ ,

which is finite from (CG-1)(iii) and Lemma 21. To conclude (3.14), it remains
to show that P̃θ?-a.s.,

m∑
k=0

(
k−1∏
`=0

a(θ, Y−`)

)
∂b(θ, Y−k)

∂θi

converges uniformly on Θ. We have P̃θ?-a.s.,

m∑
k=0

∥∥∥∥∥
(
k−1∏
`=0

a(θ, Y−`)

)
∂b(θ, Y−k)

∂θi

∥∥∥∥∥ ≤
m∑
k=0

Cρk sup
θ∈Θ

∥∥∥∥∂b(θ, Y−k)∂θi

∥∥∥∥
≤ C

∞∑
k=0

ρk sup
θ∈Θ

∥∥∥∥∂b(θ, Y−k)∂θi

∥∥∥∥ ,
which is finite by (CG-1)(iv) and Lemma 21. Thus the sequence

{∂Ψθ〈Y−m:0〉(z)
∂θ : m ∈ Z+} P̃θ?-a.s. converges uniformly on Θ and this follows

that for all z ∈ Z and θ ∈ Θ,

lim
m→∞

∂Ψθ〈Y−m:0〉(z)
∂θ

=
∂

∂θ
lim
m→∞

Ψθ〈Y−m:0〉(z) =
∂Ψθ〈Y−∞:0〉

∂θ
, P̃θ?-a.s.,

showing that the quantity ∂Ψθ〈Y−∞:0〉
∂θ is P̃θ?-a.s. well defined. The fact that

(3.17) holds follows from (CG-1)(iv), (3.16) and (6.3).
For any i, j, we have
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∂2Ψθ〈Y−m:0〉(z)
∂θj∂θi

=
m∑
`′=0

∂

∂θj

(
m∏
`=0

a`′,i(θ, Y−`)

)
z

+

m∑
k=0

∂

∂θj

[(
k−1∑
`′=0

k−1∏
`=0

a`′,i(θ, Y−`)

)
b(θ, Y−k)

]

+
m∑
k=0

∂

∂θj

[(
k−1∏
`=0

a(θ, Y−`)

)
∂b(θ, Y−k)

∂θi

]
= U1,m(θ) + U2,m(θ) + U3,m(θ) + U4,m(θ) + U5,m(θ),

where

U1,m(θ) =
m∑
`′=0

m∑
`′′=0

(
m∏
`=0

a`′,`′′,i,j(θ, Y−`)

)
z,

U2,m(θ) =
m∑
k=0

(
k−1∑
`′=0

k−1∑
`′′=0

k−1∏
`=0

a`′,`′′,i,j(θ, Y−`)

)
b(θ, Y−k),

U3,m(θ) =
m∑
k=0

(
k−1∑
`′=0

k−1∏
`=0

a`′,i(θ, Y−`)

)
∂b(θ, Y−k)

∂θj
,

U4,m(θ) =
m∑
k=0

(
k−1∑
`′=0

k−1∏
`=0

a`′,j(θ, Y−`)

)
∂b(θ, Y−k)

∂θi
,

U5,m(θ) =

m∑
k=0

(
k−1∏
`=0

a(θ, Y−`)

)
∂2b(θ, Y−k)

∂θj∂θi
,

and with for all i, j, `, `′, `′′,

(6.4) a`′,`′′,i,j(θ, Y−`) =

{
a`′,i(θ, Y−`) if ` 6= `′′

∂a`′,i(θ,Y−`)

∂θj
if ` = `′′,

and from (6.2),

(6.5)
∂a`′,i(θ, Y−`)

∂θj
=

{∂a(θ,Y−`)
∂θj

if ` 6= `′

∂2a(θ,Y−`)
∂θj∂θi

if ` = `′.
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To establish that {∂
2Ψθ〈Y−m:0〉(z)

∂θj∂θi
: m ∈ Z+} is almost surely uniformly

convergent on Θ, it requires proving that for all i ∈ {1, . . . , 5}, the sequences
{Ui,m(θ) : m ∈ Z+} converges uniformly on Θ. We have

