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Several semi-relativistic Hamiltonians have been proposed to describe the interaction of light
with magnetic matter. In the calculation of x-ray magnetic circular dichroism, these different
Hamiltonians lead to different results. Gauge invariance is supposed to help choosing the proper
Hamiltonian, but we show that the semi-classical formulation of the absorption cross-section is not
gauge invariant in a commonly accepted sense.

To avoid the problem of choosing the proper semi-relativistic Hamiltonian, we start from the
fully relativistic absorption and scattering cross-sections given by quantum electrodynamics and we
derive a semi-relativistic expansion of the cross-sections by formulating a new many-body Foldy-
Wouthuysen transformation of the wavefunctions in the transition matrix elements.

In the process, a new light-matter interaction term emerges, called the spin-position interaction,
that contributes significantly to the magnetic x-ray circular dichroism of transition metals. In
the case of absorption, the final formula agrees with the result obtained from one of the semi-
relativistic Hamiltonians. However, the correct scattering cross-section is not given by any of the
semi-relativistic Hamiltonians.

PACS numbers:

I. INTRODUCTION

This paper deals with the description of magnetic ef-
fects in spectroscopy. In molecular and condensed matter
physics, the effects of relativity are often described by us-
ing a one-body Foldy-Wouthuysen Hamiltonian.1,2 In x-
ray scattering spectroscopy, another (many-body) Hamil-
tonian, due to Blume,3–5 is almost universally used. In
fact, we found in the literature different semi-relativistic
Hamiltonians and it is important to determine which one
(if any) is correct.
It turns out that the situation is rather confused. We

present four non-relativistic Hamiltonians giving differ-
ent results. Since only gauge-invariant observables are
physically meaningful, it seems reasonable to choose a
Hamiltonian that gives a gauge-invariant cross-section.
However, if we use the semi-classical approach where the
incident photon is described by an external field, then
the transition probabilities are not gauge invariant. In
particular, it is not enough to use a Hamiltonian where
p is replaced by p − eA. We review the proposed solu-
tions to this problem and we conclude that, to obtain a
gauge-invariant result, we need to work in the framework
of quantum electrodynamics (QED) where the photon is
represented by a state and not by a time-dependent ex-
ternal potential.
This leads to an alternative route to magnetic effects

in spectroscopy. Instead of including relativistic effects
in a semi-relativistic Hamiltonian, we start from the fully
relativistic absorption and scattering cross-sections given
by quantum electrodynamics and we apply a many-body
Foldy-Wouthuysen transformation to the Dirac wave-
functions in the relativistic matrix elements.
As a result, we find that an additional spin-position

term must be including in both absorption and scattering
cross-sections.

We describe now the outline of this paper. Section 2
presents four different non-relativistic Hamiltonians that
are found in the literature. Section 3 reviews the ques-
tion of gauge invariance of transition probabilities gener-
ated by incident photons. In section 4, we calculate the
fully relativistic matrix elements in QED and we derive
their multipole expansion up to quadrupole approxima-
tion that contains an additional term which is not usu-
ally considered. In section 5 we derive a general time-
independent Foldy-Wouthuysen-Eriksen transformation
which is also valid in the many-body case, and we use
it to express dipole and multipole transitions. Section
6 and 7 apply the previous result to the absorption and
scattering cross sections, respectively.

II. INTERACTION OF LIGHT WITH
MAGNETIC MATTER

In this section, we describe four semi-relativistic
Hamiltonians: the one proposed by Blume, the “gauge-
invariant” Foldy-Wouthuysen one, the textbook Foldy-
Wouthuysen one and the effective Hamiltonian derived
in non-relativistic QED (NRQED). To help comparing
these Hamiltonians, we express them in a one-particle
framework.

The fact that different semi-relativistic Hamiltonians
were used in spectroscopy was already noticed.6,7
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A. The Blume Hamiltonian

Blume discussed the interaction of light with magnetic
matter by starting from the Hamiltonian:3,4

HB =
π

2

2m
+ eV − e~

2m
σ ·B− e~

4m2c2
σ · (E× π), (1)

where π = p − eA. This Hamiltonian is the sum of
four terms: (i) the kinetic energy of the electrons, (ii)
the Coulomb interaction of the electrons with the nu-
clei and the other electrons, (iii) the Zeeman interaction
between electrons and magnetic field and (iv) the spin-
orbit interaction (because, for a spherical V and a static
A, σ · (E× p) = −1

r
dV
dr σ · (r× p) = −1

r
dV
dr σ · L).

There are several differences between our notation and
Blume’s: he considers a many-body Hamiltonian (involv-
ing sums over electrons) and writes

∑

ij V (rij) for our
eV , he adds the Hamiltonian Hγ of the free photons, he
uses A/c, ∇ ×A/c and s where we use A, B and σ/2,
finally, his Zeeman term is wrong by a factor of 2 in his
first two papers on the subject,3,4 but this was corrected
in the third one.5 In this third paper, Blume also replaces
E by −Ȧ. This is not compatible with his quantized de-
scription of the photon field. Indeed, the time-derivative
Ȧ is present in the Lagrangian but, after the Legendre
transformation leading to the Hamiltonian, Ȧ is replaced
by its canonical momentum −E. Note that Blume does
not sketch any derivation of his Hamiltonian.

B. Foldy-Wouthuysen Hamiltonian

We consider now the so-called “gauge-invariant”
Foldy-Wouthuysen Hamiltonian for positive-energy
states up to order 1/(mc)2:8

HFW = HB +mc2 − e~2

8m2c2
∇ ·E− ie~2

8m2c2
σ · (∇×E).

The difference between the Foldy-Wouthuysen and the
Blume Hamiltonians consists of three terms: the rest en-
ergy mc2 of positive-energy eigenstates, the Darwin term
proportional to ∇ · E and a last term, proportional to
σ · (∇ × E) and called the curl-term, that we discuss
now. A basic difference between HB and HFW must first
be stressed: the former is a QED expression where the
quantum fields A, B and E are independent of time be-
cause they are written in the Schrödinger representation,
while the latter was derived under the assumption that
A and V are external time-dependent potentials. In par-
ticular, the curl-term disappears if the external field A

is independent of time.9 In the semi-classical treatment
of light-matter interaction, the photons are represented
by an external time-dependent potential and this term is
present.
All these Hamiltonians can be written H(A,Φ), where

the total vector potential A and scalar potential Φ are
written as a sumA = a0+a, Φ = φ0+φ, of static external

potentials a0 and φ0 (representing the static internal and
external fields) perturbed by dynamical potentials a and
φ representing the incident electromagnetic wave. We
write the interaction Hamiltonian as HI = H(A,Φ) −
H(a0, φ0). The two Hamiltonians HB and HFW lead to
two different interactions: HB

I = h1+h2+h3+h4+h5+h6
and HFW

I = HB
I + h7, where

h1 =
e2

2m
a2,

h2 = − e

m
a · π0,

h3 = − e~

2m
σ · (∇× a),

h4 =
e2~

4m2c2
σ · (e× a),

h5 = − e~

4m2c2
σ · (e× π0),

h6 =
e2~

4m2c2
σ · (e0 × a),

h7 = − ie~2

8m2c2
σ · (∇× e),

with π0 = p− ea0. The curl-term in HFW is the origin
of the presence of h7 in HFW

I . The Darwin term gives no
contribution to the interaction because∇·e is zero for the
electromagnetic wave. The terms h5 and h6 were omitted
by Blume, who considered them to be small.3 We shall see
that h5 is the source of a spin-position term which is not
negligible in x-ray magnetic circular dichroism (XMCD)
spectra.10

C. Textbook Foldy-Wouthuysen Hamiltonian

Standard textbooks often derive a Foldy-Wouthuysen
Hamiltonian HTFW which is the same as HFW, ex-
cept for the fact that π is replaced by p in the spin-
orbit term.11,12 A mass-velocity term −(p · p)2/8m3c2

is often added11 but its contribution to the radiation-
matter interaction is zero. The difference with the Foldy-
Wouthuysen Hamiltonians is a term in σ · E ×A. This
results in the absence of h4 and h6 in the perturbation
Hamiltonian, which changes the transition probabilities.