‖U1,m(θ)‖ =

∥∥∥∥∥
m∑
`′=0

m∑
`′′=0

(
m∏
`=0

a`′,`′′,i,j(θ, Y−`)

)
z

∥∥∥∥∥
≤

m∑
`′=0

m∑
`′′=0

∥∥∥∥∥
m∏
`=0

a`′,`′′,i,j(θ, Y−`)

∥∥∥∥∥ ‖z‖
(1)

≤ M̃2
1 ‖z‖

m∑
`′=0

m∑
`′′=0

ρm1 sup
θ∈Θ

∥∥∥∥∂a`′,i(θ, Y−`′′)∂θj

∥∥∥∥
(2)

≤ M̃2
1 ‖z‖

m∑
`′′=0

ρm1

(
m sup

θ∈Θ

∥∥∥∥∂a(θ, Y−`′′)

∂θj

∥∥∥∥+ sup
θ∈Θ

∥∥∥∥∂2a(θ, Y−`′′)

∂θj∂θi

∥∥∥∥) ,
where

(1)

≤ follows from (6.3) and the submultiplicativity of the matrix norm

‖ · ‖, and
(2)

≤ follows from (6.5). By assuming

Ẽθ?
[
ln+ sup

θ∈Θ

∥∥∥∥∂a(θ, Y1)

∂θi

∥∥∥∥] <∞
and

Ẽθ?
[
ln+ sup

θ∈Θ

∥∥∥∥∂2a(θ, Y1)

∂θj∂θi

∥∥∥∥] <∞,
then there exist a constant ρ2 ∈ (0, 1) and a P̃θ?-a.s. finite random variable
M̃2 > 0 with Ẽθ? [M̃2] <∞ such that for all m ∈ Z+,

≤
m∑
`′=0

m∑
`′′=0

∥∥∥∥∥
m∏
`=0

a`′,`′′,i,j(θ, Y−`)

∥∥∥∥∥ ≤ M̃2ρ
m
2 , P̃θ?-a.s.

Consequently, for all z ∈ Z,

lim
m→∞

sup
θ∈Θ
‖U1,m(θ)‖ = 0, P̃θ?-a.s.

Thus, P̃θ?-a.s., the sequence {U1,m(θ) : m ∈ Z+} converges to zero uniformly
on Θ. Next, we have
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‖U2,m(θ)‖ =
m∑
k=0

∥∥∥∥∥
(
k−1∑
`′=0

k−1∑
`′′=0

k−1∏
`=0

a`′,`′′,i,j(θ, Y−`)

)
b(θ, Y−k)

∥∥∥∥∥
≤

m∑
k=0

(
k−1∑
`′=0

k−1∑
`′′=0

∥∥∥∥∥
k−1∏
`=0

a`′,`′′,i,j(θ, Y−`)

∥∥∥∥∥
)
‖b(θ, Y−k)‖

≤ M̃2

m∑
k=0

ρk−1 sup
θ∈Θ
‖b(θ, Y−k)‖ .

Since limm→∞
∑m

k=0 ρ
k−1 supθ∈Θ ‖b(θ, Y−k)‖ < ∞, then P̃θ?-a.s., the se-

quence {U2,m(θ) : m ∈ Z+} converges uniformly on Θ. To show that
{U3,m(θ) : m ∈ Z+} and {U4,m(θ) : m ∈ Z+} converge uniformly on
Θ, P̃θ?-a.s., we proceed similarly as above and apply (6.3) and (CG-1)(iv).
Finally, by the same argument, the almost surely uniform convergence of
{U5,m(θ) : m ∈ Z+} follows from (CG-1)(ii) and (CG-1)(v). The P̃θ?-a.s.

uniform convergence of {∂
2Ψθ〈Y−m:0〉(z)

∂θj∂θi
: m ∈ Z+} on Θ then implies that

θ 7→ ∂2Ψθ〈Y−∞:0〉
∂θj∂θi

is P̃θ?-a.s. well defined and

∂2Ψθ〈Y−∞:0〉
∂θj∂θi

= lim
m→∞

∂2Ψθ〈Y−m:0〉(z)
∂θj∂θi

, P̃θ?-a.s.,

showing (3.15). The proof for (3.18) follows by similar arguments as for
(3.16) and (3.17).

6.2. Proof of Theorem 9. The proof of this theorem follows similar lines
of Douc, Roueff and Sim (2015). To proceed, let us first recall a more general
set of conditions derived in Douc, Doukhan and Moulines (2013) in which
the following definition is required.

Definition 17. Let H̄ be a probability kernel from Z2 to Y⊗2⊗P({0, 1})
satisfying the following marginal conditions, for all (z, z′) ∈ Z2 and B ∈ Y,

(6.6)

{
H̄((z, z′);B × Y × {0, 1}) = H(z;B) = G(Πp(z);B) ,

H̄((z, z′); Y ×B × {0, 1}) = H(z′;B) = G(Πp(z
′);B),

and such that the following coupling condition holds:

(6.7) H̄((z, z′); {(y, y) : y ∈ Y} × {1}) = H̄((z, z′); Y2 × {1}).

Define the following quantities successively.
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– The trace measure of H̄((z, z′); ·) on the set {(y, y) : y ∈ Y} × {1} is
denoted by

Ȟ((z, z′);B) = H̄((z, z′); {(y, y) : y ∈ B} × {1}), B ∈ Y.

– The probability kernel R̄ from (Z2,Z⊗2) to (Z2 × {0, 1},Z⊗2 ⊗
P({0, 1})) is defined for all z, z′ ∈ Z2 and A ∈ X⊗2 by

R̄((z, z′);A× {1}) =

∫
Y
1A(ψy(z), ψy(z

′)) Ȟ((z, z′); dy).

– The measurable function α from Z2 to [0, 1] is defined by

(6.8) α(z, z′) = R̄((z, z′); Z2 × {1}) = H̄((z, z′); Y2 × {1}).

– The kernel R̂ is defined for all (z, z′) ∈ Z2 and A ∈ Z⊗2 by

(6.9) R̂((z, z′);A) =


R̄((z, z′);A× {1})

α(z, z′)
if α(z, z′) > 0,

0 otherwise.

We can now introduce the so-called contracting condition which yields
ergodicity.

(AG-8) There exists a kernel H̄ yielding α and R̂ as in Definition 17, a measurable
function W : Z2 → [1,∞) satisfying Conditions (AG-7)(ii) and (AG-
7)(iii) and real numbers (D, ζ1, ζ2, ρ) ∈ (R+)3 × (0, 1) such that for all
(z, z′) ∈ X2 and, for all n ≥ 1,

R̂n((z, z′); dZ) ≤ DρndZ(z, z′),(6.10)

R̂n((z, z′); dZ ×W ) ≤ Dρndζ1Z (z, z′)W ζ2(z, z′).(6.11)

Under Conditions (AG-3), (AG-4), (AG-5) and (AG-8) and by combining
Theorem 6, Proposition 8 and Lemma 7 in Douc, Doukhan and Moulines
(2013), we immediately obtain the following result.

Theorem 18. Assume (AG-3), (AG-4), (AG-5) and (AG-8). Then the
Markov kernel K admits a unique invariant distribution π and π1(V̄ ) <∞
for any V̄ : X→ R+ such that V̄ . V .

Assumptions (AG-3), (AG-4) and (AG-5) are quite usual and easy to check.
The key point to obtain ergodicity is thus to construct H̄ satisfying (AG-8).
For this, we can also rely on the following result which is an adaption of
(Douc, Doukhan and Moulines, 2013, Lemma 9).
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Lemma 19. Assume that there exists (%, β,D1, D2, `, `
′) ∈ (0, 1) × R ×

R+ × R+ × Z∗+ × Z∗+ such that for all (z, z′) ∈ Z2,

R̂
(
(z, z′);1(D1dZ(z,z′),∞) ◦ dZ

)
= 0,(6.12)

R̂`
(
(z, z′);1(%dZ(z,z′),∞) ◦ dZ

)
= 0,(6.13)

and

R̂W ≤ D2W,(6.14)

R̂`
′
W ≤W + β.(6.15)

Then, (6.10) and (6.11) hold.