D. Foldy-Wouthuysen subtelties

In this section, we would like to stress that the Foldy-
Wouthuysen transformation must be used with great care
to calculate matrix elements.
The first subtelty was noticed by Nieto:13,14 If |Ψ〉

is a solution of the time-dependent Dirac equation
(i~∂t − H)|Ψ〉 = 0, then the Foldy-Wouthuysen trans-
formation turns it into |ψ〉 = U |Ψ〉, where U is a
unitary time-dependent operator and |ψ〉 is a solution
of the time-dependent Schrödinger equation with the
time-dependent Foldy-Wouthuysen Hamiltonian H ′ =
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UHU−1+i~(∂tU)U−1. The curl-term in HFW originates
from i~(∂tU)U−1. In the following, an uppercase letter
refers to a solution of the Dirac equation and a lowercase
letter to its Foldy-Wouthuysen.
As a consequence, a matrix element 〈Φ|H |Ψ〉 is not

equal to 〈φ|H ′|ψ〉, but to 〈φ|H ′ − i~(∂tU)U−1|ψ〉. In
other words, H ′ has to be used to calculate the states |φ〉
and |ψ〉 but not to calculate the matrix elements of the
Hamiltonian.
The second subtelty was observed by Yang.15 A transi-

tion probability is calculated as |〈φn|ψ(t)〉|2, where |φn〉
is a solution of the time-independent Schrödinger equa-
tion H(a0, φ0)|ψn〉 = En|φn〉, while |ψ(t)〉 is a solution of
the time-dependent Schrödinger equation with Hamilto-
nian H(A,Φ). Since the Foldy-Wouthuysen operator U
depends explicitly on the potentials in the Hamiltonian,
the Foldy-Wouthuysen transformations to be applied to
|φn〉 and |ψ(t)〉 are different because they correspond to
different Hamiltonians.
The last example is a development of the previ-

ous one: the Foldy-Wouthuysen interaction Hamilto-
nian H ′

I = H ′(A,Φ) − H ′(a0, φ0) 6= UHIU
−1 because

the Foldy-Wouthuysen transformation corresponding to
H ′(A,Φ) and H ′(a0, φ0) are different. As a consequence,
〈φf |H ′

I |ψi〉 is not equal to 〈Φf |HI |Ψi〉.

E. NRQED

To deal with QED calculations involving bound
states, Caswell and Lepage proposed an alternative ap-
proach to relativistic effects, called non-relativistic QED
(NRQED), which turned out to be highly successful.16

They wrote the most general gauge-invariant non-
relativistic Lagrangian terms and fitted the coefficients
of these terms to known QED processes.17

The corresponding NRQEDHamiltonian is the same as
HFW up to order c−2, but its interpretation is different.17

Indeed, NRQED is a quantum field theory, and the
fields are independent of time in the Schrödinger rep-
resentation. However, the curl-term is present in time-
independent NRQED although it is generated by a time-
dependence in HFW. In particular, the curl-term must
not be removed from the Hamiltonian to calculate matrix
elements of the Hamiltonian operator, in contrast to the
example of section IID.
Besides these four different Hamiltonians, we consider

an additional source of discrepancies between authors:
the commutators.

F. Commutators

To derive the multipole expansion of the matrix el-
ement of HI , it is useful to replace π by a commuta-
tor with H0 = H(a0, φ0). The derivations that start
from Blume’s interaction Hamiltonian usually use the

relation:6,18

p =
mi

~
[H0, r]. (2)

However, if one considers the static Hamiltonian given
by Blume (1), its commutator with r is:

[HB
0 , r] = − i~

m
π0 +

e~

4m2c2
(i~)(σ × e0),

which is different from Eq. (2) because p is replaced by
π0 = p − ea0 and because of the term proportional to
c−2. The commutator of r with HTFW

0 and HFW
0 are

the same. In HFW
I and HB

I , when π0 in h2 is rewritten
as a function of the commutator, the extra relativistic
term leads to the cancellation of h6, which is important
in XMCD. On the other hand, it leads to a contribution
e2~

4m2c2σ · [∇v0 × a] in HTFW
I .

If the mass-velocity term −(p · p)2 is present in H0,

the additional contribution to the commutator, i~(p·p)p
2m3c2

is small compared to i~
mp if the order of magnitude of the

kinetic energy of the core state satisfies Ek << mc2.
For all the Hamiltonians presented here, using the re-

lation [p, v0] = i~∇v0, the electric field in matter writes
at zeroth order in c−2 as a function of the commutator
of π0 with H0:

e0 = −∇v0 =
−i
e~

[π0, H0].

In the case of absorption, the commutator transforms
into a factor −~ω in the cross section so that h5 and h6
lead to the same contribution to the matrix element:

−ie~ω
4m2c2

σ · (a× π0),

which we call spin-position interaction. We observed
that this contribution can appear two times, one time or
cancel completely, according to which Hamiltonian and
which commutator was used. These different results il-
lustrate the importance of a proper choice of the starting
semi-relativistic Hamiltonian to compute the transition
rate. In this paper, we show that the Hamiltonian HB

gives the correct result for absorption (but not for scatter-
ing). Since physically meaningful observables are gauge
invariant, we first check the gauge invariance of the cross-
section.

III. GAUGE INVARIANCE

The gauge invariance of the absorption and scatter-
ing cross-sections of light is a long-standing problem. It
started in 1952 when Willis Lamb calculated the spec-
trum of Hydrogen in two gauges leading to different re-
sults19, and gave rise to a long series of papers up to this
day.15,20–69

In 1987, the same Willis Lamb (then Nobel prize win-
ner in physics) still considered it as “one of the outstand-
ing problems of modern quantum optics.”52
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A. The principle of gauge invariance

The two homogeneous Maxwell equations ∇×E+Ḃ =
0 and ∇ · B = 0, where the dot denotes time deriva-
tive, imply the local existence of a vector potential A
and a scalar potential Φ such that B = ∇ × A and
E = −∇Φ− Ȧ. We denote A = (Φ,A). The same E and

B are obtained from the potentials A′ = (Φ−Λ̇,A+∇Λ),
that we also denote A′ = A − ∂Λ, where Λ is any
smooth function of space and time. In classical electro-
magnetism, the gauge invariance means that the physics
described by A and A′ is the same.
In quantum mechanics, consider a non-relativistic

Hamiltonian

HA =
(p− eA)2

2m
+ eΦ,

or a relativistic Hamiltonian

HA = cα · (p− eA) +mc2β + eΦ,

where α = (αx, αy, αz) and β are the Dirac matrices.
Both Hamiltonians are of the form HA = f(p−eA)+eΦ,
where f is some function. For such Hamiltonians it can

be checked that M †
Λ(i~∂t −HA′)MΛ = i~∂t −HA, where

MΛ = eieΛ/~. As a consequence, if ψ is a solution of the
time-dependent Schrödinger equation i~ψ̇ = HAψ, then
ψ′ =MΛψ is a solution of i~ψ̇′ = HA′ψ′.
In quantum mechanics, gauge transformation consists

in both a change of the potentials and a change in the
phase of the wavefunctions. An observable OA depending
on the electromagnetic potential A is said to be gauge

invariant if M †
ΛOA′MΛ = OA for every function Λ(t, r).

An observable must be gauge invariant to be considered
a true physical quantity.70

The principle of gauge invariance has become a cor-
nerstone of particle physics. Since general relativity can
also be considered as a gauge theory71, it may be safely
said that gauge invariance was the guiding principle of
most of the fundamental physics of the twentieth cen-
tury. Therefore, we need to check that the cross-section
formulas are gauge invariant to ensure their true physical
nature.
Note that the time-dependent Dirac or Schrödinger

equations are always gauge invariant but the time-
independent ones are not because HA is not gauge in-
variant due to the the scalar potential Φ. Indeed, under
a gauge transformation Φ becomes Φ − Λ̇ and the term
Λ̇ cannot be compensated for in the absence of a time
derivative.