Remark 13. Lemma 19 still holds if we replace (6.14) and (6.15) by

R̂`
′+rW ≤W + β, r ∈ {0, . . . , `′ − 1}.

Proof. Without loss of generality, we can assume that ` = `′ = m,
otherwise we can take m = ` ∨ `′. For positive integer n, write n = km+ r,
where r ∈ {0, . . . ,m− 1} and k ∈ Z+. We have

R̂n
(
(z, z′); dZ

)
= R̂km+r

(
(z, z′); dZ

)
=

∫
R̂km

(
(z, z′); dz1dz′1

)
R̂r
(
(z1, z

′
1); dZ

)
=

∫
R̂km

(
(z, z′); dz1dz′1

)
R̂r
(

(z1, z
′
1); dZ1[0,D1dZ(z1,z′1)] ◦ dZ

)
≤
∫
R̂km

(
(z, z′); dz1dz′1

)
Dr

1dZ(z1, z
′
1)

≤ Dr
1

∫
R̂(k−1)m

(
(z, z′); dz2dz′2

)
R̂m

(
(z2, z

′
2); dz1dz′1

)
dZ(z1, z

′
1)

≤ %Dr
1

∫
R̂(k−1)m

(
(z, z′); dz2dz′2

)
dZ(z2, z

′
2)

· · ·

≤ %kDr
1dZ(z, z′) ≤ %−1

(
m−1∨
r=0

Dr
1

)(
%1/m

)n
dZ(z, z′).
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Similarly, we have

R̂n((z, z′); dZ ×W ) =

∫
R̂km

(
(z, z′); dz1dz′1

)
R̂r
(
(z1, z

′
1); dZ ×W

)
≤
∫
R̂km((z, z′); dz1dz′1)Dr

1D
r
2dZ(z1, z

′
1)W (z1, z

′
1)

≤ Dr
1D

r
2

∫
R̂(k−1)m((z, z′); dz2dz′2)R̂m((z2, z

′
2); dz1dz′1)dZ(z1, z

′
1)W (z1, z

′
1)

≤ %Dr
1D

r
2

∫
R̂(k−1)m((z, z′); dz2dz′2)dZ(z2, z

′
2)(W (z2, z

′
2) + β)

· · ·
≤ Dr

1D
r
2%
k(W (z, z′) + βk)dZ(z, z′).

Since for all % ∈ (0, 1), limk→∞ k%
k = 0, then there exists D̄ > 0 and

%̄ ∈ [%, 1) such that

R̂n((z, z′); dZ ×W ) ≤ D̄%̄k−1W (z, z′)dZ(z, z′)

≤ D̄(%̄1/m)nW (z, z′)dZ(z, z′).

Setting D = D̄ ∨
(
%−1

(∨m−1
r=0 Dr

1

))
and ρ = %1/m ∨ %̄1/m, we get (6.10) and

(6.11).

Now we can prove that our set of conditions is sufficient.

Proof of Theorem 9. We only need to show that (AG-6) and (AG-7)
imply (AG-8). We preface our proof by the following lemma, which is adapted
from (Douc, Roueff and Sim, 2015, Lemma 5).

Lemma 20. Assume (AG-7)(i). Then one can define a kernel H̄ as
in Definition 17 with the same α given in (6.8). Moreover, the kernel R̂
defined by (6.9) satisfies, for all (z, z′) ∈ Z2 such that α(z, z′) > 0 and all
measurable functions f : Z2 → R+,

(6.16) R̂((z, z′); f) = G(φ(z, z′); f̃) with f̃(y) = f
(
Ψy(z),Ψy(z

′)
)
.

Let us complete the proof of Theorem 9 before proving this lemma. By
Lemma 20 and Lemma 19, it remains to check that (6.12) and (6.14) hold
for all (z, z′) ∈ Z2. Observe that by definition of R̂, we have for all n ∈ Z∗+,
(z, z′) ∈ Z2 and measurable function f : Z2 → R,

R̂n
(
(z, z′); f

)
= Jn

(
(z, z′); f

)
.
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So, condition (AG-7)(iv) can be equivalently stated as: there exist m ∈ Z∗+
and D > 0 such that

sup
(z,z′)∈Z2

(
R̂m

(
(z, z′);W

)
−W (z, z′)

)
<∞

and
sup

(z,z′)∈Z2

(
R̂
(
(z, z′);W

)
−DW (z, z′)

)
<∞.

Thus we can find (β,D2) ∈ R× (0,∞) such that (6.14) and (6.15) hold for
all (z, z′) ∈ Z2.

Now, let (z, z′) ∈ Z2. When z = z′, then for all n ∈ Z∗+ and y1:n ∈ Yn,
dZ(Ψ〈y1:n〉(z),Ψ〈y1:n〉(z′)) = 0, implying that (6.12) and (6.13) hold with
any nonnegative D1 and %. For z 6= z′, let D1 and % be defined respectively
by

D1 =
`−1∨
k=1

sup
(z,z′,y1:k)∈Z2×Y

z 6=z′

dZ(Ψ〈y1:k〉(z),Ψ〈y1:k〉(z′))
dZ(z, z′)

,

and

% = sup
(z,z′,y1:`)∈Z2×Y

z 6=z′

dZ(Ψ〈y1:`〉(z),Ψ〈y1:`〉(z′))
dZ(z, z′)

.

By (AG-6), we have D1 ∈ (0,∞) and % ∈ (0, 1). Therefore, Conditions (6.12)
and (6.13) hold for all (z, z′) ∈ Z2 with the above D1 and %.

We conclude this section with the postponed

Proof of Lemma 20. Let (z, z′) ∈ Z2. We define H̄((z, z′); ·) as the
distribution of (Y, Y ′, U) drawn as follows. We first draw a random variable
Ȳ taking values in Y with density g(φ(z, z′); ·) with respect to ν. Then we
define (Y, Y ′, U) by separating the two cases, α(z, z′) = 1 and α(z, z′) < 1.

• Suppose that α(z, z′) = 1. Then from (AG-7)(i), we have

H(z; ·) = H(z′; ·) = G(φ(z, z′); ·).

In this case, we set (Y, Y ′, U) = (Ȳ , Ȳ , 1).
• Suppose now that α(z, z′) < 1. Then, using (3.26), the functions

(1− α(z, z′))−1
[
g(Πp(z); ·)− α(z, z′)g(φ(z, z′); ·)

]
and

(1− α(z, z′))−1
[
g(Πp(z

′); ·)− α(z, z′)g(φ(z, z′); ·)
]
,
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are probability density functions with respect to ν and we let Λ and
Λ′ be two independent random variables taking values in Y drawn
with these two density functions, respectively. In this case we draw
U independently according to a Bernoulli variable with mean α(z, z′)
and set

(Y, Y ′) =

{
(Ȳ , Ȳ ) if U = 1,

(Λ,Λ′) if U = 0.

One can easily check that the so defined kernel H̄ satisfies (6.6) and (6.7).
Moreover, for all (z, z′) ∈ Z2,

H̄((z, z′); Y2 × {1}) = P(U = 1) = α(z, z′),

which is compatible with (6.8). The kernel R̂ is defined by setting R̂((z, z′); ·)
as the conditional distribution of (Z,Z ′) = (ΨY (z),ΨY (z′)) given that U =
1. To complete the proof of Lemma 20, observe that for any measurable
f : Z2 → R+, we have, for all (z, z′) ∈ Z2 such that α(z, z′) > 0,

R̂((z, z′); f) = E
[
f(ΨY (z),ΨY (z′)) | U = 1

]
= E

[
f(ΨȲ (z),ΨȲ (z′))

]
= G(φ(z, z′); f̃),

where f̃(y) = f(Ψy(z),Ψy(z
′)) for all y ∈ Y.