B. Gauge invariance of transition probabilities

In time-dependent perturbation theory, a system is as-
sumed to be the ground state |φg〉 of a time-independent
Hamiltonian Ha0 . Then, at time t0, an electromagnetic
wave represented by the time-dependent potential a is

added to the system (with total potential A = a0 + a),
which is represented at time t by the state |ψ(t)〉. A
good way to take both the initial state and the dynamics
into account is to use the evolution operator UA(t, t0),
which is the solution of i~∂tUA(t, t0) = HA(t)UA(t, t0)
with the boundary condition UA(t0, t0) = 1. Thus,
|ψ(t)〉 = UA(t, t0)|φg〉. The probability of a transition
to the eigenstate |φn〉 of Ha0 at time t is

Png(t) = |〈φn|ψ(t)〉|2 = |〈φn|UA(t, t0)|φg〉|2. (3)

If we carry out a gauge transformation from a to a′ =
a− ∂Λ, then the evolution operator becomes48

UA′(t, t0) =MΛ(t)UA(t, t0)M
†
Λ(t0), (4)

where A′ = a0 + a′.
In general, P ′

ng(t) = |〈φn|UA′(t, t0)|φg〉|2 6= Png(t) and
the transition probabilities calculated in the two gauge
are different. Many papers describe the discrepancy be-
tween the probability calculated in two different gauges,
which is generally not small.19,54,65 By properly choosing
Λ, the discrepancy can even be made arbitrary large.64

The absence of gauge invariance is due to the fact that
the operator is transformed but not the states. This is
called a hybrid transformation in the literature.29

C. Proposed solutions

Several solutions to this alarming problem have been
proposed. Since no clear consensus appears to have
emerged,61 we present a critical review of the subject.
The first solution is based on the observation that, if

instead of gauge-transforming a we transform the po-
tential a0 of the initial Hamiltonian to get Ha′

0
, where

a′0 = a0−∂Λ, then the evolution operator becomes again
UA′(t, t0) (because a′0 + a = a0 + a − ∂Λ = A′) but
the eigenstates are also changed |φ′g〉 = MΛ(t0)|φg〉 and
|φ′n〉 = MΛ(t)|φn〉. Therefore, the transition probabil-
ity is now conserved. In other words, gauge invariance is
lost if we subtract ∂Λ from the perturbation but not if we
subtract it from the unperturbed HamiltonianH0 = Ha0 .
Starting with Forney and coll.26 and Epstein,21 many

authors proposed to solve the problem by using the so-
called consistent procedure, where both the evolution op-
erator and the eigenstates are modified whenever a gauge
transformation is made. Although this is not consistent
with standard time-dependent perturbation theory, this
ensures that, if we start from an initial gauge and make
any gauge transformation, then the transformed transi-
tion probabilities are the same as in the initial gauge.
However, as noticed by Yang,15 this does not really

solve the problem because, if we start the calculation
with the initial potential Ha0 and the perturbation a′,
the transition probability is P ′

ng(t). If we then use the
consistent procedure to come back to the perturbation a,
then we still find P ′

ng(t) and we do not recover the result
Png(t). In other words, the transition probability is now
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gauge invariant (in the sense that a change of gauge does
not modify the result) but it is gauge-dependent (in the
sense that the result depends on the gauge we use to
start the calculation). This gauge dependence would be
a serious problem because we would have to select the
“true” physical gauge.
A second solution was proposed by Grant23, who states

that gauge invariance of transition matrix elements is
ensured if the potential is coupled to a conserved current.
However, his proof is wrong (the first term of his first
equation on p. 1472 does not vanish because ∂µ(Λj

µ) is
not integrated over time).
A third solution appeared in a series of papers starting

in 1976,15,24,31,32,36,38,39,44,48,50,55, where Yang and col-
laborators proposed to define a gauge invariant transition
probability. His idea is to start from the gauge-invariant
(but time-dependent) initial Hamiltonian

H0(t) =
(p− ea0 − ea(t))2

2m
+ eV, (5)

where V describes the electron-electron and electron-
nuclear interactions so that H = H0 + eφ: the per-
turbation is only the scalar potential φ. Then, the
Hamiltonian H0(t) is diagonalized at every time t:
H0(t)|φn(t)〉 = En(t)|φn(t)〉 and the transition are
calculated between the time-dependent states |φn(t)〉.
The corresponding transition probabilities are indeed
gauge invariant. This solution has been widely used
up to this day,53,67,69 although it was also strongly
criticized.22,33,34,40–42,45–47,72,73 The main arguments
against Yang’s interpretation are: (i) the quantity En(t)
is not physical because you cannot measure an energy
at a given time with arbitrary precision; (ii) the time-
dependent states |φn(t)〉 can be neither prepared nor de-
tected; (iii) the term V in Eq. (5) should be removed
from H0(t) because it is a scalar potential and, as such,
not gauge invariant. But if V is removed, then H0(t) is so
far from the true Hamiltonian that perturbation theory
is no longer valid.
Following Goldman,14 Feuchtwang, Kazes and coll.

proposed the following alternative solution.40,41,46,47,74

They started from the well-known fact that the equations
of motion of a Lagrangian are not modified by the ad-
dition of the total time derivative of a function.70 Thus,
two Lagrangians that differ by a total time derivative are
equivalent.75 Then, they remark that the addition of a to-
tal time derivative eΛ̇ to the Lagrangian induces a gauge
transformation A → A − ∂Λ of the Hamiltonian.62,70,74

Finally, they use such a total derivative to compensate for
the electric potential that is the cause of the gauge vari-
ance of the Hamiltonian. However, it is difficult to dis-
tinguish this procedure from picking up a specific gauge,
namely the Weyl or temporal gauge where the scalar po-
tential vanishes.
We can conclude this short review by stating that no

solution was found fully satisfactory. To determine when
gauge invariance can be achieved, we consider a Dirac
Hamiltonian in two gauges A and A′ = A − ∂Λ and we

calculate the difference

〈ψ|HA −HA′ |ψ′〉 = e〈ψ|cα · ∇Λ + Λ̇|ψ′〉.

The advantage of the Dirac Hamiltonian is that the dif-
ference HA − HA′ does not depend on A, but a simi-
lar calculation can be carried out in the non-relativistic
case.73 Then, we notice that cα · ∇Λ = (i/~)[HD,Λ] for
any Dirac Hamiltonian HD. Thus, if |ψ〉 and |ψ′〉 are
eigenstates of HD with energy E and E′, we obtain

〈ψ|HA −HA′ |ψ′〉 = e〈ψ|Λ̇|ψ′〉+ ie
E − E′

~
〈ψ|Λ|ψ′〉. (6)

If we consider the absorption cross-section (up to first
order) of a photon of energy ~ω, then energy conservation

implies that E′ = E + ~ω. Thus, if Λ satisfies Λ̇ =
−iωΛ, then 〈φ|HA−HA′ |φ′〉 = 0.55,73 In other words, by
restricting the gauge transformation to those satisfying
Λ̇ = −iωΛ, the absorption cross-section, calculated up
to first order in perturbation theory, is gauge invariant.
However, in the resonant scattering cross-section, energy
conservation does not apply to the transition involving
intermediate states, and the cross-section is not gauge
invariant even for those gauges.25,55,65

Equation (6) shows that the matrix elements are also
gauge invariant for a time-independent gauge transfor-
mation and energy conserving processes (i.e. E′ = E).
However, the gauge invariance principle is not supposed
to restrict to gauges satisfying specific constraints such
as Λ̇ = −iωΛ or Λ̇ = 0.
This rapid overview shows that, in the semi-classical

approach where the photon is represented by an exter-
nal potential, the transition probabilities are not gauge-
invariant and no proposed solution has reached general
exceptance. Therefore, we turn now to a framework
where both electrons and photons are quantized: quan-
tum electrodynamics (QED).