6.3. Proof of Lemma 11. If ai ≥ 0, bi ≥ 0, for all i ∈ {1, . . . , p}, and∑p
i=1(ai + bi) < 1, it is trivial that |λ|max(A + bδTp ) < 1. Otherwise, there

would exist some λ such that |λ|−1 ≤ 1 and∣∣∣∣∣
p∑
i=1

(ai + bi)λ
−i

∣∣∣∣∣ ≤
p∑
i=1

(ai + bi) |λ|−i < 1.

This would imply P (λ) = λ2p−1
(
1−

∑p
k=1(ak + bk)λ

−k) 6= 0. Suppose on

the other hand that λ? = |λ|max(A + bδTp ) < 1. From (4.1), we can write

P (λ) as a product of λp−1 and Q(λ) = λp −
∑p

k=1(ak + bk)λ
p−k. Note that

λ? = 0 if and only if
∑p

i=1(ai+bi) = 0. Then we can suppose that 0 < λ? < 1,
then there exists j ∈ {1, . . . , p} such that aj + bj > 0. Furthermore, note
that for all i ∈ {1, . . . , p}, (ai + bi)λ

?i ≥ (ai + bi)λ
?p and this inequality

is strict when i = j. Thus from Perron-Frobenius theorem for nonnegative
matrix, Q(λ?) = 0, and we have

0 < λ?p
(

1−
p∑
i=1

(ai + bi)

)
.
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This completes the proof since λ? > 0.

6.4. Proof of Lemma 13. If ϑ ≤ 0, then (4.11) holds since (1 + Y )ϑ ≤ 1.
Note that for s ∈ (0, 1], we have

E[(1 + Y )s] ≤ (E[1 + Y ])s ≤ (1 + ζ)s ≤ 1 + ζs.

Thus, (4.11) holds when ϑ ∈ (0, 1]. For ϑ ∈ (1, 3/2], then there exists s1 ∈
(0, 1/2] such that ϑ = 1 + s1. By Cauchy-Schwartz inequality, we have

E[(1 + Y )ϑ] = E[(1 + Y )(1 + Y )s1 ] ≤
(
E[(1 + Y )2]

)1/2 (E[(1 + Y )2s1 ]
)1/2

≤ (1 + 3ζ + ζ2)1/2(1 + ζ)s1 ≤ c1 + c2ζ
ϑ,

for some constants c1, c2 > 0. If ϑ ∈ (3/2, 2], then there exists s2 ∈ (0, 1/2]
such that ϑ = 3/2 + s2 and

E[(1 + Y )ϑ] = E[(1 + Y )3/2(1 + Y )s] ≤
(
E[(1 + Y )3]

)1/2 (E[(1 + Y )2s2 ]
)1/2

≤ (1 + 7ζ + 6ζ2 + ζ3)1/2(1 + ζ)s2 ≤ c3 + c4ζ
ϑ,

for some constants c3, c4 > 0. Finally, if ϑ > 2, then there exists s3 ∈ (0, 1]
such that ϑ = bϑc+ s3 and we have

E
[
(1 + Y )ϑ

]
= E

[
(1 + Y )bϑc(1 + Y )s3

]
≤
(
E
[
(1 + Y )2bϑc

])1/2 (
E
[
(1 + Y )2s3

])1/2
≤
(

1 + 2bϑc
(
E
[
Y 2bϑc

])1/2
)

(c5 + c6ζ
s3) ,

for some constants c5, c6 > 0. The proof then follows by observing that

lim
ζ→∞

(
E
[
Y 2bϑc])1/2
ζbϑc

= 1.

Lemma 21. Let {Uk : k ∈ Z+} be a stationary sequence of real-valued
random variables on (Ω,F ,P). Assume that E(ln+ |U0|) <∞. Then, for all
η ∈ (0, 1),

lim
k→∞

ηkUk = 0 , P-a.s.

Proof. See (Douc, Doukhan and Moulines, 2013, Lemma 34).
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