D. Quantum electrodynamics

In QED the incident light is no longer described by
an external electromagnetic field but by a photon, i.e. a
state in a bosonic Fock space. Therefore, a scattering
experiment is now described by the transition from an
initial state involving both the electronic system in its
ground state and the incident photon, to a final state
involving both the electronic system in its (possibly) ex-
cited state and the scattered photon. Thus, the energy
of the inital and final states is the same and, in the
Schrödinger picture, the gauge transformation can be ex-
pressed in terms of time-independent operators. The re-
mark at the end of the previous paragraph lets us think
that transition probabilities, which are now described
through the so-called S-matrix, are now gauge invariant.
However, a review of the literature on quantum elec-

trodynamics is rather confusing. For standard textbooks
“the S-matrix is gauge invariant by construction”.76 For
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more mathematically-minded authors, “an even approx-
imately complete solution [of the gauge invariance prob-
lem] does not exit.”77 The difficulty comes from the fact
that a gauge transformation also implies a change of the
space of states. For example, in the Coulomb gauge, only
the transverse degrees of freedom are quantized and the
photon states form a Hilbert space built by acting on the
vacuum with creation operators of left and right polar-
ized photons, while in the Lorenz gauge four degrees of
freedom are quantized and the states form a Krein space
built by acting on the vacuum with creation operators
of the left, right, longitudinal and scalar photons. In the
Lorenz gauge, the Lorenz condition cannot be satisfied as
an operator equation,78 it becomes a subsidiary condition
used to determine a subspace of physical states.

In other words, the state spaces of the Coulomb and
Lorenz gauges have a quite different nature and the rela-
tion between them is difficult to control, although it was
possible to devise a common framework for a certain class
of gauges.56 Moreover, the gauge-invariance can only be
expected for the renormalized S-matrix79–81 and renor-
malization in a general gauge is not clear.56

However, the case of a general infinitesimal gauge
transformation is well established within the Becchi-
Rouet-Stora-Tyutin (BRST) approach: matrix elements
of gauge-invariant operators between physical states are
independent of the choice of the gauge-fixing functional if
and only if the physical states |α〉 satisfy Q|α〉 = 0, where
Q is the BRST charge.82,83The case of finite (i.e. not in-
finitesimal) gauge transformations is in progress.84,85

To summarize the discussion, the gauge invariance of
the renormalized S-matrix is established for infinitesimal
gauge transformations and for reasonably large classes
of gauges.29,56,80,86–91 In other words, it is proved at the
physicist level of rigour.

The most studied gauges are the Lorenz and Coulomb
gauges. Renormalization is perfectly established for
the Lorenz gauge, but in most practical calculations
the subsidiary condition (Gauss’ law) is not enforced.92

Although it was proved that the S-matrix elements
are often the same with and without the subsidiary
condition,22,29,41,93,94 this fails when the Hamiltonian is
suddenly changed,95 as in the sudden creation of a core
hole in photoemission or x-ray absorption96,97. In that
case, Gauss’ law has to be imposed in the Lorentz gauge
and the Coulomb gauge result is recovered.95 To be on
the safe side, we shall use the Coulomb gauge.

IV. RELATIVISTIC MATRIX ELEMENTS

After having clarified the issue of gauge invariance, we
can calculate the relativistic matrix elements that will
be used for establishing x-ray scattering and absorption
cross-sections in the framework of QED in the Coulomb
gauge.

A. The Hamiltonian

The quantum field Hamiltonian describing the in-
teraction of light with matter in the Coulomb gauge
is:29,70,98,99

H = He +Hγ +Heγ ,

where

He =

∫

drψ†(r)
(

cα · (−i~∇− ea) + βmc2 + eφ
)

ψ(r)

+

∫

drdr′
ρ(r)ρ(r′)

8πǫ0|r− r′| ,

where φ is a time-independent scalar external poten-
tial (for instance the nuclear potential), a is a time-
independent vector potential (describing an external
magnetic field) and ψ are fermion field operators . Nor-
mal ordering is implicit in He. It is the QED form of the
Dirac Hamiltonian in the Coulomb gauge. The many-
body version of this Hamiltonian is

HN =

N
∑

n=1

cαn · (−i~∇n − ea(rn)) + βnmc
2 + eφ(rn)

+
∑

m 6=n

e2

8πǫ0

1

|rm − rn|
,

where αn and βn act on the nth Dirac electron. It
can be given a well-defined mathematical meaning if the
electronic system is described with respect to the Dirac
sea,100 although the physical validity of the Dirac sea is
sometimes disputed.101

The photon Hamiltonian is

Hγ =
ǫ0
2

∫

dr|E⊥|2 + c2|B|2 =
∑

k,l

~ωk,la
†
k,lak,l,

where l stands for the polarization of a mode (there are
two independent directions for a given wavevector k) and

Heγ = −ec
∫

drψ†(r)α ·A(r)ψ(r),

describes the photon-matter interaction and A satis-
fies the Coulomb gauge condition ∇ · A = 0. Accord-
ing to Bialynicki-Birula, the Hamiltonian H also de-
scribes the dynamics of gauge-invariant states in any
gauge,99 but the concept of a gauge-invariant state is
still controversial.102,103 The many-body version of this
interaction Hamiltonian is

HI = −ec
N
∑

n=1

αn ·A(rn).
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B. S-matrix elements

Since we saw that the S-matrix is gauge invariant, we
calculate its matrix-elements. We recall that

S = lim
ǫ→0

T (e−
i
~

∫
∞

−∞
Hǫ(t)dt), (7)

where Hǫ(t) = e−ǫ|t|eiH0tHeγe
−iH0t. The adiabatic

switching factor e−ǫ|t| enables us to describe physical
processes as matrix elements of S between eigenstates
of H0 = He +Hγ . The limit can be shown to exist up to
technical assumptions.104 Note that H0 is not quadratic
because of the Coulomb interaction term in He. The
eigenstates of He are correlated multi-electronic wave-
functions. As a consequence, we are not in the textbook
framework, the time-dependence of Hǫ(t) cannot be cal-
culated explicitly and the Feynman diagram technique is
no longer available to describe electrons. We can bypass
this problem with the so-called “old-fashioned” (i.e. non-
covariant) approach,105 using matrix elements of Hǫ(t)
between eigenstates of H0. Then, cross-sections are ex-
pressed in terms of the S-matrix and T-matrix elements
related by:

〈m|S|n〉 = δmn − 2iπδ(em − en)〈m|T |n〉,

where, up to second order,

〈m|T |n〉 = 〈m|Heγ |n〉+
∑

p

〈m|Heγ |p〉〈p|Heγ |n〉
ep − en + iγ

, (8)

where |m〉, |p〉 and |n〉 are eigenstates of H0 with energy
em, ep and en, respectively. The term iγ was added as a
heuristic way to avoid divergence at resonance (i.e. when
the states |n〉 and |p〉 are degenerate). More sophisticated
methods exist to deal with such degeneracies106 but they
would bring us too far. From the physical point of view,
γ describes the life-time of the state |p〉, which can decay
by photon or Auger emission. The sign of the damping
term γ has been the object of some controversy.107–110

Let us stress again that, since He is not quadratic, we
essentially work in the Schrödinger picture, where the
operators are independent of time, instead of the stan-
dard interaction picture which is used in most textbooks.
Both approaches are equivalent.111 A modern version of
the Schrödinger picture of QFT is given by Hatfield.112

Our purpose is now to calculate the matrix elements
〈m|Heγ |n〉, where Heγ is independent of time. The sec-
ond quantized expression for the photon field in the
Schrödinger picture is:9

A(r) =
∑

k,l

√

~

2ǫ0V ωk

(

ǫk,lak,le
ik·r + ǫ

⋆
k,la

†
k,le

−ik·r
)

.

Note that we do not assume the polarization vectors ǫk,l
to be real.
We denote |n〉 = a†k,l|0〉|Ψn〉 an eigenstate of H0 where

one photon is present in mode k, l and the electrons

are in state |Ψn〉 with energy En. The energy of |n〉
is en = ~ωk,l + En. The interaction Hamiltonian Heγ is
linear in A which is linear in photon creation and an-
nihilation operators so that only one-photon transitions
are possible. The state |n〉 can make transitions towards

|a〉 = |0〉|Ψm〉 by absorption and |e〉 = a†k,la
†
k′,l′ |0〉|Ψm〉

by emission. From now on, we denote ω = ωk,l, ǫ = ǫk,l,
ω′ = ωk′,l′ and ǫ

′ = ǫk′,l′ . The corresponding matrix
elements are:

〈a|Heγ |n〉 = −ec
√

~

2ǫ0V ω
ǫ · 〈Ψm|

∫

ψ†
αψeik·r|Ψn〉,

and

〈e|Heγ |n〉 = −ec
√

~

2ǫ0V ω′
ǫ
′⋆ · 〈Ψm|

∫

ψ†
αψe−ik′·r|Ψn〉,

where
∫

ψ†
αψe±ik·r =

∫

ψ†(r)αψ(r)e±ik·rdr.

C. Electric dipole and multipole transitions

To carry out a multipole expansion of the previous
matrix elements, we shall continue working with quan-
tum fields instead of the usual many-body expressions.
In that framework, the expressions are simpler because
there is no electron index and we can use the following
well-known trick.78,113

Let F =
∫

ψ†(r)f(r)ψ(r)dr, where f is some func-
tion of r. To calculate the commutator of F with
some Hamiltonian H0, we go to the interaction picture
and define FI(t) = eiH0t/~Fe−iH0t/~. Then, the time-

derivative ḞI of FI is given by −i~ḞI(t) = [H0, FI(t)].
Now, we notice that F is related to the density oper-
ator ρ(r) = ψ†(r)ψ(r) by F =

∫

ρ(r)f(r)dr. Thus,

−i~ḞI(t) = −i~
∫

ρ̇(r, t)f(r)dr = [H0, FI(t)]. If H0

conserves the electric charge, the continuity equation
eρ̇(r) = −∇ · j holds, where j is the electric current op-
erator. By taking t = 0 to recover the operators in the
Schrödinger picture, we obtain

[H0, F ] =
i~

e

∫

∇ · j(r)f(r)dr = − i~
e

∫

j(r) · ∇f(r)dr

= −i~c
∫

ψ†(r)αψ(r) · ∇f(r)dr. (9)

To find the electric dipole transition term we apply
Eq. (9) with f(r) = ǫ · r and H0 = He:

[He,

∫

ψ†(r)ǫ · rψ(r)dr] = −i~c
∫

ψ†(r)αψ(r) · ǫdr,

and we obtain in the dipole approximation eik·r ≃ 1

〈a|Heγ |n〉 =
e(Em − En)

i~

√

~

2ǫ0V ω
〈Ψm|

∫

ψ†
ǫ · rψ|Ψn〉.
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To deal with electric quadrupole and magnetic dipole
transitions, we expand to the first order: eik·r ≃ 1+ik ·r.
We apply Eq. (9) with f(r) = ǫ · rk · r and H0 = He:

[He, ψ
†
ǫ · rk · rψ] = −i~cψ†

αψ · (ǫk · r+ kǫ · r),

where we removed the integral sign for notational conve-
nience. Thus,

ψ†
ǫ · αk · rψ =

i

~c
[He, ψ

†
ǫ · rk · rψ]− ψ†

ǫ · rk · αψ.

If we add ψ†
ǫ ·αk · rψ to both terms we obtain

2ψ†
ǫ ·αk · rψ =

i

~c
[He, ψ

†
ǫ · rk · rψ]

−ψ†(ǫ× k) · (r×α)ψ.

Finally, up to electric quadrupole transitions

〈a|Heγ |n〉 =
e∆E

i~

√

~

2ǫ0V ω
〈Ψm|

∫

ψ†Tψ|Ψn〉, (10)

where ∆E = Em − En and

T = ǫ · r+ i

2
ǫ · rk · r− ~c

2∆E
(ǫ× k) · (r×α). (11)

The first term of T is the usual electric-dipole operator,
the second one is the electric-quadrupole operator and
the third one will turn to be the magnetic-dipole operator
(see section VC). Similarly,

〈e|Heγ |n〉 =
e∆E

i~

√

~

2ǫ0V ω′
〈Ψm|

∫

ψ†T ′ψ|Ψn〉, (12)

where

T ′ = ǫ
′⋆ · r− i

2
ǫ
′⋆ · rk′ · r+ ~c

2∆E
(ǫ′⋆ × k′) · (r×α).

V. SEMI-RELATIVISTIC REPRESENTATION

In the previous sections, we have shown that, to ensure
gauge invariance, it was safe to describe the interaction of
light and matter with quantum electrodynamics, where
electrons are described by four-component Dirac spinors.
However, in most solid-state calculations, we do not use
Dirac spinors but two-component (Pauli) wavefunctions.
Therefore, we need to link the two representations by
using a generalization of Foldy-Wouthuysen transforma-
tion.
The idea of the Foldy-Wouthuysen transformation is

the following. If HD is a time-dependent relativistic
Hamiltonian, it has the form

HD = H0 +

(

H11 H12

H21 H22

)

,

where H0 = mc2β and each Hij is a 2x2 matrix. We
write HD as the sum of even and odd parts HD = H0 +
E +O, where

E =

(

H11 0
0 H22

)

, O =

(

0 H12

H21 0

)

,

satisfy βEβ = E and βOβ = −O. Note that H0 is
also even. If |ψD〉 is a solution of the Dirac equation
i~∂t|ψD〉 = HD|ψD〉, where HD is the Dirac Hamilto-
nian, then the upper two components of |ψD〉 are called
the large components and the lower two the small com-
ponents. The Dirac equation couples the large and
small components of |ψD〉 through the odd terms of HD.
Foldy and Wouthuysen114 looked for a unitary opera-
tor U that decouples the large and small components of
|ψ〉 = U |ψD〉. In other words, H = UHDU

† has only
even components: H = βHβ. The method proposed by
Foldy and Wouthuysen consist in successive transforma-
tions of the form U = eiS . 114,115.
This transformation does not satisfy Eriksen’s condi-

tion U = βU †β discussed in the Appendix. This is be-

cause the product U = eiS
(2)

eiS
(1)

does not satisfy this

equation even if eiS
(1)

and eiS
(2)

do. Silenko recently
derived the correction that must be applied to go from
Foldy-Wouthuysen to Eriksen transformations,116 and he
showed that the correction is at an order beyond the one
considered.

A. Many-body Foldy-Wouthuysen transformation

To generalize the Foldy-Wouthuysen approach to the
many-body Dirac Hamiltonian we face the following
problem. The generalization of H0 is imposed by the
many-body Dirac Hamiltonian:

H0
N =

N
∑

n=1

βnmc
2,

where βn is the matrix β acting on the nth electron (i.e.
βn = 1⊗(n−1) ⊗ β ⊗ 1⊗(N−n)). This definition is valid
because H0

N commutes with the projector PN onto the
space of antisymmetric N -body states.
We show in the Appendix that a Foldy-Wouthuysen

transformation can be defined whenever we have a self-
adjoint operator η (with η2 = 1) to define parity. In the
one-body case, β2 = 1 and η = β defines parity. But in

the many-body case the operator
∑N

n=1 βn suggested by
H0

N cannot be used for that purpose because its square
is not proportional to the identity (it contains products
βnβm). It turns out that η = β1 ⊗ · · · ⊗ βn is the nat-
ural many-body generalization of β. Indeed, η† = η,
η2 = 1. Moreover, η commutes with PN , which allows us
to work with tensor products instead of antisymmetric
tensor products.
In the literature, the Foldy-Wouthuysen transforma-

tion was studied for two-body Hamiltonians,117–119, but
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the results were rather complicated and not easy to ex-
tend to the many-body case.
The even and odd parts of HN are then H0

N + E and
O, respectively:

E = e

N
∑

n=1

φ0(rn) + e
∑

m 6=n

V (rm − rn),

O =
N
∑

n=1

cαn · πn =
N
∑

n=1

On,

where V (r) = e
8πǫ0|r|

is the Coulomb potential and πn =

−i~∇n − ea0(rn).
At first order in c−1, the Foldy-Wouthuysen operator

is U = eiS
(1)

where

S(1) = − i

2mc2

∑

n

βnOn.

Indeed, it can be checked that i[S(1), H0
N ] = −O removes

the odd term of HD. At this order U = U1⊗· · ·⊗UN is a
tensor power of one-body Foldy-Wouthuysen operators,
as proposed by Moshinksy and Nikitin.120

From that point, the usual formal Foldy-Wouthuysen

transformation U = eiS
(1)

eiS
(2)

can be carried out almost
unchanged and we find, with m as expansion parameter,
at order m−2:

HFW = H0
N + E +

1

2mc2

N
∑

n=1

βnO2
n

− 1

8m2c4

N
∑

n=1

[On, [On, eϕn + eV ]]

+
1

8m2c4

∑

p6=n

βpβn[Op[On, V ]].

This Hamiltonian obeys ηHFWη = HFW which makes it
a Foldy-Wouthuysen Hamiltonian.
It rewrites

HFW =

N
∑

n=1

Hn
FW +HMB

FW . (13)

where Hn
FW are the usual one body Foldy-Wouthuysen

Hamiltonians:

Hn
FW = βnmc

2 + eφ0(rn) +
∑

p6=n

eV (rn − rp)

+
1

2m
βnπ

2
n − e~Σn · b0(rn)−

~
2e

8m2c2
∇ ·En

+
~e

8m2c2
Σ · (πn ×En −En × πn)

where

b0(rn) = ∇× a0(rn)

and

En = −∇φn(rp)−
∑

p6=n

∇V (rn − rp).

The mass velocity term βn

8m3c2 (pn·pn)
2 would be obtained

by pushing the development one order beyond. The other
term HMB

FW arises because V (rm− rn) = V (rmn) is a two
body operator:

Hn,p
FW =

~e

8m2c2

N
∑

p6=n

(

~∆V (rnp)

−Σ · (πn ×∇V (rnp)−∇V (rnp)× πn)

− ~βnβp(αn · ∇n)(αp · ∇p)V (rnp)
)

.

By using:121

∂j∂kV (r) =
e2

8πǫ0

(

− δjk
4π

3
δ(r)− δjk

1

r3
+

3rjrk

r5

)

,

the derivatives in the last term can be rewritten

(αp · ∇p)(αq · ∇q)V (rp − rq) =
∑

jk

α
j
pα

k
q∂j∂kV (rpq)

=
e2

8πǫ0

(

− 4π

3
αp · αqδ(rpq)−

αp ·αq

|rpq|3

+ 3
αp · rpqαq · rpq

|rpq |5
)

.

This expression looks superficially like some contribu-
tions to the Breit interaction as presented by Bethe and
Salpeter.122 However, they are different since the Breit
interaction is due to the exchange of a photon and not
to a semi-relativistic effect. Note that the last two terms
are singular. It is known that expansion of the Foldy-
Wouthuysen transformation as a power serie in 1/c2 be-
comes more and more singular because of the presence
of the Coulomb potential.123 At order m−2, the transfor-
mation writes

U = 1 +
1

2mc2

∑

n

βnOn − 1

8m2c4

(

∑

n

βnOn

)2

+
1

4m2c4

∑

n

βn

[

∑

m

βmOm, E
]

and it obeys U = ηU †η. We also checked that U2 is odd
in HD after paying attention to the discontinuity at zero
discussed in the Appendix. Thus, the positive (negative)
energy eigenstate of HD are transformed into even (odd)
states by the action of U .

B. Semi-relativistic dipole transitions

Matrix elements such as D = 〈Φ|
∫

ψ†
ǫ ·rψ|Ψ〉 are now

evaluated by expressing the positive energy Dirac wave-
functions |Φ〉 and |Ψ〉 in terms of the Foldy-Wouthuysen
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ones |φ〉 and |ψ〉: |Φ〉 = U †|φ〉 and |Ψ〉 = U †|ψ〉. We use
the many-body expression for D = 〈Φ|ǫ · R|Ψ〉, where
R =

∑N
n=1 rn, since U is written as a many-body oper-

ator. We calculate D = 〈φ|Uǫ · RU †|ψ〉, where U = eiS

by using the Baker-Campbell-Hausdorff formula

eiSTe−iS = T + i[S, T ] +

∞
∑

n=2

in
Ln(T )

n!
,

where L(T ) = [S, T ] and Ln(T ) = L(Ln−1(T )). If U =
U1 ⊗ · · · ⊗ UN , where Ui = eiSi , we can calculate the
action of U on each variable independently. Removing
temporarily the constant −i/2mc2, we take the one-body
operator S = βO and compute

L(ǫ̂ · r) = c[βα · (p− ea0), ǫ̂ · r] = c
∑

ij

βαiǫj[pi, rj ]

= −i~c
∑

ij

βαiǫjδij = −i~cβα · ǫ̂,

and

L2(ǫ̂ · r) = −i~c2[βα · (p− ea0), βα · ǫ̂]
= −i~c2

∑

ij

(pi − ea0i)ǫj [βα
i, βαj ]

= i~c2
∑

ij

(pi − ea0i)ǫj [α
i, αj ],

where we used βαi = −αiβ and β2 = 1. We compute

[αi, αj ] = 2i
∑

k

ǫijk

(

σk 0
0 σk

)

= 2i
∑

k

ǫijkΣ
k,

which defines Σk the components of Σ. Therefore,

L2(ǫ̂ · r) = −2~c2(p− ea0) · (ǫ̂×Σ).

So that, for each particle, and up to O(c−3),

Unǫ · rnU †
n = ǫ · rn − i

~

2mc
βnαn · ǫ

− ~

4m2c2
πn · (ǫ×Σn).

The many-body version is obtained by summing the
right-hand side over n.
In the matrix elements D = 〈φ|Uǫ · RU †|ψ〉, recall

that |ψ〉 = η|ψ〉 and |φ〉 = η|φ〉 because |Ψ〉 and |Φ〉
are positive energy states, as shown in the Appendix.
Therefore, 〈φ|Uǫ · RU †|ψ〉 = 〈φ|ηUǫ · RU †η|ψ〉 and all
the terms that are odd in Uǫ ·RU † are eliminated by the
matrix elements. This eliminates the term proportional
to βnαn and we are left with

D =

N
∑

n=1

〈φ|ǫ · rn − ~

4m2c2
πn · (ǫ×Σn)|ψ〉.

C. Semi-relativistic multipole transitions

From Eq. (11), we write the multipole transitions

M =
i

2
M1 −

~c

2∆E
M2,

where

M1 =
∑

n

〈φ|Uǫ · rnk · rnU †|ψ〉,

M2 =
∑

n

〈φ|U(ǫ× k) · (rn ×αn)U
†|ψ〉,

correspond to the electric quadrupole and magnetic
dipole transitions, respectively. Since multipole transi-
tions are smaller than dipole ones, it is enough to use the
first two terms of the Baker-Campbell-Hausdorf formula.
The term [Sn, ǫ ·rnkn ·rn] is odd and disappears in the

matrix element. Thus, at the order we consider,

M1 =
∑

n

〈φ|ǫ · rnk · rn|ψ〉.

Let T2 = (ǫ× k) · (r×α). We write

[βO, T2] = c[βα · p, T2]− ec[βα · a0, T2]
= cβ({α · p, T2} − e{α · a0, T2}).

The anticommutators are

{α · p, T2} =
∑

ijkl

ǫjkl(ǫ× k)j(αiαlpirk + rkpiαlαi)

= 2(ǫ× k) · (~Σ+ L),

and

{α · a0, T2} =
∑

ijkl

ǫikl(ǫ× k)iajrk{αj , αl}

= 2(ǫ× k) · (r× a0).

Note that ~Σ = gS with g = 2 (because S = ~Σ/2).
Thus, we recover the fact that the Dirac equation gives
a gyromagnetic factor g = 2 to the electron. Moreover,
L + ~Σ = L + 2S, the total magnetic moment of the
electron.
Finally, since rn ×αn is odd,

M2 =
∑

n

βn
mc

〈φ|(ǫ × k) · (~Σn +Λn)|ψ〉,

where Λn = Ln − ern × a0(rn) is the moment of the
mechanical momentum as defined in Ref. 124. The term
M2 describes magnetic-dipole transitions. The multipole
transitions are

M =
∑

n

〈φ| i
2
ǫ · rnk · rn

− ~βn
2m∆E

(ǫ× k) · (~Σn +Λn)|ψ〉.
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VI. ABSORPTION CROSS-SECTION

The absorption cross section is calculated by assuming
that initially the system of electrons is in state |I〉 that
can be transformed into a Foldy-Wouthuysen eigenstate
|i〉, with energy Ei, and that a photon k, ǫ is present. In
the final state there is no photon and the system is in
state |F 〉 (|f〉 after transformation).
The transition probability per unit time from state m

to state n is related to the T-matrix elements by:125

w =
2

~
δmn Im〈m|T |m〉+ 2π

~
δ(en − em)|〈n|T |m〉|2. (14)

and must be divided by c/v (rate at which the photon
crosses a unit of surface) to obtain the cross section.
Since we consider real transitions (i.e. m 6= n), only
the second term is present.
From (10) and using the result of transformation de-

rived in the previous section:

σ = 4π2α0~ω
∑

f

|〈f |TFW|i〉|2δ(Ef − Ei − ~ω),

where TFW is:

TFW =
∑

n

ǫ · rn +
i

2
ǫ · rnk · rn − ~

4m2c2
πn · (ǫ×Σn)

− βn
2mω

(ǫ× k) · (~Σn +Λn),

with α0 the fine structure constant and ∆E = Ef −Ei =
~ω.
It corresponds to the usual formula for the cross

section126 with two more terms: the third one and the
last one.
The third term was already present in the PhD the-

sis of Christos Gougoussis.127 We rewrite it using p −
ea0 = (m/i~)[r, HFW

0 ]+O(c−2), whereHFW
0 is the Foldy-

Wouthuysen Hamiltonian, to get:

− ~

4m2c2
〈f |(p− ea) · (ǫ×Σ)|i〉

=
i

4mc2
(Ei − Ef )〈f |r · (ǫ×Σ)|i〉

=
i~ω

4mc2
〈f |(ǫ× r) ·Σ|i〉.

We call spin-position operator the operator (ǫ×r)·Σ. Its
evaluation at the K-edge of materials will be presented
in our companion paper.10

The amplitude of the last term depends on the choice
of the space origin in the Coulomb gauge for a0. It does
not make the cross section gauge dependent because the
states are changed accordingly when choosing the origin
of the gauge. If the origin of the gauge is chosen at the
atom position, fields larger than 106 T are required for
this term to be significant. Such fields are way beyond
laboratory accessible values.

VII. SCATTERING CROSS-SECTION

The scattering cross section is calculated by assuming
that initially the system of electrons is in state |I〉 with
a photon ki, ǫi and that in the final state the system is
in state |F 〉 with a scattered photon kf , ǫf . We do not
consider the special case when ki, ǫi = kf , ǫf .

Eqs. (10), (12) and (14) yield:

w =
2π

~

∑

F

δ(Ef + ~ωf − Ei − ~ωi)
∣

∣

∣

∑

L

e2c2~

2ǫ0V

1
√
ωiωf

〈F |e−kf
ψ†

α · ǫ⋆fψ|L〉〈L|eki
ψ†

α · ǫiψ|I〉
Ei − El + ~ωi + iγ

+
〈F |eki

ψ†
α · ǫiψ|L〉〈L|e−kf

ψ†
α · ǫ⋆fψ|I〉

Ei − El − ~ωf

∣

∣

∣

2

,

where γ > 0 and

ekψ
†
α · ǫψ =

3
∑

j=1

∫

eik·rψ†(r)αjψ(r)ǫjdr.

The scattering cross-section is related to w by:128

d2σ

dΩdωf
=

V 2

(2π)3
ω2
f

1

~c4
w.

Since the electric charge is related to the classical electron
radius re by e2 = 4πǫ0remc

2, we obtain the relativistic
Kramers-Heisenberg scattering cross-section:

d2σ

dΩdωf
= (remc

2)2
ωf

ωi

∑

F

δ(Ef + ~ωf − Ei − ~ωi)

∣

∣

∣

∑

L

〈F |e−kf
ψ†

α · ǫ⋆fψ|L〉〈L|eki
ψ†

α · ǫiψ|I〉
Ei − El + ~ωi + iγ

+
〈F |eki

ψ†
α · ǫiψ|L〉〈L|e−kf

ψ†
α · ǫ⋆fψ|I〉

Ei − El − ~ωf

∣

∣

∣

2

.

In this expression, the sum over |L〉 involves a complete
set of states, with positive and negative energies. Since
Ei is usually the positive energy of the ground state in-
cluding the electron rest energy, we haveEi = mc2+E′

i >
0, where E′

i is the usual (negative) ground state energy. If
|L〉 is a positive energy state, we have El = mc2+E′

l with
E′

l > E′
i and the first term is resonant at ~ωi = E′

l −E′
i.

If |L〉 is a negative energy state, then El = −mc2 − E′
l

and Ei − El − ~ωf = 2mc2 + E′
i − E′

l − ~ωf cannot be
resonant in standard experimental conditions.

We show that the resonant scattering term has a semi-
relativistic expansion close to but different from the one
given by Blume.

If we are interested in the resonant part of the scatter-
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ing cross section, then El > 0 and

d2σ

dΩdωf
= (

rem

~2
)2
ωf

ωi

∑

f

δ(Ef + ~ωf − Ei − ~ωi)

∣

∣

∣

∑

L>

(El − Ei)(Ef − El)

〈f |T ′fl
FW(ǫf )|l〉〈l|T li

FW(ǫi)|i〉
Ei − El + ~ωi + iγ

∣

∣

∣
.

with

T ij
FW(ǫi) =

∑

n

ǫi · rn +
i

2
ǫi · rnki · rn

− ~

4m2c2
πn · (ǫi ×Σn)

− 1

2m∆Eij
(ǫi × ki) · (~Σn +Λn),

and

T ′ij
FW(ǫf ) =

∑

n

ǫ
⋆
f · rn − i

2
ǫ
⋆
f · rnkf · rn

− ~

4m2c2
πn · (ǫ⋆f ×Σn)

+
1

2m∆Eij
(ǫ⋆f × kf ) · (~Σn +Λn),

where ∆Eij = Ei − Ej .
As in the absorption case, the spin-position term in the

transition operator is not present in the usual formula.4

VIII. CONCLUSION

We saw that four different semi-relativistic Hamilto-
nians can be used to describe the interaction of light
with matter. We concluded that gauge invariance cannot
be convincingly enforced in the semi-classical approach
and we had recourse to quantum electrodynamics to
obtain relativistic gauge-invariant absorption and scat-
tering cross-sections. We developed a time-independent
many-body Foldy-Wouthuysen transformation that gave
us the proper semi-relativistic expression for these cross-
sections in the Coulomb gauge. We can now compare our
result to those obtained with the four Hamiltonians.
For the absorption cross-section, HB, HFW and the

NRQED Hamiltonians give the same result as our calcu-
lation. However if the Foldy-Wouthuysen transforma-
tion is also carried out for electric quadrupole transi-
tions, then only HB is still correct. Unfortunately, even
if Blume started from the correct Hamiltonian, he subse-
quently neglected the term giving rise to the spin-position
interaction.
For the scattering cross-section, a term similar to the

spin-position operator arises from h5 but multiplied by
~ω/∆E. Since there is no energy conservation for transi-
tion with the intermediate states no Hamiltonian is valid

for the scattering cross-section. We showed that the stan-
dard expression given by Blume overlooks a term which
is not negligible in x-ray absorption spectroscopy. It will
be interesting to evaluate the size of this term in the
scattering cross-section.
Finally, we have shown that the absorption and scat-

tering cross sections are indeed gauge invariant if they are
written in the framework of quantum electrodynamics.
This is reassuring since only gauge-invariant quantities
are physically meaningful. The main conclusion of this
work is that, to calculate a semi-relativistic cross-section,
it is better to start from a fully relativistic cross-section
than from a semi-relativistic (semi-classical) Hamilto-
nian.
A pending question is how Thomson scattering, which

is due to the A2 term in the non-relativistic approach,
can be derived form in the relativistic framework, which
has no A2 term. We intend to address this question in a
forthcoming publication.
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Appendix: General Foldy-Wouthuysen
transformation

To derive a many-body Foldy-Wouthuysen transforma-
tion, we first notice that, in the one-body case, β endows
the space of spinors with the structure of a Krein space,
where β is called a fundamental symmetry.129 For quite
a different purpose,130 we developed the tensor product
of such spaces and showed that the fundamentaly sym-
metry of the Nth tensor power is essentially η = β⊗N .
The abstract Krein-space framework leads us naturally
to the following theorem:
Assume that HD and η are self-adjoint operators and

η2 = 1. Then, there is a unitary operator U such that
U = ηU †η and ηUHDU

†η = UHDU
†. Moreover, if

|ψD〉 is an eigenstate of HD with positive (resp. nega-
tive) eigenvalue, then |ψ〉 = U |ψD〉 satisfies |ψ〉 = η|ψ〉
(resp. |ψ〉 = −η|ψ〉).
The condition U = ηU †η does not appear in Foldy and

Wouthuysen works. It was added by Eriksen.116,117,131 It
means that U is self-adjoint for the Krein-space structure.
Let us start with general considerations involving a

self-adjoint operator η such that η2 = 1. It can be used
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to define projectors B± = (1 ± η)/2. It is clear that

B+ + B− = 1, B2
± = B±, B

†
± = B± and B+B− =

B−B+ = 0. A vector |ψ〉 is said to be even (odd) if
η|ψ〉 = |ψ〉 (η|ψ〉 = −|ψ〉). Then, any vector |ψ〉 can be
written as the sum of its even part B+|ψ〉 and its odd
part B−|ψ〉. An operator H is said to be even (odd) if
it transforms an even state into an even (odd) state and
an odd state into an odd (even) state. An operator H is
even (odd) if and only if ηHη = H (ηHη = −H). Thus,
the theorem states that UHDU is an even operator. Any
operator H can be written as the sum of its even part
B+HB++B−HB− and its odd part B+HB−+B−HB+.
Our proof of the theorem is essentially a generalized

and rigorous version of Eriksen’s proof.131 We use the
fact that HD is self-adjoint to define λ = signHD by
functional calculus. The operator λ is called the flat band
Hamiltonian in topological insulator theory.132 In physi-
cal terms, let |ψD〉 be an eigenstate of HD for the energy
E, then λ|ψD〉 = |ψD〉 if E ≥ 0 and λ|ψD〉 = −|ψD〉 if
E < 0. Since η and λ are self-adjoint and η2 = λ2 = 1,
they are bounded and ηλ is unitary: ηλ(ηλ)† = ηλλη =
η2 = 1 and (ηλ)†ηλ = 1. By the spectral theorem for uni-
tary operators,133 there is a unique family of orthogonal
projections Pt such that

ηλ =

∫ π

−π

eitPtdt.

In the finite dimensional case we could write this134

ηλ =
∑

n

eitn |φn〉〈φn|.

Thus,

λη = (ηλ)† =

∫ π

−π

e−itPtdt =

∫ π

−π

eitP−tdt,

and, by unicity of Pt, ηλ = η(ηλ)†η implies Pt = ηP−tη.
We can now define a unitary square root U of ηλ by
functional calculus:135,136

U =
√

ηλ =

∫ π

−π

eit/2Ptdt,

which satisfies

ηU †η =

∫ π

−π

e−it/2ηPtηdt =

∫ π

−π

e−it/2P−tdt = U.

We now show that this U satisfies the intertwining re-
lation ηU = Uλ. Indeed, the relation U2 = ηλ implies
U = U †ηλ. By multiplying from the left with η and using
ηU †η = U we find ηU = Uλ. This important relation im-
plies that H = ηHη and that |ψ〉 = U |ψD〉 is even if |ψD〉
is a positive energy state and odd if |ψD〉 is a negative
energy state.
The first property is easy to show:

ηHη = ηUHDU
†η = UλHDλU

† = UHDλ
2U † = H,

because λ commutes with HD since it is a function of
HD.
To show the second property, let Γ± = (1 ± λ)/2, so

that Γ+ projects onto the space of positive energy and
Γ− of negative energy, and recall that B± = (1 ± η)/2.
For a one-body system, B± projects onto the large/small
components. Then, UΓ± = U/2 ± Uλ/2 = U/2 ±
ηU/2 = B±U , which can be used to show that the Foldy-
Wouthuysen wavefunctions |ψ〉 = U |ψD〉 corresponding
to positive energy have only even components. Indeed,
let |ψD〉 be an eigenstate of HD corresponding to a pos-
itive energy. By definition of λ we have Γ+|ψD〉 = |ψD〉
and Γ−|ψD〉 = 0. Thus, UΓ+|ψD〉 = U |ψD〉 = |ψ〉 and
UΓ+ = B+U implies |ψ〉 = B+U |ψD〉 = B+|ψ〉. Thus
η|ψ〉 = ηB+|ψ〉 = B+|ψ〉 = |ψ〉 and |ψ〉 is even. Simi-
larly 0 = B−|ψ〉, so that the odd part of |ψ〉 is zero.
For a one-body system, even components and large

components are identical. Indeed a Dirac one-body wave-
function can be written

|ψD〉 =

(

φ
ψ

)

,

If η = β, then the even part and the odd parts of |ψD〉
are, respectively,

(

φ
0

)

and

(

0
ψ

)

.

so that the small components of |ψ〉 are zero for a
positive-energy state. This is not true for many body
systems. For example, if we neglect antisymmetrization
for notational convenience, a two body wavefunction can
be obtained as the tensor product of one-body wavefunc-
tions:

|ψD〉 =

(

φ1
ψ1

)

⊗
(

φ2
ψ2

)

.

Then, the even part of |ψD〉 is
(

φ1
0

)

⊗
(

φ2
0

)

+

(

0
ψ1

)

⊗
(

0
ψ2

)

,

while its odd part is

(

φ1
0

)

⊗
(

0
ψ2

)

+

(

0
ψ1

)

⊗
(

φ2
0

)

.

The characterization of U as the square root of ηλ is
not easy to handel. We give now a much simpler charac-
terization:
Let U be a unitary operator continuously defined (out-

side zero) in terms of HD such that: (i) U = ηU †η;
(ii) ηUHDU

†η = UHDU
†; (iii) U2(−HD) = −U2(HD).

Then U †ηU = ±sign(HD).
To prove this, define Z = U †ηU . Clearly, Z† = Z.

Moreover, Z is defined in terms HD since U is. However,
for Z to be a function of HD in the sense of functional
calculus, Z needs to commute with HD:137if we multiply
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condition (ii) from the right by ηU we find ηUHD =
UHDU

†ηU = UHDZ. Hence,

ZHD = U †ηUHD = U †UHDZ = HDZ.

Thus, there is a real function f(t) and a family of orthog-
onal projections Pt such that

Z =

∫ ∞

−∞

f(t)dPt.

Moreover, Z2 = 1 because Z2 = U †ηUU †ηU = U †η2U =
U †U = 1. Therefore, f2(t) = 1 for every t. Finally,

observe that Z = η2U †ηU = ηU2, and condition (iii)
implies that Z is an odd function of HD: f(−t) = −f(t).
To conclude that f(t) = ±signt, we need to add a condi-
tion of continuity on f outside zero. Indeed, functional
calculus is valid for measurable functions and we could
build a non-continuous odd function f such that f2 = 1.
In practice this does not take place because U is smoothly
defined in terms of HD, except at zero. No odd contin-
uous function can satisfy f2 = 1 over R. It has to be
discontinuous at zero. Since it is crucial that f2 = 1 ev-
erywhere, we can choose either sign0 = 1 or sign0 = −1.
Both solutions are valid.
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